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Abstract:  
 

The study of causal inference has gained significant attention in artificial intelligence (AI) 

and machine learning (ML), particularly in areas such as explainability, automated 

diagnostics, reinforcement learning, and transfer learning.. This research applies causal 

inference techniques to analyze student placement data, aiming to establish cause-and-

effect relationships rather than mere correlations. Using the DoWhy Python library, the 

study follows a structured four-step approach—Modeling, Identification, Estimation, and 

Refutation—and introduces a novel 3D framework (Data Correlation, Causal Discovery, 

and Domain Knowledge) to enhance causal modeling reliability. Causal discovery 

algorithms, including Peter Clark (PC), Greedy Equivalence Search (GES), and Linear 

Non-Gaussian Acyclic Model (LiNGAM), are applied to construct and validate a robust 

causal model. Results indicate that internships (0.155) and academic branch selection 

(0.148) are the most influential factors in student placements, while CGPA (0.042), 

projects (0.035), and employability skills (0.016) have moderate effects, and 

extracurricular activities (0.004) and MOOCs courses (0.012) exhibit minimal impact. 

This research underscores the significance of causal reasoning in higher education 

analytics and highlights the effectiveness of causal ML techniques in real-world decision-

making. Future work may explore larger datasets, integrate additional educational 

variables, and extend this approach to other academic disciplines for broader 

applicability. 

 

1. Introduction 

Causal inference has emerged as a critical area of 

research in machine learning, offering a robust 

framework for understanding cause-and-effect 

relationships beyond traditional correlation-based 

models. While machine learning techniques have 

been widely employed in various domains, including 

education, their predominant focus on predictive 

accuracy often overlooks the underlying causal 

mechanisms influencing outcomes. This limitation 

is particularly significant in the context of student 

placement prediction, where identifying the key 

determinants of placement success is essential for 

informed decision-making by educational 

institutions [1]. By integrating causal inference 

methodologies, this study aims to bridge this gap by 

establishing a systematic approach to uncovering the 

causal relationships between academic and non-

academic factors that impact student employability. 

Through the application of causal discovery tools 

and statistical modelling, this research provides a 

comprehensive analysis that enhances the 

interpretability and reliability of predictive models 

in the education domain [2]. 

1.1 Background and Motivation 

The integration of machine learning (ML) 

techniques in the education sector has significantly 

improved predictive analytics, enabling institutions 

to forecast student performance, recommend 

personalized learning paths, and assess 

employability potential [3]. These advancements 

have facilitated data-driven decision-making, 

enhancing the overall efficiency of academic and 

career guidance systems. However, traditional ML 

models primarily rely on correlation-based methods, 
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which, while effective for pattern recognition, fail to 

capture the underlying causal mechanisms that drive 

outcomes. In the context of student placements[4], 

existing models often identify associations between 

variables—such as CGPA, internships, and 

extracurricular activities—and employment success 

but do not establish whether these factors directly 

influence placement outcomes or are confounded by 

unobserved variables[5]. This limitation raises 

critical concerns regarding the interpretability and 

generalizability of ML-driven placement prediction 

models. Correlation-based approaches may lead to 

spurious relationships, misinforming institutional 

policies and intervention strategies. For instance, a 

model may indicate a strong correlation between 

high academic performance and placement success 

without considering whether other latent factors, 

such as industry exposure or employability skills, 

mediate this relationship. To address this gap, causal 

inference techniques provide a structured 

methodology to distinguish true causal effects from 

mere associations, thereby enabling more reliable 

decision-making[6]. By leveraging causal inference, 

this study aims to construct a data-driven framework 

that identifies and quantifies the causal impact of key 

academic and non-academic factors on student 

placement outcomes. This approach not only 

enhances the robustness of predictive models but 

also equips educational institutions with actionable 

insights to refine their placement strategies, optimize 

training programs, and support students more 

effectively in their transition to the job market[7]. 

1.2 Problem Statement 

Accurately predicting student placement outcomes 

remains a significant challenge for educational 

institutions, as existing predictive models 

predominantly rely on correlation-based techniques 

rather than causal analysis. Traditional machine 

learning approaches identify statistical associations 

between factors such as academic performance, 

internships, and extracurricular activities with 

placement success. However, these models do not 

establish whether these factors directly influence 

employment outcomes or if their effects are 

confounded by other latent variables. This reliance 

on correlation-based predictions limits the 

interpretability and effectiveness of decision-

making processes in academic institutions. Without 

a clear understanding of causal relationships, 

institutions may implement policies or training 

programs based on misleading insights, resulting in 

suboptimal resource allocation and ineffective 

interventions. For instance, a model might suggest 

that students with higher CGPA[8] are more likely 

to secure job placements, but without causal 

inference, it remains unclear whether CGPA itself is 

the primary determinant or if other factors—such as 

employability skills, industry exposure, or structured 

placement training—mediate this relationship. 

Consequently, interventions based solely on 

correlation-based predictions risk being ineffective 

or even counterproductive[9]. To address this issue, 

there is a critical need for causal inference 

methodologies that can differentiate between 

correlation and causation, ensuring that the factors 

influencing student placement outcomes are 

correctly identified. By leveraging causal discovery 

techniques and structured statistical modeling, this 

study seeks to bridge this gap, providing a more 

reliable and interpretable framework for 

understanding student employability and optimizing 

placement strategies. 

1.3 Objectives of the Study 

The primary objective of this study is to investigate 

the causal impact of various academic and non-

academic factors on student placement outcomes 

using causal machine learning techniques. Unlike 

traditional predictive models that establish statistical 

associations, this research aims to develop a 

structured causal framework to determine whether 

specific factors directly influence placement 

success. By leveraging causal discovery methods, 

the study seeks to identify key determinants—such 

as CGPA, internships, employability skills, and 

extracurricular activities—and assess their causal 

relationships with employment outcomes. 

Additionally, the research intends to validate the 

robustness of these causal estimations through 

systematic statistical techniques, ensuring the 

reliability and generalizability of the findings. 

Ultimately, the insights derived from this study will 

contribute to more effective decision-making in 

educational institutions, enabling data-driven 

interventions to enhance student employability. 

1.4 Significance of Causal Inference in 

Educational Analytics 

Causal inference plays a crucial role in optimizing 

student placement strategies by providing a 

systematic approach to distinguish between mere 

associations and genuine cause-effect relationships. 

Traditional machine learning models, while 

proficient in identifying correlations, do not offer 

actionable insights into how modifying specific 

variables—such as improving soft skills training or 

increasing internship opportunities—can impact 

placement rates. The application of causal reasoning 

in educational analytics allows institutions to move 

beyond predictive accuracy and focus on designing 

targeted interventions that yield measurable 
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improvements in student employability. By 

integrating causal inference, educational 

policymakers can make evidence-based decisions 

regarding curriculum development, placement 

training programs, and resource allocation. For 

example, if causal analysis reveals that internships 

significantly influence placement outcomes, 

institutions can prioritize industry collaborations and 

internship opportunities as a strategic intervention.. 

This study highlights the transformative potential of 

causal ML techniques in the education sector, 

advocating for their integration into institutional 

decision-making processes to improve student 

success rates. 

