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Abstract:  
 

Effective energy management is essential for minimizing operational costs in grid-

connected microgrids (MGs), particularly as renewable energy sources such as solar 

photovoltaics and wind turbines are increasingly integrated into modern power systems. 

This paper presents a two-stage energy management strategy aimed at minimizing the 

total cost of a grid-connected MG. In the first stage, day-ahead scheduling, energy 

dispatch is optimized using stochastic optimization techniques while accounting for 

uncertainties in renewable generation and load demand. A Monte Carlo simulation 

generates multiple scenarios to assess future states, facilitating precise decision-making 

for grid interaction and local generation. As a result, the total operational cost is reduced 

from Rs. 12,521 to Rs. 12,390, and the total cost is reduced from Rs. 158,090 to Rs. 

14,998. The second stage, real-time scheduling, refines the day-ahead plan by adjusting 

for real-time fluctuations in demand and generation, ensuring system balance and 

reliability. By integrating metaheuristic algorithms with real-time control, the proposed 

strategy minimizes energy exchange costs with the grid, reduces operational expenses of 

conventional generators, and maximizes the utilization of renewable energy. Case studies 

validate the effectiveness of the proposed methodology in reducing overall costs, 

maintaining grid stability, and enhancing renewable energy penetration. The method is 

adaptable to various MG configurations, offering a robust and cost-efficient solution for 

energy management in grid-connected systems. 

 

1. Introduction 
 

The transition from fossil fuels to clean energy has 

become imperative due to climate change and 

increasing energy demands driven by population 

growth. This shift necessitates the integration of 

renewable energy sources into microgrids (MGs) [1-

3]. An MG is a small-scale energy system that can 

operate independently or in conjunction with the 

main grid to generate, distribute, and manage 

electricity efficiently [4-6]. It incorporates various 

distributed energy resources (DERs), including 

backup generators such as microturbines, diesel 

generators, and fuel cells, alongside renewable 
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sources like solar photovoltaic (PV) panels, wind 

turbines (WTs), and battery energy storage systems 

(BESS) [7,8]. 

While renewable energy sources such as solar PV 

and WTs play a crucial role in MGs, their inherent 

intermittency introduces uncertainty, which must be 

mitigated through forecasting, energy storage, and 

backup generation. BESS are essential for storing 

surplus renewable energy and supplying power 

during periods of low renewable generation or when 

the MG operates in island mode. Diesel and gas 

generators serve as backup sources, particularly in 

islanded operation, but their higher operational costs 

make them less preferable compared to renewables 

and storage solutions [9,10]. 

In grid-connected mode, the MG is linked to the 

main utility grid, allowing bidirectional power flow. 

This enables the MG to either import power during 

periods of insufficient local generation or export 

excess energy back to the grid. This operational 

flexibility facilitates cost minimization and enhances 

renewable energy utilization. Conversely, in 

islanded mode, the MG operates independently from 

the main grid, necessitating a real-time balance 

between local generation and demand to ensure 

reliability and stability. Since there is no external 

power support, BESS play a pivotal role in managing 

energy imbalances, preventing overloading, and 

mitigating blackouts [11-13]. Renewable energy 

systems has been studied and reported in literature 

[14-16]. 

Seamless transitioning between grid-connected and 

islanded modes is critical for ensuring uninterrupted 

power supply. This requires advanced control 

systems capable of detecting grid disturbances and 

implementing appropriate switching strategies 

without disrupting power delivery to connected 

loads. Scheduling algorithms for MG operations 

typically aim to optimize economic returns, 

minimize environmental impact, and reduce overall 

operational costs [17,18]. These scheduling 

problems can be addressed through various 

optimization techniques, including single-objective, 

multi-objective, linear, non-linear, integer linear, 

mixed-integer linear, and mixed-integer non-linear 

programming approaches. Additionally, scheduling 

methodologies may follow single-stage or two-stage 

optimization frameworks. The on/off nature of load 

scheduling introduces non-convexity into the 

objective function, further complicating the 

optimization process. Figure 1 illustrates the 

dispatchable and non-dispatchable energy sources in 

an MG. 

