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Abstract:  
 

With the increasing integration of renewable energy sources and growing energy 

demands, microgrids have emerged as a viable solution for enhancing sustainability, 

efficiency, and resilience in power systems. Effective energy management is crucial to 

achieving these objectives while maintaining grid stability and minimizing operational 

costs. This study proposes an advanced energy management strategy for microgrids based 

on demand response, leveraging Monte Carlo simulations and K-means clustering for 

scenario-based decision-making. Due to the stochastic nature of photovoltaic (PV) and 

wind power generation, Monte Carlo simulation is employed to generate multiple 

potential scenarios that capture the uncertainties associated with renewable energy 

production. To mitigate computational complexity, K-means clustering is applied for 

scenario reduction, grouping similar scenarios while preserving the dataset’s 

representativeness. This approach effectively reduces the microgrid's operational cost 

from 14,033 Rs. to 13,785 Rs. without compromising system reliability. Furthermore, the 

proposed response mechanism actively engages consumers in adjusting their electricity 

consumption patterns based on real-time pricing signals and system constraints. By 

dynamically aligning energy demand with supply fluctuations, the microgrid effectively 

reduces peak loads and enhances cost-efficiency. The results demonstrate that the 

proposed methodology not only optimizes economic performance but also strengthens 

the resilience of microgrid operations in the face of renewable energy variability. 

 

1. Introduction 
 

Power generation from renewable energy sources 

(RES) heavily depends on climatic conditions, 

making the produced energy intermittent [1] and 

uncontrollable, particularly in microgrids (MGs) 

incorporating photovoltaic (PV) and wind turbine 

(WT) systems [2]. Additionally, integrating RES 

into MGs creates a disparity between net power 

demand and actual load patterns, leading to non-

uniform energy distribution [3]. 

To address peak load demands, source-side 

management techniques—such as committing and 
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scheduling conventional (often inefficient) peaking 

generators [4] and utilizing battery energy storage 

systems (BESS)can enhance generation capacity [5]. 

However, these approaches contribute to increased 

end-user tariffs [6]. While BESS deployment 

improves reserve capacity and frequency stability in 

MGs, it also raises initial costs and electricity prices 

[7]. Consequently, implementing an effective energy 

management system is crucial for peak load shifting, 

demand stabilization, and optimizing energy 

distribution with dedicated units [8]. 

MGs frequently operate in coordination with the 

main grid, purchasing or selling electricity based on 

supply-demand dynamics [9]. By optimizing 

operational costs, MGs can minimize electricity 

purchases during peak hours when prices are high, 

leading to significant cost savings and improved 

profitability [10]. For MGs relying on conventional 

generators (such as diesel or gas), fuel costs 

represent a major operational expense [11]. 

Optimizing generator scheduling helps reduce fuel 

consumption and overall MG operating costs. 

Demand response (DR) programs encourage 

consumers to adjust their energy usage in response 

to grid conditions or price signals. Implementing DR 

strategies allows MGs to shift loads away from peak 

periods, reducing reliance on expensive energy 

imports and alleviating stress on the grid 

infrastructure. Additionally, MGs can participate in 

wholesale electricity markets by selling surplus 

energy or providing ancillary services such as 

frequency regulation and voltage control. Strategic 

market participation enables MGs to maximize 

revenue from energy sales while minimizing 

purchase costs [12]. 

For MGs, particularly those involving substantial 

investments in renewable energy systems, storage 

solutions, and advanced control mechanisms, 

operational cost optimization is critical for ensuring 

a favorable return on investment (ROI). Lower 

operational costs lead to shorter payback periods and 

greater long-term savings, reinforcing the economic 

viability of these energy systems. 