1.5 Overview of the Proposed Approach 

To achieve the study's objectives, a structured 

methodological framework is developed, integrating 

causal discovery algorithms and domain knowledge 

to construct a robust causal model. The research 

introduces a novel 3D Framework, which comprises 

three critical components: 

1. Data Correlation – Analyzing statistical 

associations between student attributes and 

placement outcomes. 

2. Causal Discovery – Employing causal inference 

techniques such as DoWhy and causal discovery 

algorithms (Peter Clark (PC), Greedy 

Equivalence Search (GES), and Linear Non-

Gaussian Acyclic Model (LiNGAM)) to infer 

causal structures. 

3. Domain Knowledge – Incorporating expert 

knowledge to validate and refine causal 

relationships, ensuring the model’s 

interpretability and real-world applicability. 

The proposed framework systematically models, 

identifies, estimates, and refutes causal effects, 

ensuring a rigorous approach to causal inference in 

student placement prediction. By leveraging 

DoWhy, an open-source Python library for causal 

analysis, this study aims to establish a validated 

causal graph (DAG) that accurately represents the 

key drivers of placement success. The findings of 

this research are expected to contribute to the 

development of more effective educational policies, 

placement strategies, and personalized career 

guidance systems, ultimately enhancing the 

employability prospects of students. 

 

2. Related Work 

This section provides a comprehensive review of 

existing literature on causal inference in machine 

learning, causal discovery techniques, and their 

applications in educational analytics and student 

placement prediction. While traditional machine 

learning models have been extensively used in 

educational research, their reliance on correlation-

based techniques limits their ability to infer 

causality. Recent advancements in causal machine 

learning have introduced more sophisticated 

frameworks that enable a deeper understanding of 

the cause-and-effect relationships in student 

performance and employability outcomes. This 

section examines the evolution of machine learning 

applications in education, the role of Directed 

Acyclic Graphs (DAGs) in causal discovery, and the 

significance of causal inference in student placement 

prediction. 

2.1 Machine Learning Applications in Education 

Machine learning has been widely utilized in 

education for various applications, including student 

performance prediction, dropout prevention, 

automated grading systems, and personalized 

learning environments [10]. Predictive models have 

been employed to forecast students' academic 

success by analyzing features such as attendance, 

assessment scores, and engagement in learning 

activities [11]. Additionally, deep learning 

techniques have been integrated into adaptive 

learning platforms to recommend personalized 

content based on students' learning styles and 

cognitive abilities [12].Despite these advancements, 

a critical limitation of traditional machine learning 

models is their reliance on correlation-based 

techniques, which do not establish causal 

relationships between educational factors and 

student outcomes [13]. For instance, a model may 

predict that students with higher CGPA are more 

likely to secure job placements, but it does not 

determine whether CGPA directly influences 

placement success or if other underlying variables, 

such as employability skills and internship 

experiences, mediate this relationship [14]. This 

shortcoming has raised concerns regarding the 

interpretability and applicability of these models in 

educational decision-making [15]. To address this 

limitation, researchers have explored causal 

inference techniques that enable a more rigorous 

analysis of the factors influencing student outcomes 

[16]. Causal models, particularly those employing 

Directed Acyclic Graphs (DAGs), have been 

introduced to identify confounders, mediators, and 

instrument variables, thereby providing a more 

reliable framework for educational interventions 

[17]. Studies have demonstrated that incorporating 

causal inference into student performance and 

placement prediction models enhances their 

robustness and ensures that institutional policies are 

informed by actionable insights rather than spurious 

correlations [18].By leveraging causal discovery 
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techniques, this study aims to bridge the existing gap 

in student placement prediction by distinguishing 

between correlation and causation, enabling 

educational institutions to design targeted 

interventions that improve student employability 

outcomes. 

2.2 Causal Inference in Artificial Intelligence and 

Machine Learning 

The significance of causal inference in artificial 

intelligence (AI) and machine learning (ML) has 

been increasingly recognized, particularly in 

decision-making systems that require 

interpretability and robustness. Traditional ML 

models predominantly rely on correlation-based 

learning, wherein statistical dependencies between 

variables are leveraged for predictive tasks. 

However, these models fail to differentiate between 

causation and correlation, leading to challenges in 

generalizability and explainability in real-world 

applications [19]. For instance, predictive models in 

healthcare and finance often suggest associations 

between variables without verifying whether 

changes in one factor directly influence another [20]. 

Causal machine learning offers an alternative 

approach that incorporates structured causal 

modeling techniques to identify, estimate, and 

validate cause-effect relationships. Studies have 

demonstrated that integrating causal inference 

methods improves decision-making in domains such 

as healthcare, economics, and education by enabling 

more reliable interventions [21]. Methods such as 

structural causal models (SCMs) and counterfactual 

analysis have been applied to mitigate selection bias 

and confounding factors in ML predictions, leading 

to more interpretable and actionable insights [22]. 

The growing interest in causal ML has led to the 

development of specialized frameworks, such as 

DoWhy, which facilitate causal reasoning in AI 

applications [23]. Given the increasing complexity 

of data-driven decision-making, the adoption of 

causal inference methodologies in AI is essential for 

ensuring reliable, explanation-aware models that 

support decision-makers across various domains. 

2.3 Directed Acyclic Graphs (DAGs) and Causal 

Discovery Techniques 

Directed Acyclic Graphs (DAGs) serve as a 

fundamental tool in causal inference, enabling the 

visualization and quantification of causal 

relationships among variables. DAGs offer a 

structured approach to representing causal 

dependencies by ensuring acyclic relationships 

between nodes, thereby preventing feedback loops 

and reinforcing a clear causal hierarchy [24]. Their 

application spans multiple disciplines, including 

economics, epidemiology, and education, where 

understanding the causal impact of interventions is 

critical [25]. Several causal discovery techniques 

have been proposed to infer DAG structures from 

observational data, each employing distinct 

methodologies to establish causality. The Peter 

Clark (PC) algorithm, a constraint-based method, 

determines causal structures by iteratively testing 

conditional independence among variables [26]. The 

Greedy Equivalence Search (GES) algorithm, a 

score-based approach, evaluates candidate DAGs 

based on goodness-of-fit criteria such as the 

Bayesian Information Criterion (BIC), iteratively 

refining causal structures to optimize model 

accuracy [27]. Meanwhile, the Linear Non-Gaussian 

Acyclic Model (LiNGAM) assumes that causal 

relationships follow a linear structure with non-

Gaussian noise, making it particularly suitable for 

domains where traditional Gaussian assumptions do 

not hold [28].Although these algorithms provide 

valuable frameworks for causal discovery, 

challenges remain in handling high-dimensional 

datasets, addressing latent confounders, and 

integrating domain expertise into automated 

discovery processes. The effectiveness of DAG-

based causal modeling depends on the robustness of 

assumptions and the quality of observational data, 

necessitating hybrid approaches that combine 

automated causal discovery with expert-driven 

validation. 

2.4 Causal Inference in Educational Analytics 

The application of causal inference in educational 

analytics has gained traction as researchers seek to 

improve student learning outcomes, academic 

performance, and employability prospects [29]. 