To enhance MG efficiency, several optimization 

techniques are employed, broadly categorized into 

deterministic, stochastic, and heuristic/metaheuristic 

approaches [19-21]. Deterministic methods rely on 

precise inputs and yield well-defined outputs under 

a given set of constraints. In contrast, stochastic 

optimization techniques incorporate uncertainties in 

renewable energy generation, load demand, and 

market conditions, making them particularly suitable 

for managing the variability associated with solar 

and wind energy. Heuristic and metaheuristic 

algorithms are often utilized for solving complex, 

non-linear optimization problems in MGs where 

traditional methods may struggle. While these 

approaches do not guarantee a globally optimal 

solution, they are highly effective in identifying 

near-optimal solutions within large problem spaces. 

BESS plays a crucial role in ensuring smooth 

transitions between grid-connected and islanded 

modes. In the event of a grid disturbance or outage, 

BESS can provide instantaneous energy supply to 

critical loads, enabling a seamless shift to islanded 

operation without service disruption. 

This paper proposes an energy management 

framework that addresses these challenges by 

employing stochastic optimization techniques. The 

proposed methodology focuses on scheduling MG 

operations under uncertain renewable generation and 

load demand conditions, with the objective of 

minimizing total operational costs while ensuring 

system reliability and maximizing renewable energy 

penetration. 

 

 
 

Figure 1. Components of a typical Microgrid. 

 

2. Modeling 

 
In MG systems, energy sources are typically 

clustered into dispatchable and non-dispatchable 

types based on their capability to be controlled and 

adjusted to meet demand. Understanding this 

distinction is crucial for optimizing energy 

management and preserving grid stability. 

 

Dispatchable Energy Sources 

Dispatchable energy sources can be controlled and 

regulated by grid operators to meet load demand. 
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These sources are flexible, denotation they can 

increase or decrease their output as needed, leaving 

for a reliable balance between supply and demand. 

 

𝐶𝐺𝑟1
𝑡 = 𝑎0(𝑃𝐺𝑟1

𝑡 )2 + 𝑎1𝑃𝐺𝑟1
𝑡 + 𝑎2   (1) 

𝐶𝐺𝑟2
𝑡 = 𝑏0(𝑃𝐺𝑟2

𝑡 )2 + 𝑏1𝑃𝐺𝑟2
𝑡 + 𝑏2   (2) 

𝐶𝐺𝑟3
𝑡 = 𝑐0(𝑃𝐺𝑟3

𝑡 )2 + 𝑐1𝑃𝐺𝑟3
𝑡 + 𝑐2      (3) 

𝐶𝐷𝑆
𝑡 = 𝐶𝐺𝑟1

𝑡 + 𝐶𝐺𝑟2
𝑡 + 𝐶𝐺𝑟3

𝑡     (4) 

 

Non-Dispatchable Energy Sources 

Non-dispatchable energy sources produce power 

based on environmental conditions, which cannot be 

controlled by grid operators. Their output is irregular 

and reliant on factors like weather, making them less 

reliable for constant energy supply. 

 

Photovoltaic systems 

PV solar panels convert sunlight into electricity and 

are classified as an uncontrollable energy source. 

The output of solar PV systems is determined by 

solar irradiance, which varies based on time of day, 

weather conditions, and geographical location. 

 

Wind turbines 

Wind turbines generate electricity by harnessing 

wind energy, making them another uncontrollable 

source. Like solar PV, wind energy production is 

subject to environmental conditions in specifically 

wind speed and direction. Wind power can be highly 

variable, depending on local wind patterns, seasonal 

changes, and weather conditions. 

 

3. Formation of Objective Functions 
 

This section deliberates about the objective 

formulation in which the objective is to minimize the 

total cost of the MG. Eq. (10) specifies the energy 

balance equation of the MG and Eq. (5-9) signifies 

inequality constraint of the MG. It is essential to 

optimize the economic dispatch of dispatchable 

sources by relating real-time energy prices and MG 

operational cost by satisfying the constraints. 

 

Inequality constraints 

The constraints on the power generation i.e., lower 

and upper limits on generator outputs and battery 

charge and discharge limits are limited by inequality 

constraints. 𝑃𝑃𝑉
𝑡 , 𝑃𝑊𝑇

𝑡  indicates the generated output 

from PV and wind at time ‘t’ respectively.  

