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Abstract:  
 

Internet of Things (IoT) applications have made inroads into different domains, providing 

unique solutions—Internet of Things technology offers seamless integration of physical 

and digital worlds. However, the broad nature of the technologies and protocols used in 

IoT applications has increased vulnerability from malicious attackers. Hence, protecting 

IoT applications from cyber-attacks is imperative. Researchers have implemented 

intrusion detection systems to overcome this issue to improve cybersecurity in IoT 

scenarios. With the new threats of cybercrime emerging, a continuous effort is required 

to enhance the security of IoT applications. To address this pressing need, we present our 

study that proposes a deep learning-based framework to bolster cybersecurity at the IoT 

use cases level by exploiting the power of transfer learning and ensembling it from deep 

learning models pre-trained at larger datasets. Deep learning models attain high 

performance with the help of hyperparameter tuning, and we achieve that through PSO 

in our proposed system. Our ensemble system shows how individual models can 

outperform individual models by using the best-performing models as constituents in the 

ensemble approach. We introduce an algorithm called — Optimized Ensemble Learning-

Based Intrusion Detection (OEL-ID). This algorithm leverages the present framework 

and corresponding optimization strategies to boost intrusion detection performance for 

improved cyber security in IoT scenarios. Using the UNSW-NB15 benchmark dataset, 

our empirical study demonstrates that our proposed method, compared to some of the 

existing deep learning models, obtained a detection accuracy of 98.89%, which, in turn, 

provided the highest comparative accuracy. Therefore, the proposed system can be used 

with IoT use cases as it allows for a significant level of security to the system's underlying 

applications. 

 

1. Introduction 
 

Technological innovations like the Internet of 

Things (IoT) have paved the way for many 

unprecedented applications previously thought 

impossible. With the integration of the physical and 

digital worlds, there is seamless communication 

among things on digital platforms, enabling higher 

control over monitored things, which was impossible 

earlier without IoT technology. However, the 

tremendous possibilities of IoT applications also 

brought about security issues due to the 

heterogeneous nature of the technology, which uses 

several existing techniques, protocols, applications, 

and interfaces with a kind of amalgamation. With the 

increased number of cyber attacks witnessed every 

year in cyberspace, including IoT use cases, it is vital 

that security mechanisms are continuously improved 

to withstand the pace at which adversaries exploit 

available technologies to perpetrate more 

sophisticated cyber attacks. The emergence of 

artificial intelligence has made it possible to exploit 

learning-based approaches instead of relying on 

heuristic-based approaches to enhance 

cybersecurity. With the help of artificial intelligence, 

security mechanisms can be improved to leverage 

the cybersecurity of various applications, including 

IoT use cases. 

Several existing works aim to improve cybersecurity 

with the help of learning-based approaches. Existing 
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research has revealed that deep learning models can 

be appropriately used to realize intrusion detection 

systems for protecting IoT use cases [1]. 

Furthermore, deep learning approaches use 

enhanced neural networks that mimic human brain 

functionality, which could leverage the intrusion 

detection procedure while protecting IoT networks. 

It has been found that deep learning models could 

analyze the data in a better way towards 

automatically detecting possible intrusions [2]. 

Learning-based approaches that use AI have 

continued to be popular in the recent past as they 

could provide enhanced capabilities in the intrusion 

detection process. Another important fact is that 

explainable AI has the potential to benefit the 

intrusion detection process, aid systems, and 

network security professionals as it could provide an 

additional layer of security [3]. Concerning IoT 

applications, deep learning and radio frequency 

fingerprinting associated with intrusion detection 

have also been investigated and found beneficial. 

Such learning-based mechanisms protect IoT 

devices from various cyber-attacks. The deep 

learning models could perform even better with 

optimizations like hyperparameter tuning and 

enhanced transient search optimization towards 

leveraging their performance [4,5]. The existing 

literature also provided that identifying efficient 

deep-learning models and making them into 

ensembles is essential in improving attack detection 

performance [6]. Based on these literature findings, 

we propose a deep learning-based framework for 

leveraging cyber attack detection performance in 

IoT use cases in this paper. 

Our paper introduces several key contributions. Our 

proposed system utilizes Particle Swarm 

Optimization (PSO) for hyperparameter tuning, 

enhancing the performance of deep learning models. 