While traditional predictive models have been 

employed to assess student success, they often fail to 

identify causal mechanisms underlying academic 

achievement and workforce readiness. Causal 

modeling in education enables policymakers and 

institutions to design evidence-based interventions, 

such as targeted skill development programs and 

personalized learning pathways [30].Studies have 

applied causal inference to various aspects of 

education, including the impact of learning 

strategies on student performance, the effectiveness 

of online learning platforms, and the role of 

socioeconomic factors in academic success [31]. For 

instance, research leveraging instrumental variable 

(IV) techniques has shown that structured 

mentorship programs have a significant causal effect 

on student retention rates [32]. Similarly, propensity 

score matching (PSM) has been used to evaluate the 
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effectiveness of employability training initiatives, 

ensuring that observed differences in placement 

outcomes are attributable to the intervention rather 

than selection bias [33]. 

Despite these advancements, limited work has been 

done in applying causal ML techniques to student 

placement prediction, highlighting an area that 

requires further exploration. This study seeks to 

address this gap by developing a causally informed 

model for understanding student employability 

factors, integrating DAG-based causal discovery 

and domain knowledge validation. 

2.5 Causal Machine Learning for Student 

Placement Prediction 

Accurate student placement prediction is a crucial 

challenge for educational institutions, as traditional 

models primarily rely on correlation-based learning, 

which does not account for causal dependencies 

between student attributes and employability 

outcomes [34]. Previous studies have identified 

various predictors, such as CGPA, internships, 

certifications, and soft skills, but have not 

established whether these factors directly impact 

placement success or if their effects are mediated by 

unobserved variables [35].Early attempts at causal 

inference in student placement analysis have 

employed propensity score matching (PSM) and 

instrumental variable (IV) approaches to reduce 

confounding bias [36]. However, these methods 

often require strong assumptions about treatment 

assignment, limiting their applicability in complex, 

multi-factorial placement scenarios. More recent 

work has explored DAG-based modeling to infer 

causal pathways between student attributes and job 

placement probabilities [37]. This study extends 

prior research by introducing a hybrid causal 

framework that integrates data correlation, causal 

discovery algorithms, and domain knowledge 

validation, ensuring greater interpretability and 

reliability in placement predictions. The proposed 

methodology offers a robust decision-making tool 

for academic institutions seeking to refine placement 

training programs and optimize student 

employability. 

2.6 Limitations and Research Gaps in Existing 

Studies 

While causal inference has shown promise in 

educational analytics, several limitations persist in 

existing studies. One of the most pressing issues is 

the reliance on observational data without causal 

validation, leading to potential biases in interpreting 

student success factors [38]. Many studies use 

association-based metrics, such as linear regression 

coefficients and correlation matrices, without 

establishing true causal effects [39]. This limitation 

restricts the applicability of findings, as institutions 

may implement ineffective policies based on 

spurious relationships.Another gap in current 

research is the lack of hybrid approaches integrating 

causal discovery with domain expertise. Automated 

causal inference techniques, while powerful, often 

require human validation to ensure that inferred 

causal relationships align with theoretical and 

contextual knowledge [40]. Additionally, high-

dimensional datasets in education pose challenges 

for existing causal discovery algorithms, as they 

require large sample sizes and computationally 

intensive procedures to yield reliable causal 

estimates [41]. Furthermore, causal ML models in 

student placement prediction have not been 

extensively evaluated across diverse educational 

settings. Most studies focus on a single dataset or 

institution, limiting the generalizability of causal 

inferences [42]. To address these gaps, this study 

proposes a three-dimensional (3D) framework that 

integrates statistical correlation analysis, causal 

discovery algorithms, and expert-driven validation, 

ensuring a more interpretable and actionable causal 

model for student placement prediction. 

3. Theoretical Foundations of Causal 

Machine Learning 

3.1 The Evolution of Machine Learning in 

Educational Analytics 

Machine learning (ML) has been widely adopted in 

educational analytics to enhance student 

performance prediction, provide personalized 

learning experiences, and improve institutional 

decision-making [43]. These advancements have 

enabled institutions to develop automated grading 

systems, early warning systems for at-risk students, 

and student placement prediction models. However, 

despite their predictive power, traditional ML 

models primarily focus on correlation-based 

methods, which fail to establish causal relationships 

between variables. For instance, a predictive model 

may identify a strong correlation between a student's 

CGPA and placement success, but this does not 

imply that CGPA directly influences placement 

outcomes. Instead, other latent factors, such as 

internship experience, employability skills, or 

mentorship programs, may mediate this relationship. 

This limitation significantly affects decision-making 

in educational institutions, as interventions based 

solely on correlations may lead to misguided  
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Figure 1. Comparison of Correlation-Based ML vs. Causal ML 

 

policies. To address these challenges, researchers 

have emphasized the integration of causal inference 

techniques in ML-based educational analytics. By 

adopting causal machine learning (CML), 

institutions can identify key determinants of student 

employability and implement evidence-based 

policies that enhance learning and placement 

outcomes. Figure 1 is comparison of correlation-

based ML vs. causal ML. Figure 2 is counter factual 

scenario in causal ML. 

3.2 The Need for Causal Machine Learning 

Traditional machine learning models are designed to 

optimize prediction accuracy based on 

observational data. However, these models 

struggle with explainability, bias, and 

generalization to unseen scenarios. In high-stakes 

domains such as education and workforce 

analytics, mere predictions are insufficient; 

institutions require actionable insights based on 

cause-and-effect relationships [44]. 

Causal ML provides a framework for answering 

counterfactual questions, such as: 

 Would a student’s placement outcome have 

changed if they had completed an internship? 

 How much does employability training causally 

impact job placement success? 

 If students were randomly assigned to different 

academic branches, would placement rates 

remain the same? 

By addressing these causal questions, CML enables 

data-driven decision-making and ensures that 

educational interventions are targeted and effective. 

 

3.3 Defining Causal Inference and Its Role in 

Machine Learning 

Causal inference aims to determine whether a 

change in one variable (treatment) leads to a change 

in another variable (outcome), while controlling for 

 

Figure 2. Counter factual Scenario in Causal ML 

confounding factors. Unlike conventional ML 

models, which infer associations from data, causal 

ML establishes direct cause-and-effect relationships 

through structural causal models (SCMs) and 

Directed Acyclic Graphs (DAGs). A DAG is a 

graphical representation of causal relationships 

where nodes represent variables, and directed edges 

indicate causal influence. DAGs help in identifying 

confounders, mediators, and instrument variables, 

which are essential for unbiased causal estimation 

[45]. For instance, consider a student placement 

prediction model where Internship Experience (T) is 

hypothesized to influence Placement Success (Y). 

However, this relationship may be confounded by 

CGPA (X), as higher CGPA students are more likely 

to receive internships. In this case, failing to account 

for CGPA as a confounder would lead to biased 

causal estimates. Figure 3 is DAG showing causal 

relationships (Internship → Placement, Confounded 

by CGPA). 
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Figure 3. DAG Showing Causal Relationships 

(Internship → Placement, Confounded by CGPA) 

3.4 Methodological Framework for Causal 

Analysis 

The process of causal analysis in machine learning 

follows four key steps: Modeling, Identification, 

Estimation, and Refutation. Each step ensures that 

the causal effect of an intervention or treatment is 

correctly estimated and validated. Modeling 

involves defining a conceptual framework to 

represent causal relationships between variables. 

The key steps include: 

 Defining the Research Question – Clearly stating 

the causal question being investigated. 