Microgrids (MGs), characterized by their ability to 

operate both in isolation and in conjunction with the 

main grid, present a promising solution for 

enhancing energy efficiency, reliability, and 

sustainability. Demand Response (DR) programs 

have emerged as an effective strategy for optimizing 

load consumption patterns by incentivizing 

consumers to adjust their energy usage based on 

price signals or grid conditions. By shifting or 

reducing loads during peak hours, DR helps alleviate 

grid stress, reduce dependence on costly peak power 

generation units, and increase the utilization of 

renewable energy sources (RES), thereby 

minimizing overall operational costs. 

Researchers proposed an optimal scheduling and 

consumer incentive mechanism using K-means 

clustering for resource aggregation [13]. The 

compensation was distributed equally among all 

resources within a cluster. Their case study, which 

included 548 distributed generators (DGs) and 

20,310 consumers, utilized active power (as an 

electrical signature) to determine centroids based on 

squared Euclidean distance. Resources were 

categorized as small if their centroid was close to 1 

kW and medium if it ranged between 3 kW and 30 

kW. The K-means clustering algorithm was 

designed to optimize intra-cluster similarity while 

maximizing inter-cluster differences. During 

clustering, consumer profiles dynamically shifted 

between clusters to minimize intra-cluster distances. 

Since K-means requires a predefined number of 

clusters and centroids, each data point in the dataset 

is assigned to its nearest cluster and remains fixed, 

classifying K-means as a hard-clustering method. 

The optimal number of clusters was determined 

using the elbow method. 

The authors proposed a method to minimize DR 

costs by shifting load from peak demand hours to 

periods of high PV generation, thereby reducing 

global emissions [14]. Their approach formulated 

the objective function as a linear, convex 

optimization problem. DR events were executed in 

steps to systematically reduce load to baseline levels. 

Further, a model was developed to minimize DR 

incentive costs by increasing on-site power self-

consumption through the deployment of distributed 

energy resources (DERs) [15]. A parallel-based 

approach was employed to reduce convergence time, 

ensuring robustness even as residential load 

participation increased. The objective function was 

structured to lower consumer tariffs and the costs 

associated with DR curtailment. 

Additionally, it was introduced an optimization-

based methodology for virtual power plant resource 

scheduling, integrating K-means clustering for 

resource aggregation and compensation allocation 

[16]. Compensation was either equally distributed 

among similar resource types participating in the DR 

program or allocated based on individual 

contributions. 

Buildings account for nearly 40% of electricity 

consumption, with heating, ventilation, and air 

conditioning (HVAC) systems offering the highest 

demand flexibility among building appliances. 

Effective energy management requires accurate load 

monitoring and classification. A hybrid approach 

combining K-nearest neighbors (KNN) and K-

means clustering was utilized to identify small DC 

loads from datasets, enhancing load categorization 

and management efficiency [17]. 
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The signatures of current waveform are employed to 

train the KNN model to discover the DC load and the 

K-means clustering is employed for discovering 

whether the system is in steady state or not. 

Therefore, this technique overcomes the 

disadvantage of K-means where, it requires 

complete details of dataset prior. The prosumer 

joined in wholesale market for energy trade will get 

more rewards when aggregated instead as a single 

entity. From the literature, the resource flexibility 

available at both ends i.e., supply side and demand 

side. Those are PV, WT, loads such as HVAC and 

storage system like BESS [18-20]. Static pricing 

does not employ flexibility in resources from the 

demand side. Therefore, there is no decrease of peak 

load, no shift of peak load, no modification in carbon 

emissions and no decrease in consumer’s tariff. The 

customers are unavailable at home all day to 

accomplish their loads in harmony with the price 

signals. Figure 1 indicates the components of the 

MG. 

In the context of MG’s, DR-based energy 

management systems (EMS) play a pivotal role in 

ensuring that both supply-side and demand-side 

resources are optimally managed. By integrating 

real-time data from RES generation, load demand, 

and market prices, EMS can dynamically adjust the 

dispatch of energy resources, schedule storage 

systems, and manage the interaction with the main 

grid. This paper proposes a DR-based energy 

management framework for MG’s, focusing on 

reducing operational costs while ensuring reliability. 