By incorporating the best-performing models as 

components in an ensemble approach, our system 

shows the potential to surpass individual models. We 

introduce an algorithm named Optimized Ensemble 

Learning Based Intrusion Detection (OEL-ID), 

which leverages the proposed framework and 

optimization mechanisms to enhance intrusion 

detection, thus bolstering cybersecurity in IoT use 

cases. Our empirical study, conducted using the 

UNSW-NB15 benchmark dataset, demonstrated that 

our method achieved the highest accuracy of 

98.65%, outperforming many existing deep learning 

models. Consequently, our proposed system holds 

promise for integrating IoT use cases, offering 

enhanced security to safeguard the underlying 

applications. The remainder of the paper is 

structured as follows: Section 2 reviews literature on 

various existing deep learning models utilized for 

intrusion detection in IoT use cases. In contrast, 

section 3 presents the proposed intrusion detection 

system that utilizes pre-trained models with transfer 

learning and ensembles them to harness the strengths 

of the best-performing models. Section 4 presents 

the results of our experiments, and Section 5 

discusses the research besides providing limitations 

of the study. Section 6 concludes our research work 

in this paper, providing opportunities for future 

endeavors. 

 

2. Related work 

 
Numerous approaches are found in the literature for 

detecting intrusions using deep learning approaches. 

Ibitoye et al. [1] concentrated on strengthening SNN 

resilience and comprehending the influence of its 

self-normalizing features on IoT dataset protection 

to improve deep learning-based IDS performance 

against adversarial assaults. Madhu et al. [2] 

improved IoT security by utilizing deep learning and 

machine learning in conjunction with enhanced 

DIDS models to provide more precise attack 

detection and categorization and have 95% accuracy. 

Keshk et al. [3] improved the SPIP framework's 

92.46% accuracy in intrusion detection systems by 

honing feature extraction and locating targeted 

attack vulnerabilities. Bassey et al. [4] included t-

SNE hyperparameter optimization for reliable 

dimension reduction in RF fingerprinting. Fatani et 

al. [5] expanded TSODE to additional optimization 

problems and investigated other IoT IDS 

metaheuristic optimizers. 

Lazzarini et al. [6] tested DIS-IoT with actual IoT 

devices to evaluate real-time performance and 

computational overhead. Ferrag et al. [7] 

investigated fresh deep-learning models and datasets 

for intrusion detection in cyber security. Bakhsh et 

al. [8] investigated CNNs, RNNs, Transformers, 

federated learning, ensemble methods, and hybrid 

architectures to advance DL-based IDS for IoT. 

Jayalaxmi et Al. [9] incorporated ML and DL IoT 

security techniques to advance IDS and IPS 

platforms. Bovenzi et al. [10] extended attack 

classes, investigating privacy-preserving distributed 

H2ID implementations and improving threshold 

design for specific IoT use scenarios. 

Vishwakaram and Kesswani [11] focused on 

enhancing real-time training capabilities for the IDS 

model and increasing datasets to cover new sorts of 

attacks. Soliman et al. [12] included a decision-

making unit for reaction activities and extended the 

model to identify new forms of cyberattacks by 

training on various datasets. Rezvy et al. [13] 

focused on mobile and IoT security solutions with 

intelligent agents, expanding the algorithm's 

coverage to encompass a broader spectrum of 

assaults. Saleem and Chishti [14] concentrated on 
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lowering DL models' computational complexity for 

Internet of Things applications without sacrificing 

accuracy. Akgun et al. [15] focused on increasing 

processing speed in real time and investigating 

resilience against novel attack forms. 

Ullah et al. [16] investigate deep learning techniques 

such as FFN, RNN, and GAN for IoT anomaly 

detection. Qiu et al. [17] improved the model's 

resilience to mitigate adversarial assaults on DL-

based NIDS. Kasongo [18] concentrated on 

augmenting the resilience and expandability of the 

IDS framework by utilizing sophisticated RNNs and 

feature selection methods. Rahman et al. [19] 

improved model accuracy and efficiency and 

concentrated on enhancing client selection in 

Federated Learning for IoT intrusion detection. 

Hnamte and Hussain [20] enhanced the 

DCNNBiLSTM model's training effectiveness for 

network intrusion detection, investigated zero-day 

attack detection, and investigated real-time 

deployment capabilities. 