 Developing a Theoretical Model – Constructing 

a DAG to outline causal pathways. 

 Specifying Variables – Identifying treatment (T), 

outcome (Y), and confounders (X). 

The identification step ensures that the causal effect 

can be isolated from confounding factors. This 

process involves: 

 Stating Assumptions – Ensuring there are no 

unmeasured confounders and selecting 

appropriate instruments. 

 Choosing an Identification Strategy, such as: 

• Randomized Controlled Trials (RCTs) – Gold 

standard for causal inference [46]. 

• Natural Experiments – Leveraging external 

events that approximate randomization. 

• Instrumental Variables (IV) – Using 

instruments that affect treatment but not the 

outcome directly. 

• Difference-in-Differences (DiD) – Comparing 

changes in treated vs. control groups over time. 

This step quantifies the causal effect using 

statistical methods: 

 Linear/Non-linear Regression – Adjusting for 

confounders to estimate causal effects. 

 Matching Techniques – Pairing treated and 

control units with similar characteristics. 

 Instrumental Variable Estimation – 

Addressing endogeneity in causal inference. 

 Propensity Score Matching (PSM) – Matching 

units based on the probability of treatment 

assignment. 

Refutation techniques validate the robustness of 

causal findings: 

 Placebo Tests – Ensuring no causal effect is 

observed where it should not exist. 

 Subgroup Analysis – Checking if the causal 

effect holds across different subgroups. 

 Falsification Tests – Testing whether causal 

assumptions hold in independent settings. 

 

Figure 4. Workflow diagram showing Modeling → 

Identification → Estimation → Refutation in causal 

inference. 

3.5 Challenges in Causal Machine Learning 

Despite its advantages, causal ML presents several 

challenges: 

 Observational data often suffer from selection 

bias, where certain groups may be over- or under-

represented in the dataset. 

 Example: If only students with strong academic 

records receive internships, the estimated effect 

of internships on placement may be overstated. 

 Confounders introduce bias if not accounted for 

properly. 

 Example: If students with high employability 

skills tend to enroll in internship programs, then 

the true causal effect of internships on placement 

must adjust for employability skills. 

 Many causal ML models are developed using 

data from a single institution, limiting their 
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generalizability across different educational 

settings. 

 Causal discovery algorithms, such as PC, GES, 

and LiNGAM, require large sample sizes and 

significant computational resources, making 

them challenging to scale.[47]  

4. Methodology Overview 

This section explains the implementation of the 

suggested work, which involves creating a causal 

graph that addresses variables named treatments, 

outcomes, confounders, and instrument variables 

using the Placement Dataset and additional causal 

discovering techniques. To combine the elements of 

the various causal discovery algorithms with the 

domain knowledge required for causal modelling, a 

novel structure known as the 3D Framework is put 

forth and use. Figure 4 is workflow diagram. 

DoWhy is a Python module that aims to promote 

causal analysis and reasoning in a manner similar to 

the predictive machine learning frameworks. For 

root cause analysis, interventions, effect estimation, 

prediction, quantification of causal influences, 

learning causal structures, and creating 

counterfactuals, DoWhy provides a wide range of 

algorithms. It can validate causal assumptions for 

any estimating method. DoWhy's causal job 

execution process begins with modelling causal 

interactions as a causal graph. Causal graphs are 

used to model "cause-effect-relationships" that exist 

inside a system domain. A Directed Acyclic Graph 

(DAG) with an edge X→Y designating that X is the 

cause of Y is what we require for the causal graph. 

The statistical representation of the conditional 

independence relationships between variables is a 

causal graph. 

4.1 Directed Acyclic Graphs (DAGs)  

They play a crucial role in causal discovery. They 

are used to visually and formally represent the causal 

relationships between variables in a system. It is 

made up of Nodes and Edges where each node 

represents a variable, and each directed edge (arrow) 

represents a causal influence from one variable to 

another. The graph is acyclic, meaning it does not 

contain any loops, which ensures that it represents a 

consistent causal ordering. Causal discovery 

algorithms are computational methods used to 

uncover causal relationships from observational 

data. These algorithms aim to determine the 

underlying causal structure among a set of variables 

without the need for experimental intervention. 

Some common types of causal discovery algorithms 

are Constraint based methods (PC - Peter Clark 

Algorithm), Score based methods (GES - Greedy 

Equivalence Search Algorithm), Functional Causal 

methods (LiNGAM - Linear Non Gaussian Acyclic 

Model), hybrid methods. 

4.2 Causal Discovery Algorithms 

The process of deriving causal correlations between 

variables using observational data is known as 

causal discovery. Finding a set of causal 

relationships that make sense for the given is the aim 

of causal discovery. A directed acyclic graph (DAG) 

with the variables as nodes and the causal 

relationships as edges is a representation of the 

causal relationships. The two types of algorithms are 

constraint-based and score-based. A scoring 

function is used by score-based algorithms to assess 

a causal graph's quality. Constraint-based algorithms 

assess a causal graph's quality using a set of 

constraints. The more adaptable score-based 

methods can be used to identify causal graphs that 

deviate from the data. Only causal networks that are 

compatible with the data can be found by the more 

limited constraint-based methods. Compared to 

score-based algorithms, constraint-based algorithms 

are more efficient. Both constraint- and score-based 

approaches' benefits are utilised by the causal 

discovery module. You can define the search space's 

bounds by applying your domain expertise. We use 

a score-based technique to identify a causal graph 

that satisfies the given requirements with the 

available data. 

 

4.3 Peter Clark Algorithm 

This algorithm is based on constraints. To locate a 

causal graph that is consistent with the given 

constraints and the data, the PC technique is 

employed. The PC algorithm is a greedy search 

method that adds edges to a graph iteratively after 

beginning with an empty network. If the conditional 

independence test between two variables fails given 

the other variables in the graph, the algorithm adds 

an edge between the two variables. When the graph 

can no longer contain any more edges, the algorithm 

comes to an end. It is guaranteed by the PC 

algorithm to find a causal graph consistent with the 

given constraints and data. Every common cause for 

every pair of variables is included in the collection 

of observed variables. It adheres to the common 

markov condition, which states that, every variable 

in the causal graph is independent of its non-

descendants given its direct causes (parents). The 

variables are placed in a causal order such that, for 

any pair of variables, the variable with a direct causal 

relationship between them comes first in the 

ordering. The correctness of these presumptions 

affects how well the algorithm performs, and failures 

can result in inaccurate or lacking causal structures. 
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4.4 Greedy Equivalence Search Algorithm 

A popular technique for causal discovery is the GES 

(Greedy Equivalence Search) algorithm, which 

takes observational data and uses it to determine the 

causal structure, which is usually represented as a 

directed acyclic graph, or DAG.  It operates by 

searching through the space of DAGs to find one that 

best represents the underlying causal relationships. 

The GES algorithm is divided into two main phases. 

The forward phase is starting from an empty graph, 

the algorithm iteratively adds edges that most 

increase a scoring criterion (usually based on a score 

like the Bayesian Information Criterion or BIC) until 

no more additions can recover the score. The 

Backward phase starts from the graph obtained and 

the algorithm iteratively removes edges that most 

increase the score until no more removals can 

improve the score. 