The proposed approach utilizes advanced 

optimization techniques to align energy 

consumption with renewable generation, thus 

enhancing the economic and environmental 

performance of the MG. 

 

 
 

Figure 1. Microgrid components for energy 

management. 

2. Modeling of Microgrid  

 
The MG is connected to the utility grid, allowing for 

the exchange of energy. In this mode, the MG can 

import energy from the grid when local generation is 

deficient or export excess energy when local 

generation surpasses local demand. During 

autonomous mode, the microgrid functions self-

reliantly from the main grid. This can happen 

intentionally, during intentional islanding, or 

automatically, during grid outages or faults. The 

microgrid depends exclusively on its local 

generation and storage resources to meet its demand. 

 

2.1 Load demand 

 

MG’s load demand varies during the day because of 

various factors, including meteorological conditions, 

economic activity, and consumer behavior. The load 

demand might exhibit either stochastic or 

predictable variations based on many parameters 

such as seasonality, day of the week, and time of day. 

Probability distribution of normal distribution of 

load demand is specified as follows (1). 

           𝑓(𝑥) =
1

𝜎√2𝜋
𝑒

−
(𝑥−𝜇)2

2𝜎2                             (1) 

 

A. Wind turbine 

The primary objective of wind turbines is to harness 

the kinetic energy of the wind. The turbine's blades 

are designed to collect as much wind energy as 

feasible. Since wind power generation doesn't 

release greenhouse gases or other pollutants related 

to the burning of fossil fuels, it is regarded as a clean 

and renewable energy source. 

            𝑃𝐷𝐹(𝑣) =
𝑞

𝑐
(

𝑣

𝑐
)

𝑞−1
𝑒𝑥𝑝 (− (

𝑣

𝑐
)

𝑞
)           (2) 

 𝑞 = (
𝛿

𝜇
)

−1.086
                 (3) 

             𝑐 =
𝜇

𝛾(1+
1

ℎ
)
    (4) 

In (2)-(3), 𝑞 is the shape parameter, 𝑐 is the scale 

value and 𝑣 is the random variable. The Weibull 

distribution's skewness and kurtosis are determined 

by its shape parameter, which also defines the 

distribution's characteristics. Because of this, it can 

effectively convey the erratic and intermittent nature 

of wind resources. A distribution with rising wind 

speed at higher values is specified when k > 1, which 

is suitable for locations with frequent, high-speed 

winds. It represents a distribution with decreasing 

wind speed at increasing values for 0 < 𝑘 < 1.  

 

B. PV generation 

Since the beta distribution is confined between 0 and 

1, which closely matches the properties of PV 

output, it is frequently used to describe PV 
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generation. The variability of solar photovoltaic 

(PV) generation is caused by various factors, 

including the weather, cloud cover, intensity of 

sunlight, and time of day. 

 

C. Diesel generator 

𝐺1,𝐷𝐴
𝑡  are the power generation and operational cost 

of generator 1 respectively, 𝑇 is the total number of 

scheduling hours, 𝐿𝐷𝑎𝑣𝑔 is the average load demand 

of the system, 𝐿𝐷𝑡 is the load demand at time ‘t’. The 

amount of energy exchange with the grid is the 

difference of modified load demand after application 

of demand response and total generation day-ahead. 

Eq. (5) indicates the total day-ahead operational cost 

of the MG, 𝑃𝑑𝑐ℎ,𝑡
𝐵𝐸𝑆𝑆 and 𝑃𝑐ℎ,𝑡

𝐵𝐸𝑆𝑆 are the discharge and 

charge powers at time ‘t’, a0, a1 and a2 are the 

generator cost co-efficient.  