 

0 ≤ 𝑃𝑃𝑉
𝑡 ≤ 𝑃𝑃𝑉

𝑡,𝑚𝑎𝑥
     (5) 

0 ≤ 𝑃𝑊𝑇
𝑡 ≤ 𝑃𝑊𝑇

𝑡,𝑚𝑎𝑥
     (6) 

𝑃𝐷𝐺𝑟1
𝑡,𝑚𝑖𝑛 ≤ 𝑃𝐷𝐺𝑟1

𝑡 ≤ 𝑃𝐷𝐺𝑟1
𝑡,𝑚𝑎𝑥

     (7) 

𝑃𝐷𝐺𝑟2
𝑡,𝑚𝑖𝑛 ≤ 𝑃𝐷𝐺𝑟2

𝑡 ≤ 𝑃𝐷𝐺𝑟2
𝑡,𝑚𝑎𝑥

     (8) 

𝑃𝐷𝐺𝑟3
𝑡,𝑚𝑖𝑛 ≤ 𝑃𝐷𝐺𝑟3

𝑡 ≤ 𝑃𝐷𝐺𝑟3
𝑡,𝑚𝑎𝑥

     (9) 

 

A. Equality constraints 

 

The generation, energy exchange should match the 

load demand which is governed by equality 

constraint as shown in Eq. (10). 

 

   𝑃𝑃𝑉
𝑡 + 𝑃𝑊𝑇

𝑡 + 𝑃𝐺𝑟1
𝑡 + 𝑃𝐺𝑟2

𝑡 + 𝑃𝐺𝑟3
𝑡 ± 𝑃𝐵𝐸𝑆𝑆

𝑡 ±
𝐸𝐸𝑥𝑐ℎ

𝑡 = 𝑃𝑙𝑜𝑎𝑑
𝑡               (10) 

   𝐸𝐸𝑥𝑐ℎ
𝑡 = 𝑃𝐺𝑒𝑛

𝑡 − 𝑃𝑙𝑜𝑎𝑑
𝑡               (11) 

𝐶𝐷𝑆
𝑡  indicates the operational cost of the dispatchable 

sources and 𝑃𝐺𝑟1
𝑡  is the power generation from 

generator 1, 𝑎0, 𝑎1 and 𝑎2 indicates the cost 

coefficients of generator 1. 𝑃𝐺𝑒𝑛
𝑡 , 𝑃𝑙𝑜𝑎𝑑

𝑡  indicates the 

generation and load demand at time ‘t’ respectively. 

Eq. (11) indicates the amount of energy exchange 

with the utility grid. 

Cost savings can be accomplished by storing energy, 

which assists in smoothing out variations in energy 

generation and utilization. Energy storage is used to 

store extra energy during off-peak hours and release 

it during peak usage. 

 

𝑆𝑂𝐶𝐵𝐸𝑆𝑆
𝑡,𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶𝐵𝐸𝑆𝑆

𝑡 ≤ 𝑆𝑂𝐶𝐵𝐸𝑆𝑆
𝑡,𝑚𝑎𝑥

 12) 

𝑆𝑂𝐶𝐵𝐸𝑆𝑆
𝑡 = 𝑆𝑂𝐶𝐵𝐸𝑆𝑆

𝑡−1 + 𝛽𝑐ℎ𝑎𝑟𝑔𝑒𝑃𝐵𝐸𝑆𝑆
𝑡−1 +

1

𝛽𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
𝑃𝐵𝐸𝑆𝑆

𝑡−1                  (13) 

Eq. (12) and Eq. (13) indicate the limits on state of 

charge of the battery and state of charge in the 

current hour respectively. 

 

𝐶𝐸𝐸𝑥𝑐ℎ
𝑡 = 𝐸𝐸𝑥𝑐ℎ

𝑡 ∗ 𝐸𝑃𝐺𝑟𝑖𝑑
𝑡               (14) 

𝑇𝐶 =  𝐶𝐷𝑆
𝑡 ± 𝐶𝐸𝐸𝑥𝑐ℎ

𝑡                (15) 

 

Day-Ahead Scheduling 

This includes optimizing the energy resources of the 

MG based on predicted data for load demand, 

renewable generation (PV and WT), and grid 

circumstances. The objective is to optimize the 

operational costs which includes fuel costs for 

generators, power exchange costs with the grid, and 

start-up costs for non-renewable generators. 

Scenario generation using Monte Carlo simulation, 

is used to address uncertainties related to renewable 

energy generation. 

 

 Read the DA forecast for load demand and 

renewable energy generation from PV and WT 

sources. Generate an initial population of 

candidate solutions. Each candidate signifies a 

potential energy dispatch solution for the MG 

over the DA period. 

 Estimate whether the candidate solutions are 

within predefined operational limits, together 

with generation capacity, load demand, and 
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battery energy storage. If the solutions disturb 

any limitations, they are discarded or altered. 