 

4.5 Linear Non-Gaussian Acyclic Model 

Algorithm 

The causal relationships between the observable 

variables can be modelled using a linear structural 

equation model (SEM). In other words, every 

variable in the causal tree can be understood as a 

linear function of its independent noise factor plus 

its parents, or direct causes.  It is assumed that the 

noise terms in the linear SEM are non-Gaussian. The 

non-Gaussianity is exploited by the DirectLiNGAM 

algorithm to discriminate between direct and 

indirect causal relationships. It is assumed that the 

causal graph is acyclic, which means that it lacks 

directed cycles and feedback loops. 

4.6 3-Dimensional Framework  

One method that can be applied when utilising the 

Domain Knowledge to ascertain the Causal Graph is 

Minimum Criteria and Maximum Differentiators 

(MCMD). It offers a generalisation for identifying 

the treatments of a specific use case in a DAG 

model. It illustrates a hybrid Approach combining 

the capabilities of both manual and causal discovery 

tools. The framework combines the 3 approaches of 

Data Correlation, Causal Discovery Tools and 

Domain Knowledge to represent the Causal Graph. 

This results in a causal model that considers the ML 

techniques verified by the domain expertise which 

might be useful for decision making towards the 

desired target outcome.  

 

 Performing the causal tasks follows modelling 

causal relationships. DoWhy can assist with the 

following tasks. They're Effect estimation: How 

much would Y change if we adjust X?  

 Attribution: What caused the event to occur? 

How do you interpret a result? What was the 

anomaly produced by my variables?  

 

.  

Figure 5. Process of Estimating the Causal Effects 



D. Naga Jyothi, Uma N Dulhare/ IJCESEN 11-1(2025)850-872 

 

859 

 

 Counterfactual estimation: What would have 

happened if X had been assigned a value other 

than the one that was observed? What would 

be the values of the other variables?  

 Prediction: What will the value of Y be given 

as input with new values for various input 

features?  

 

4.7 Estimating the Causal Effects 

The causal effect of a variable A on y is defined as 

the predicted change in y because of a change in A. 

Sometimes we are just interested in the effect on a 

specific subpopulation, or we want to examine the 

causal influence across subpopulations. Figure 5. Is 

process of estimating the causal effects. 

Four phases to estimate the causal effect:  

1. Make assumptions to model a causal inference 

problem.  

2. Determine the "causal estimand," or expression, 

for the causal effect under these suppositions.  

3. Calculate the expression with statistical 

techniques like instrumental variables or matching 

variables.  

4. Finally, use a range of robustness checks to 

confirm the estimate's correctness.  

There are four main verbs in DoWhy that describe 

this workflow: 

 

 model (CausalModel or graph) 

 identify (identify_effect) 

 estimate (estimate_effect) 

 refute (refute_estimate) 

DoWhy employs a causal effect estimation API that 

supports several techniques by using these verbs. 

The model employs a formal causal structure to 

capture previous information, implements graph-

based techniques to determine the causal effect, 

applies statistical methods to estimate the discovered 

estimand, and, lastly, attempts to challenge the 

generated estimate by examining its adaptability to 

presumptions. In another way, it's essential to decide 

on an identification technique before thinking about 

an estimating procedure. The identification 

algorithms supported by DoWhy are Backdoor, 

Frontdoor, Instrumental variable, ID algorithm.Once 

a causal effect is identified, we can choose an 

estimation method compatible with the 

identification strategy. 

 

Identifying the Causal Effect 

The second step of causal analysis is identification, 

which comes after we have modelled our causal 

assumptions. Identification of causal effect is the 

process of finding out whether the effect can be 

approximated using the data from the available 

variables given a causal graph and the set of 

observed variables. Formally speaking, 

identification transforms the intended causal effect 

expression—for example, [𝑌|𝑑𝑜(𝐴)]—into a form 

that may be estimated without the do-operator by 

using the observed data distribution. 

 

Backdoor Criterion  

To identify causal effect using the backdoor 

criterion, any of the four basic kinds of adjustments 

can be used based on the requirements. Each of these 

are designed to return a valid backdoor set, but they 

vary in how they select the set of variables to return. 

They are maximal-adjustment, minimal-adjustment, 

exhaustive-search, default. A conditional probability 

distribution is estimated when effect estimation with 

backdoor is used. It is determined that the causal 

impact is ∑𝑤𝐸[𝑌|𝐴,𝑊 = 𝑤]𝑃(𝑊 = 𝑤) given an 

action A, a result Y, and a collection of backdoor 

variables W. Any estimator that generates 

conditional expectation is suitable for our purposes. 

There are various types of average causal effect 

estimators that DoWhy supports. One widely used 

technique for estimating causal influence is linear 

regression. When there is a linear function 

approximation for the data-generating process 

leading to an output Y, it is helpful. 

Quantify Causal Influence: In addition to 

estimating the average total causal effect, DoWhy 

can also be used for estimating the direct arrow 

strength between two nodes in a causal graph. 

Direct Arrow Strength: This technique measures 

the change in distribution that occurs when an edge 

in a graph is eliminated to measure the causal 

influence of one variable on the other. When 

eliminating an edge, it employs a specific measure 

to estimate the change, such as the relative entropy 

or the variance difference. This yields a single, well-

defined value that signifies the strength of a 

particular causal relationship in nonlinear 

interactions and explains how the removal of a 

particular causal link influences the target variable. 

5. Results & Discussion 

The present study includes the dataset used is the 

real time data taken from the undergraduate 

Engineering college students. The student details of 

third and final year students of Chaitanya Bharathi 

Institute of Technology, Hyderabad, India are 

included to check for placement of the student by the 

end of their graduation. The dataset measures 90 

x 33, which indicates that there are a total of 90 

student records and 33 features. The features are 

Roll No, Name, Gender, Branch, Semester, SSC-

percentage, IPE- percentage, CGPA, Hackathons, 
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Figure 6.  Sample Data set 

Certifications, Internships, Projects, Employability 

skills marks, soft skills marks, self-learning 

capability, Job/ Higher studies, interested in games, 

placement training , worked in teams or not, moocs 

courses, mother’s education, father’s education, no. 

of siblings, accommodation type, parental status, 

mother’s occupation, father’s occupation, lab 

facility, class room facility, library, mentor allotted, 

frequency of meeting the mentor, mentoring 

attendance. The information is all numerical and not 

classified. In fields with only 0s and 1s as values, 0 

denotes no and 1 denotes yes. Figure 6 is sample data 

set.A Python library called the DoWhy package is 

intended for causal modelling and inference. It offers 

a consistent interface for modelling causal 

relationships and testing causal hypotheses, 

integrating methods from econometrics, statistics, 

and machine learning. The key focus of DoWhy is 

to make causal inference easier and more accessible 

by providing tools for both the identification of 

causal relationships and the estimation of causal 

effects. The key features of DoWhy are Modeling 

Causal Relationships by defining a causal model 

using directed acyclic graphs (DAGs) or structural 

causal models (SCMs). DoWhy is a powerful tool 

for anyone interested in rigorous causal analysis, 

whether in academia, industry, or policy- making. 

The following packages need to be installed for 

modelling the causal relationships. 

5.1 Install the dowhy packages 

!pip install dowhy econml 

!apt install libgraphviz-dev 

!pip install pygraphviz 

 

5.2 Data Load and Data Preparation  

The outputs after the data loading and preparation 

are shown in figure 7 and 8. 