 

𝑂𝐶𝐺1,𝐷𝐴
𝑡 = 𝑎𝑜(𝐺1,𝐷𝐴

𝑡 )
2

+ 𝑎1𝐺1,𝐷𝐴
𝑡 + 𝑎2   (5) 

𝐿𝐷𝑎𝑣𝑔 = ∑
𝐿𝐷𝑡

𝑇
24
𝑡=1     (6) 

𝑆𝑜𝐶𝑡+1
𝑀𝐺 =  𝑆𝑜𝐶𝑡

𝑀𝐺 + ∆𝑇 (𝜂𝑐ℎ
𝐵𝐸𝑆𝑆𝑃𝑐ℎ,𝑡

𝐵𝐸𝑆𝑆 −
𝑃𝑑𝑐ℎ,𝑡

𝐵𝐸𝑆𝑆

𝜂𝑑𝑐ℎ
𝐵𝐸𝑆𝑆)  (7) 

𝑆𝑜𝐶𝑚𝑖𝑛
𝑀𝐺 ≤ 𝑆𝑜𝐶𝑡

𝑀𝐺 ≤ 𝑆𝑜𝐶𝑚𝑎𝑥
𝑀𝐺     (8) 

0 ≤ 𝑃𝑐ℎ,𝑡
𝑀𝐺 ≤ 𝑋𝑡,𝑐ℎ

𝑀𝐺 𝑃𝑐ℎ
𝑀𝐺     (9) 

0 ≤ 𝑃𝑑𝑐ℎ,𝑡
𝑀𝐺 ≤ 𝑋𝑡.𝑑𝑐ℎ

𝑀𝐺 𝑃𝑑𝑐ℎ
𝑀𝐺                (10) 

𝑋𝑡,𝑐ℎ
𝑀𝐺 + 𝑋𝑡.𝑑𝑐ℎ

𝑀𝐺 ≤ 1               (11) 

𝑉𝑖
𝑙𝑏 ≤ 𝑉𝑖 ≤ 𝑉𝑖

𝑢𝑏                      (12) 

𝑃𝑔𝑖
𝑙𝑏 ≤ 𝑃𝑔𝑖 ≤ 𝑃𝑔𝑖

𝑢𝑏                      (13) 

𝑄𝑔𝑖
𝑙𝑏 ≤ 𝑄𝑔𝑖 ≤ 𝑄𝑔𝑖

𝑢𝑏                      (14) 

𝑃𝑖𝑗
𝑙𝑏 ≤ 𝑃𝑖𝑗 ≤ 𝑃𝑖𝑗

𝑢𝑏                       (15) 

∑ ∑ 𝑃𝑑𝑔,𝑖
𝑡 −33

𝑖=1
24
𝑡=1 𝑃𝑙,𝑖

𝑡 + 𝑃𝑅𝐸𝑆,𝑖
𝑡 ± 𝑃𝐵𝐸𝑆𝑆,𝑖

𝑡 = 0      (16) 

Eq. (8), Eq. (9) and Eq. (10) indicate the limits on 

state of charge of the battery and state of charge in 

the current hour respectively. The functions of BESS 

in the discharging status when the output power of 

the RES’s units is less than the discharging 

threshold. When considering the ESS’s maximum 

charging and discharging power, its operational 

strategy is defined as follows: BESS serves as vital 

elements of isolated MG’s that keep energy balance 

and voltage profiles intact. Eq. (12-16) indicates the 

power flow equations. Eq. (17) indicates the cost for 

energy exchange between the grid and the MG. Eq. 

(18) indicates the total cost of the MG. 
 

𝐶𝐸𝐸𝑥𝑐ℎ
𝑡 = 𝐸𝐸𝑥𝑐ℎ

𝑡 ∗ 𝐸𝑃𝐺𝑟𝑖𝑑
𝑡     (17) 

𝑇𝐶 =  𝐶𝐷𝑆
𝑡 ± 𝐶𝐸𝐸𝑥𝑐ℎ

𝑡     (18) 

3. Proposed Methodology  

These sections describe the proposed methodology 

with supporting flowcharts and explanation of the 

same. The following points explain the proposed 

methodology step-by-step. The limitations of the 

coefficients and cost limitations are given in Table 

1. 