 For each feasible candidate solution, check 

whether the total generation (from renewable 

and diesel generators) meets or surpasses the 

load demand. 

If generation ≥ load demand, the system proceeds 

with zero energy exchange between the MG and the 

grid. 

If generation < load demand, energy exchange is 

desired. The grid supplements the deficit or the 

excess generation can be transferred to the grid. 

 Calculate the day-ahead operational cost (OC) 

based on fuel cost of conventional generators 

such as diesel generators. 

 Cost of energy exchange between the MG and 

the grid, considering both import and export 

costs based on the energy market price. 

 

Real-Time Operation 

In real time, the MG regulates its energy dispatch to 

match actual conditions, accounting for deviations in 

load demand and renewable output. Real-time 

energy management guarantees that the system 

remains balanced, evading power outages or 

excessive reliance on external resources.  

 

4. Results and Discussions 

 
The proposed two stage methodology was tested on 

an IEEE-33 bus system that comprises of 3 DG’s, I 

WT and 1 PV source. Table 1 indicates the 

operational limits and cost functions of all the 

generators. Table 2 indicates the BESS charge and 

discharge characteristics and its efficiencies. 

Figure 2 indicates the load demand on the IEEE-33 

bus system, the amount of wind power generation 

and the amount of PV power generation. From the 

Figure 2 it is evident that the PV is having zero 

power output in the early hours of the day and during 

nights. However, the power of wind is available all 

the time. Figure 3 indicates the grid price and the 

MG price.  

Figure 4 indicates the energy exchange with the grid 

and MG. It also specifies the amount of charge and 

discharge powers of BESS. Moreover, it also 

specifies the amount of energy exchange with the 

grid. Figure 5 indicates the dispatch schedule of the 

diesel generators.  

From the Figure 5, it is clear that the generator 2 is 

scheduled last after scheduling 1 and 2. Since the 

incremental fuel cost characteristics of this generator 

is the highest. Therefore, it was scheduled at last. 

Figure 6 represents the operational cost 

characteristics of diesel generators. 

 

Table 1. Cost Coefficients and Limit of Generation. 

Type 

Generator parameters 

Min. 

limit 

Max. 

limit 
a0 a2 a1 

DGr. 1 0 
150 0.01 2 10 

DGr. 2 0 
120 0.02 3 8 

DGr. 3 0 
100 0.015 1 12 

WT 0 
270 - - - 

PV 0 
250 - - - 

 
Table 2. Battery Energy Storage System Parameters. 

BESS parameter Limits 

BESS rating 
20kWh 

Charge efficiency 
90% or 0.9 

discharge 

efficiency 
90% or 0.9 

Lower limit on 

SOC  
20% or 0.2 

Upper limit on 

SOC 
80% or 0.8 

Initial SOC 
50% or 0.5 

 

 
 

Figure 2. Load demand and renewable energy power 

generation. 

 

 

Figure 3. Price of Grid and  MG for 24-hours. 
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Figure 4. Energy exchange between grid, MG and 

BESS. 

 

Figure 5. Operational cost of the MG. 

 

Figure 6. Cost comparison of MG. 

 

4. Conclusion 

 
This study proposes a comprehensive energy 

management approach for grid-connected MG’s, 

intended at reducing total operational costs while 

maximizing the incorporation of renewable energy 

sources. The proposed two-stage framework, which 

combines day-ahead and real-time scheduling, 

addresses the inherent uncertainties behavior of 

renewable generation and load demand using 

stochastic optimization techniques. The day-ahead 

scheduling safeguards optimal energy dispatch by 

faking various future scenarios, while the real-time 

scheduling regulates the system in response to actual 

conditions, guaranteeing continuous reliability and 

cost-efficiency. The total operational cost is reduced 

to 0.93% and the total cost is reduced to 2.5%. 

Through case studies, the method validates its 

effectiveness in reducing operational and grid 

interaction costs, particularly by leveraging the 

elasticity of renewable resources like solar PV and 

wind turbines. The procedure augments grid stability 

reduces dependence on conventional generators and 

promotes sustainable energy use. Overall, this 

approach provides a viable solution for energy 

management in grid-connected MG s, offering 

scalability and adaptability for various operational 

environments. Future work may focus on 

incorporating advanced demand response programs 

and electric vehicle integration to further enhance 

cost savings and system flexibility. 
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