 

5.3 Build the Causal Graphic Model (3D 

Framework) 

The correlation heatmap analysis highlights key 

factors influencing student placement outcomes. 

CGPA positively correlates with placement success 

(0.47), but employability (0.60) and soft skills (0.54) 

play an even stronger role. Practical experiences like 

internships (0.41) and projects (0.47) significantly 

enhance employability, while teamwork (0.24) and 

extracurricular activities (0.24) also contribute. 

Academic resource utilization (library and lab 

grades) improves CGPA but has a weaker direct 

impact on placement. Field of study (0.52) is a major 

determinant, while gender has negligible influence 

(0.06). Accommodation type negatively affects 

placement (-0.26), possibly due to environmental 

constraints. Overall, a balanced approach integrating 

academics, soft skills, and experiential learning is 

crucial for maximizing employability. Figure 9 

shows data correlation. The correlation heatmap 

(Figure 10) presents the relationship between the 

PlacedOrNot variable and other academic, 

extracurricular, and skill-related factors, providing 

insights into the key determinants
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Figure 7. After data preparation 

 

Figure 8. After data preparation 

 

Figure 9. Data Correlation 
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Figure 10. Correlation between the placed Or Not variable and the other variables 

 

Figure 11. Correlation between the CGPA variable and the other variables 

of student placement success. Branch of study 

exhibits the highest positive correlation (0.52), 

indicating that field of study significantly influences 

placement chances, likely due to industry demand 

variations. Internships (0.47) and Hackathons (0.36) 

show strong positive associations, emphasizing the 

importance of hands-on experience and industry 

exposure in securing employment. CGPA (0.34) 

also positively impacts placement, reinforcing the 

relevance of academic performance, though it is 

comparatively less influential than experiential 

learning. Participation in extracurricular activities 

(0.25) and placement training programs (0.25) 

further contributes positively. Moderate correlations 

are observed for IPE Grade (0.18) and 

Accommodation Type (0.15), suggesting a minor 

influence of past academic performance and living 

environment on placement success. Surprisingly, 

Soft Skills (-0.15) and Class Room Grade (-0.12) 

exhibit negative correlations, implying that 

traditional academic excellence and self-reported 

soft skills alone may not guarantee placement. 

Certifications (-0.10) and MOOCs (-0.09) also 

display weak negative correlations, indicating that 

these credentials alone might not significantly 

impact placement outcomes. Other variables such as 

Employability Skills (0.09) and Worked in Teams 

(0.12) show only weak positive correlations, 

suggesting that while these skills are essential, they 

may not directly influence hiring decisions as 
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strongly as hands-on project experience. Overall, the 

analysis underscores the importance of a balanced 

skillset combining academic performance, practical 

exposure, and industry-relevant experience in 

enhancing placement opportunities. Figure 11 

illustrates the correlation between CGPA and 

various academic, extracurricular, and professional 

development factors, providing insights into the 

determinants of academic performance. IPE Grade 

(0.37) and SSC Grade (0.21) exhibit positive 

correlations with CGPA, indicating that students 

with strong pre-university academic backgrounds 

tend to maintain high performance in higher 

education. Employability Skills (0.34), Internships 

(0.32), and Hackathons (0.32) also show a positive 

correlation, suggesting that students who engage in 

skill-building activities and industry exposure tend 

to perform well academically. Projects (0.24) and 

Extracurricular Activities (0.26) further contribute 

positively, reinforcing the role of practical 

experience and holistic development in academic 

success. Worked in Teams (0.20) and Moocs 

Courses (0.21) demonstrate a mild positive 

correlation, highlighting the benefit of collaborative 

and self-paced learning. Conversely, Class Room 

Grade (-0.33) exhibits the strongest negative 

correlation, implying that students with high CGPA 

may not necessarily perform well in classroom 

assessments, possibly due to differences in 

assessment methods. Library Grade (-0.17) and 

Certifications (-0.11) also show weak negative 

correlations, suggesting that traditional academic 

resource utilization and certifications alone may not 

directly translate to higher CGPA. Lab Grade (-0.06) 

has a negligible correlation, indicating that 

laboratory performance does not significantly 

impact overall academic scores. Accommodation 

Type (0.17) and Mentor Allotted (0.14) have a small 

positive correlation, suggesting a minor influence of 

living conditions and mentorship on academic 

success. Overall, the findings suggest that while 

prior academic performance, employability skills, 

and industry engagement positively contribute to 

CGPA, traditional academic indicators such as 

classroom grades and library usage show a weaker 

or even negative correlation. This highlights the 

importance of a well-rounded educational approach 

integrating practical exposure and skill development 

alongside theoretical learning for academic 

excellence. Figure 12 presents the correlation 

between Hackathons and various academic, 

extracurricular, and professional factors. Projects 

(0.52) and Branch (0.28) show strong positive 

correlations, suggesting that students involved in 

hackathons often engage in project-based learning 

and belong to technical fields. A mild positive 

correlation with IPE Grade (0.15) and Certifications 

(0.10) indicates that prior academic performance and 

additional credentials contribute to hackathon 

participation. Accommodation Type (0.31) suggests 

that living conditions might influence participation 

rates. However, Placement Trainings (-0.18) and 

Mentor Allotted (-0.26) show negative correlations, 

implying that students relying on structured training 

or mentorship may engage less in hackathons. Weak 

or negative correlations with Employability Skills 

(0.03) and Soft Skills (-0.05) suggest that 

hackathons may primarily enhance technical rather 

 

Figure 12. Correlation between the Hackathons variable and the other variables 



D. Naga Jyothi, Uma N Dulhare/ IJCESEN 11-1(2025)850-872 

 

864 

 

 

Figure 13. Correlation between the Internships variable and the other variables 

 

 Figure 14. CP-DAG using the PC Technique 

than interpersonal skills. Overall, hackathon 

participation is strongly associated with hands-on 

project experience and technical discipline but less 

linked to structured guidance or traditional 

employability training Figure 13 highlights the 

correlation between Internships and various 

academic, extracurricular, and employability 

factors. Strong positive correlations with Projects 

(0.37), Hackathons (0.40), and Extracurricular 

Activities (0.29) suggest that students engaged in 

internships often participate in hands-on learning 

and non-academic activities. Employability Skills 

(0.17) and Placement Training (0.11) show weaker 

correlations, indicating that internships contribute to 

skill development but are not the sole factor. 

Accommodation Type (0.44) suggests accessibility 

influences internship opportunities. Minor positive 

associations with Certifications (0.10) and Moocs 

Courses (0.14) indicate additional learning aids 

internships. A slight negative correlation with Soft 

Skills (-0.08) implies internships focus more on 

technical abilities. Overall, internships are strongly 

linked to practical experience, technical exposure, 

and accessibility rather than early academic 

performance. 