 

Read the initial PV power, WT power, and load 

demand.  

Is it in limits

Start

Yes

No

Generate a starting population that reduces the 

operational costs.

Is generation = load 

demand

No Yes

Exchange energy from/to the grid

Calculate the operational cost = 

Generation cost +/- Exchange energy 

No energy exchange 

with the grid

Is it peak load ?

Reduce the peak load demand by curtailing 

curtailable loads

Hour = 24

Increment hour 

i.e., Hour = 

Hour + 1

Yes

No

Stop

Yes

 
Figure 2. Proposed methodology of energy management. 

 

 Collect necessary details such as previous 

patterns in energy consumption, meteorological 

data for estimates of PV and wind power 

generation, electricity costs, and operational 

limitations. 

 Examine the data collected to identify trends, 

patterns, and unknowns related to the production 

and use of energy.  

 To create scenarios for unpredictable features, 

such forecasts for PV and wind power 

generation, use Monte Carlo simulation. 

 To generate a variety of scenarios that represent 

various potential outcomes for the generation of 

renewable energy, sample from probability 

distributions. 

 Utilize K-means clustering to combine related 

scenarios according to their shared attributes, 

such the amount of wind and solar power 

generated as shown in Figure 2. 
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 To mitigate the computational burden while 

maintaining the diversity of scenarios, choose 

hypothetical situations from each cluster. 

 Create a first population of candidate solutions 

that reflect various energy resource 

configurations, demand response strategies, and 

storage utilization. 

 To find the day-ahead operational cost for any 

potential solution, use the cost valuation 

function. 

 Consider how variables, including fluctuations 

in the production of renewable energy and the 

efficiency of demand response, may affect 

operating costs. 

Table 1. Coefficients and cost limitations.  

Type 

Gr. parameters 

Lower 

limit 

Upper 

limit 
a0 a2 a1 

Gr. 1 0 
150 0.01 2 10 

Gr. 2 0 
120 0.02 3 8 

Gr. 3 0 
100 0.015 1 12 

Wind 0 
270 - - - 

PV 0 
250 - - - 

 

4. Results and Discussions: 

 
The test system consists of IEEE-33 bus system with 

3 diesel generators, one PV and one WT. The 

maximum peak load on the system is 830.3 kW and 

the minimum load demand on the system is 144.4 

kW. Table I. indicates the cost co-efficient and limits 

on generation. Figure 3 collectively prove the 

process and significance of scenario generation and 

reduction in EMS. In such systems, managing the 

inherent uncertainty in the power generation from 

RES’s and load demand is critical for cost-effective 

and reliable operation. Initially, the system produces 

many highly variable scenarios, reflecting the 

unpredictability in renewable energy generation and 

demand. However, as scenario reduction techniques 

are applied, the complexity is diminished, and 

clearer, more manageable patterns emerge. 

This reduction in complexity is vital for day-ahead 

and real-time energy management strategies, as it 

permits grid operators and decision-makers to 

propose a range of potential outcomes while evading 

overwhelming computational demands. By dropping 

the number of scenarios without forfeiting critical 

information, energy systems can better integrate 

RES’s, optimize costs, and ensure grid stability, 

even in the face of uncertainty. Figure 4 indicates the 

load demand before the application of DR program 

and Figure 5 specifies the load demand after the 

application of DR. Figure 6 indicates the power 

generation from PV and wind turbine for 24-hour 

scheduling.  

Figure 7 indicates the dispatch schedule of the diesel 

generators. From Figure 7, the power generation 

from generator 3 is less when compared with the 

other generator set. Since the incremental fuel cost 

of this generator is the highest. Figure 8 represents 

the total operational cost after application of DR 

over a 24-hour period. 
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Figure 3. Scenario generation and reduction using MCS and K-means clustering respectively. 
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Figure 4. Load demand before application of demand 

response program. 
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Figure 5. Load demand after application of demand 

response program. 
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Figure 6. Power generation by uncertain sources. 