5.4 Causal Discovery Algorithms 

PC – Peter Clark Algorithm 

Figure 14 presents the Causal Partially Directed 

Acyclic Graph (CP-DAG) generated using the PC 

(Peter-Clark) technique, illustrating causal 

relationships among academic, extracurricular, and 
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employability-related factors. The directed edges in 

the graph indicate inferred causal influences 

between variables. Academic performance is 

influenced by SSC Grade and IPE Grade, which 

directly impact CGPA, and in turn, CGPA affects 

Employability Skills and Soft Skills. PlacedOrNot is 

primarily determined by Branch and Internships, 

both of which are causally linked to IPE Grade, 

indicating that prior academic performance 

influences field selection and internship 

opportunities. Accommodation Type also impacts 

Internships, suggesting that living conditions play a 

role in practical exposure. Hands-on learning 

experiences, such as Projects, Hackathons, and.,

GES – Greedy Equivalence Search 

 

Figure 15. CP-DAG using the GES Technique 

 

Figure 16. DAG using the LiNGAM Technique 
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Certifications, are interconnected, with Hackathons 

driving project engagement and Certifications 

leading to MOOCs participation. Library Grade is 

influenced by Lab Grade, indicating academic 

resource utilization patterns. Extracurricular 

activities drive Mentor Allotment and Placement 

Training, showing the importance of non-academic 

engagement in structured career support 

Interestingly, Worked in Teams appears isolated, 

implying it may not be directly influenced by other 

variables but could still play an indirect role in 

employability. Overall, this CP-DAG highlights that 

internships, field of study, and prior academic 

performance are key determinants of placement 

success, while skill development and practical 

exposure serve as crucial mediators.The model 

reinforces the need for a balanced academic and 

experiential learning approach to enhance 

employability outcomes. Figure 15 presents the 

Causal Partially Directed Acyclic Graph (CP-DAG) 

constructed using the Greedy Equivalence Search 

(GES) technique, which identifies causal structures 

among academic extracurricular, and employability-

related factors. The directed edges indicate causal 

influences between variables, providing insights into 

the key determinants of placement success. Branch 

of study is a primary determinant of Placement 

Outcome (PlacedOrNot), reinforcing the importance 

of field selection in employability. Internships and 

Accommodation Type directly influence placement, 

indicating that both practical experience and 

environmental factors impact job opportunities. 

Hackathons contribute to Internships, while 

Certifications facilitate Project involvement, 

suggesting that technical skill-building fosters 

experiential learning. Moocs Courses emerge as a 

result of Certifications, highlighting self-driven 

learning pathways. Academic performance is shaped 

by SSC Grade and IPE Grade, both feeding into 

CGPA, which in turn drives Employability Skills 

and Soft Skills. This suggests that strong academic 

foundations support professional readiness. 

Extracurricular Activities impact Mentor Allotment 

and Placement Training, indicating that students 

engaged in non-academic pursuits receive more 

structured career guidance. Worked in Teams 

appears linked to Placement Training, emphasizing 

the role of collaboration in professional 

development. Interestingly, Library Grade is 

influenced by Lab Grade, indicating a relationship 

between practical coursework and academic 

resource utilization. However, Classroom Grade 

remains isolated, implying that traditional academic 

performance may not be a significant causal factor 

in employability. Overall, this CP-DAG highlights 

that field selection, internships, and experiential 

learning are crucial for placement success, while 

structured training, mentorship, and employability 

skills serve as key mediators. The model underscores 

the necessity of integrating academic excellence 

with hands-on learning and industry engagement to 

enhance career prospects. 

LiNGAM – Linear Non-Gaussian Acyclic Model 

Figure 16 presents a Directed Acyclic Graph (DAG) 

generated using the LiNGAM (Linear Non-Gaussian 

Acyclic Model) technique, illustrating direct causal 

influences among academic, extracurricular, and 

employability-related variables. PlacedOrNot is 

heavily influenced by Internships (0.83) and Branch 

(0.28), highlighting the significance of practical 

experience and field of study in securing placements. 

Internships are strongly linked to Projects (0.14) and 

influenced by Accommodation Type (0.49), 

indicating that living conditions impact internship 

opportunities. CGPA is a key determinant of 

Employability Skills (0.39), which is further 

enhanced by Certifications (0.33). IPE Grade (0.20) 

and SSC Grade (0.19) contribute to CGPA, 

reinforcing the role of academic history in 

performance. Soft Skills (0.03) and Worked in 

Teams (0.18) positively impact CGPA, while 

Placement Training (0.70) and Mentor Allotment 

(0.70) play a significant role in student development. 

Lab Grade (0.70) influences Moocs Courses (0.74) 

and Library Grade (0.42), suggesting that academic 

resources contribute to additional learning. 

Hackathons (0.12) influence Branch and Projects, 

indicating the importance of competitive learning. 

Overall, the DAG highlights that internships, 

academic performance, and practical experiences 

serve as key mediators for employability, 

emphasizing a holistic approach to career readiness. 

5.4 Domain Knowledge 

In the context of analyzing employability factors, a 

structured approach is adopted to identify key causal 

relationships using data correlation, causal 

discovery tools, and a domain knowledge-driven 

framework. The analysis incorporates treatments, 

instrument variables, and confounders to ensure a 

robust causal inference model. 

D#1: Data Correlation Approach 

The initial phase involves identifying treatments, 

instrument variables, and confounders based on data 

correlation patterns. Here, Branch is considered the 

primary treatment variable, given its substantial 

impact on placement outcomes. Instrument variables 

include Internships, Hackathons, and CGPA, which 

influence the treatment but are assumed to be 

exogenous in the causal model. The confounders, 
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which may introduce bias in estimating causal 

effects, include Projects, Accommodation Type, 

Extracurricular Activities, Placement Trainings, and 

IPE Grade. These factors impact both the treatment 

and the outcome, necessitating their inclusion for 

unbiased estimation. 

D#2: Causal Discovery Toolset 

To further refine causal relationships, three causal 

discovery algorithms—PC (Peter-Clark), GES 

(Greedy Equivalence Search), and LiNGAM (Linear 

Non-Gaussian Acyclic Model)—are employed. 

 PC Algorithm: The identified treatments are 

Branch and Internships, while instrument 

variables include Accommodation Type, IPE 

Grade, CGPA, SSC Grade, Gender, Class Room 

Grade, and Employability Skills. Notably, no 

confounders are identified in this model. 

 GES Algorithm: Similar to the PC approach, the 

treatments remain Branch and Internships, 

whereas instrument variables are 

Accommodation Type, Hackathons, Projects, 

Certifications, and MOOCs Courses, with no 

identified confounders. 

 LiNGAM Algorithm: This approach also 

considers Branch and Internships as treatment 

variables, while instrument variables expand to 

Hackathons, IPE Grade, Accommodation Type, 

Projects, Employability Skills, CGPA, Soft 

Skills, and MOOCs Courses, again with no 

identified confounders. 

D#3: Domain Knowledge-Based Approach 

(MCMD - Minimum Criteria and Maximum 

Differentiators) 

A domain knowledge-driven approach, MCMD 

(Minimum Criteria and Maximum Differentiators), 

is employed to refine the causal model by ensuring 

the most explanatory yet distinct features are 

selected. In this approach: 

 Treatments: Branch and CGPA are identified as 

the primary variables affecting employability. 

 Instrument Variables: Class Room Grade and 

Certifications are included, as they contribute to 

skill-building but remain exogenous to the 

placement decision-making process. 

 Confounders: Internships, MOOCs Courses, 

Extracurricular Activities, Employability Skills, 

Projects, and Hackathons are identified as they 

impact both the treatment variables and the final 

employment outcomes, necessitating their 

control in causal estimation. 

Final Identification Using the 3D Framework 

The final step involves integrating insights from the 

above methods within a 3D Framework, which 

systematically identifies causal structures based on 

data-driven and domain-specific criteria. The final 

classification yields: 

 Treatments: Branch 

 Instrument Variables: CGPA 

 Confounders: Internships, Hackathons, Projects, 

Certifications, Extracurricular Activities, and 

MOOCs Courses 

.

 

Figure 17. Classifying the identified causal graph to ensure its validity before final confirmation 
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Figure 18. Graph Falsification 

This structured causal analysis framework ensures a 

robust and unbiased understanding of the factors 

influencing employability outcomes. The integration 

of data correlation, causal discovery algorithms, and 

domain knowledge-based refinement provides a 

comprehensive and empirically validated model for 

assessing employability determinants 

5.5 Falsifying the identified graph before finally 

confirmation 

Figure 17 presents the process of falsifying the 

identified causal graph to ensure its validity before 

final confirmation. The model undergoes 

permutation testing (as indicated by the 100% 

completion status), verifying whether the derived 

causal relationships hold under multiple iterations. 

Key determinants of Placement Outcome 

(PlacedOrNot) include Internships, CGPA, 

Employability Skills, and Branch, supported by 

instrument variables such as Certifications, Class 

Room Grade, and MOOCs Courses. Practical 

experiences like Projects and Hackathons influence 

Employability Skills and Internships, while 

Extracurricular Activities provide additional indirect 

contributions. Accommodation Type also plays a 

role in accessibility to career opportunities. The 

iterative falsification process ensures that the final 

graph structure is empirically robust, resistant to 

spurious correlations, and accurately reflects causal 

influences on employability outcomes. Figure 18 

presents the falsification analysis of the Directed 

Acyclic Graph (DAG) to assess its validity in 

capturing causal relationships. The falsification 

summary confirms that the graph is falsifiable but 

not falsified, meaning that while it can be tested 

against alternative structures, it remains statistically 

valid. The Markov equivalence test shows that none 

of the 20 permutations fall within the equivalence 

class of the given DAG (p-value: 0.00), confirming 

its informativeness. Additionally, the DAG violates 

25 out of 95 Local Markov Constraints (LMCs) but 

remains statistically superior to 95% of the permuted 

DAGs (p-value: 0.05), indicating a well-fitted model 

with minimal violations. The histogram visually 

compares the fraction of violations across 

permutations, where the given DAG exhibits fewer 

violations than most alternatives. Given that the p-

value remains within the acceptable significance 

level (0.05) and the graph is informative, the final 

decision is not to reject the DAG, reinforcing its 

reliability in representing causal influences on 

employability factors. 

5.6 Determining the feature relevance 

Fitting causal mechanism of node Extracurricular: 

100% 12/12 [00:00<00:00, 84.74it/s] Estimating 

Shapley Values. Average change of Shapley values 

in run 24 (120 evaluated permutations): 
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1.5642433697150502%: 100% 1/1 [10:20<00:00, 

620.11s/it] 

{('Branch', 'PlacedOrNot'): 0.09581752453266716, 

 ('CGPA', 'PlacedOrNot'): 0.017797705580664305,  

('Employability_Skills', 'PlacedOrNot'): 

0.004209564247333569,  

('Extracurricular', 'PlacedOrNot'): 

0.0003637590066717129,  

('Internships', 'PlacedOrNot'): 

0.11635461991999982,  

('Moocs_Courses', 'PlacedOrNot'): 

0.002382087666668813, 

 ('Projects', 'PlacedOrNot'): 

0.007791442187337973} [0.16087654] 

 

 

Figure 19. Feature relevance with the outcome attribute 

 

Figure 20. Arrow strength of the other attributes with 

the outcome attribute 

 

5.7 Quantifying the Arrow Strength 

Fitting causal mechanism of node Extracurricular: 

100%|██████████| 12/12 [00:00<00:00, 

91.66it/s] 

{('Branch', 'PlacedOrNot'): 0.14766772177419357,  

('CGPA', 'PlacedOrNot'): 0.042035757009345816,  

('Employability_Skills', 'PlacedOrNot'): 

0.015804014150943405,  

('Extracurricular', 'PlacedOrNot'): 

0.00416719349315069, 

 ('Internships', 'PlacedOrNot'): 

0.15526905468750002, 

 ('Moocs_Courses', 'PlacedOrNot'): 

0.012883459374999994,  

('Projects', 'PlacedOrNot'): 0.035101821808510646 
 

 

 

Figure 21. Causal Model 

PlacedOrNot

Branch CGPA

Employability Skills Extracurricular

Internships Moocs_courses

Projects

PlacedOrNot

Branch CGPA

Employability Skills Extracurricular

Internships Moocs_courses

Projects
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5.8 Creating the Causal Model 

The process of determining feature relevance 

involves fitting the causal mechanism for the node 

Extracurricular, achieving a 100% completion rate 

with an average change in Shapley values of 1.56% 

over 120 evaluated permutations. The results 

indicate that Internships (0.1164) and Branch 

(0.0958) have the highest impact on Placement 

Outcomes (PlacedOrNot), followed by CGPA 

(0.0178) and Projects (0.0078), while 

Extracurricular Activities (0.00036) and MOOCs 

Courses (0.0024) contribute minimally. The 

quantification of arrow strength further refines these 

relationships, with Internships (0.1553) and Branch 

(0.1477) remaining the most influential, while 

CGPA (0.0420) and Projects (0.0351) show 

moderate effects, and Extracurricular (0.0042) and 

MOOCs Courses (0.0129) exert the weakest 

influences. These insights are visualized in Figures 

19 and 20, illustrating the hierarchical impact of 

various attributes on placement outcomes. Finally, 

the causal model is constructed (Figure 21), 

synthesizing these results into a structured 

framework that captures the direct and indirect 

causal relationships influencing student 

employability. 

6. Conclusions & Future Work 

The proposed study is to use techniques of causal 

inference in observational data to determine the 

relationships between placement features and 

estimated the causal influence of a feature X on a 

later feature Y using the robustness checks like 

matching and regression. We applied this 

methodology to the 2020–2021 dataset that we 

acquired from the Chaitanya Bharathi Institute of 

Technology's Computer Science and Allied 

departments. This work forms the final validated 

Causal Graph (DAG) by using the different Causal 

Discovery Algorithms and analysing the resulting 

causal graphs using the Minimum Criteria and 

Maximum Differentiator (MCMD) notion of 

Domain Knowledge. The robust Causal Model is 

constructed, and the treatments, results, and 

confounders are identified. For this placement use 

case, the influence of treatments on the results has 

been estimated. To quantify the estimated treatment 

effect on the result, it is based on the mean value and 

the p-value (significance Level) computations. For 

strong outcomes, the effect estimate is also refuted. 

In the end, as decisions are made based on the 

expected outcomes, a robust decision-making model 

is developed. The study presents the findings from 

the several phases of modelling, identification, 

estimation, and refutation on the causal variables in 

the educational data set. To improve analysis and 

validation and help with decision-making, future 

study may consider data from other disciplines. 

Machine learning has been used and applied in 

different fields [48-57]. 
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