 

The operational cost replicates the cost associated 

with running generator units and managing internal 

power systems within the MG. The energy exchange 

cost shows the cost associated with importing or 

exporting power from/to the grid, which is inclined 

by market conditions, grid tariffs, and energy 

demand. During the initial hours (0-5 hours), the 

total cost is negative, representing a period of net  
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Figure 7. Dispatch schedule of controllable sources. 

 

savings or profit, likely due to power being pumped 

to the grid. This scenario is imitated by negative 

operational and energy exchange costs. The MG is 

generating excess renewable energy, which is sold 

back to the grid, leading to a reduction in costs. 

Between hours 5 and 15, the operational cost 

remains relatively stable, while the energy exchange 

cost varies. This period might reflect a balance 

between grid imports and internal power generation, 

with limited cost variation. After hour 15, both the 

operational cost and energy exchange cost increased 

significantly, peaking at around hour 20. This 

increase could be due to higher energy demand, 

reduced availability of renewable energy, or reliance 

on more expensive energy imports from the grid. 

The varying costs suggest that the DR mechanism 

has been employed to minimize operational costs 

during peak demand periods. The DR shifts load to 

lower-cost periods, reflected in the stable cost 

periods around 10-15 hours. Nevertheless, during 

certain periods, especially post-hour 15, the DR 

strategy might be less effective due to higher grid 

dependency or reduced renewable generation, 

leading to higher operational and energy exchange 

costs. 

The overall trend reveals that integrating DR 

mechanisms can effectively reduce costs during 

specific time periods (0-10 hours). However, the 

system encounters challenges in upholding low costs 

when renewable energy is scarce, and grid 

dependency increases during peak hours (15-23 

hours). The graph suggests a well-balanced EMS for 

an important portion of the day, though potential 

improvements could be made to further decrease 

costs during high-demand periods, possibly by 

enhancing storage systems or enhancing the 

responsiveness to real-time market prices. 

Figure 9 indicates the total cost and the cost of 

energy exchange between the grid and the MG.  
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Figure 8. Total operational cost of controllable sources. 
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Figure 9. Total cost i.e., sum of energy exchange and 

total operational cost. 

 
Table 2. Comparison of proposed study 

 

Parameter Ref [6] Proposed 

Total operational cost 12122 12016 

Total cost 14033 13785 

 

Table 2 indicates the comparison of proposed 

methodology with the available methodology 

interms of total operational cost and total cost in the 

MG. Similar works has been done and reported in 

the literature [21-24]. 

 

4. Conclusion 

 
This study explored the application of demand 

response (DR) techniques in a microgrid (MG) 

environment to reduce operational expenses, 

particularly in the presence of intermittent renewable 

energy sources such as wind and solar power. By 

integrating Monte Carlo simulation with K-means 

clustering, we addressed the challenges posed by the 

fluctuating and unpredictable nature of these 

renewable resources. Our findings demonstrate that 

demand response, when combined with advanced 

scenario generation and reduction techniques, 

significantly enhances the sustainability and 

economic feasibility of MG operations. The total 

operational cost was reduced by 0.88%, while the 

overall MG cost decreased by 1.79% compared to 

existing literature. By dynamically adjusting energy 

consumption in response to variations in renewable 

generation, MG operators can effectively mitigate 

uncertainty and reduce dependence on costly 

conventional energy sources. Monte Carlo 

simulation enabled the generation of diverse 

scenarios that captured the inherent variability of 

solar and wind power generation. The subsequent 

application of K-means clustering facilitated the 

identification of representative scenario clusters, 

reducing computational complexity without 

sacrificing accuracy. This approach provides a 

robust framework for optimizing MG operations, 

improving cost efficiency, and enhancing grid 

reliability. 
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