Cassales et al. [21] improved current procedures, 

extending the architecture for IoT intrusion 

detection, testing various approaches, and 

conducting comparative performance evaluations 

with more enormous datasets. Anushiya et al. [22] 

focused on expanding dataset exploration, refining 

feature selection methods for increased accuracy and 

scalability, and refining the GA-FR-CNN approach 

for IoT intrusion detection. Yahyaoui et al. [23] 

extended the hierarchical anomaly detection 

technique to a broader range of WSN and IoT 

network abnormalities beyond Selective Forwarding 

Attacks. Li et al. [24] improved cybersecurity and 

concentrated on expanding DeepFed to federate data 

across several industrial CPS domains. Hazman et al. 

[25] added deep learning methods to IDS-SIoEL to 

improve IoT intrusion detection and extend it for 

multi-class categorization. 

Singh et al. [26] specialized IoT and edge network 

datasets, improving packet feature resilience, 

automating feature engineering, and building a 

mitigation framework. Hasan et al. [27] created 

reliable detection algorithms beyond traditional 

machine learning, concentrating on real-time IoT 

data and handling significant data issues. Campos et 

al. [28] tackled non-iid data issues, implementing 

FL-enabled IDS in actual IoT environments and 

investigating customized FL for increased attack 

detection precision. For better classification 

accuracy, Pecori et al. [29] consider increasing the 

integrated IoT traffic dataset, improving the DL 

model's complexity, and investigating feature 

selection strategies. Catillo et al. [30] extended the 

investigation of CPS-GUARD to several systems to 

better comprehend its limits. Improved detection 

against zero-day threats and investigating federated 

learning for IDS are essential objectives. 

Amanullah et al. [31] presented a unique Internet of 

Things security architecture that addresses 

recognized issues by combining big data and deep 

learning technology. Saleem and Chishti [32] 

investigated the possibilities of deep learning for 

Internet of Things data analytics, resolving existing 

issues and improving model efficacy. Verma and 

Ranga [33] created lightweight security solutions for 

IoT and deploying and assessing ELNIDS on 

intelligent nodes. Vishwakarma and Kesswani [34] 

applied IoT devices to network traffic analysis in 

real-time deployment, improving multiclass 

classification and feature engineering. Elmasry et al. 

[35] improved the feature selection and 

hyperparameter optimization twofold PSO-based 

technique in IDS. Enhancing model performance 

across various datasets and assessing real-world 

deployment situations will be the main goals of the 

research. 

Telikani and Gandomi [36] used CSSAE to handle 

class imbalance and optimize IDS for IoT networks. 

Subsequent investigations will concentrate on 

augmenting velocity and scalability using parallel 

deep learning for extensive data examination. 

Altunay and Albayrak [37] combined synthetic data 

and boosting model accuracy with sophisticated 

feature selection techniques to improve the IIoT 

IDS. Nguyen et al. [38] extended the reach of IOT to 

encompass a wider variety of IoT devices and 

developing attack methods. Gumusbas et al. [39] 

developed unique methodologies and increased 

assessment of various benchmark datasets to 

advance machine learning and deep learning 

approaches in cybersecurity. Cybersecurity is also 

widely studied in literature [40-43]. Ahmed et al. 

[44] employed weighted sub-sample selection for 

intrusion detection datasets and entropy-based active 

learning to optimize SDN load balancing for vehicle 

sensors. From the literature, it was understood that 

improving deep learning models with optimizations 

is very important in her research area for leveraging 

performance in intrusion detection in IoT use cases. 

 

3. Proposed Framework 

 
To detect different kinds of assaults in Internet of 

Vehicles (IoV) systems, a new, enhanced CNN and 

transfer learning approach intrusion detection 

system is suggested in this study. The time-based 

segments of external network and intra-vehicle data 

are transformed into images using the quantile 

transform technique. The resulting picture collection 

is then trained using five cutting-edge CNN models 

(VGG16, VGG19, Xception, Inception, and 
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InceptionResnet) to create base learners. PSO is an 

HPO technique that optimizes the CNN models by  

 

 
Figure 1. Proposed Deep Learning-Based Framework with Optimizations for Intrusion Detection in IoT Use Cases. 

 

automatically adjusting the hyper-parameters. 

Subsequently, the fundamental CNN models for 

constructing the ensemble learning models are 

selected from the three best-performing CNN 

models. Finally, concatenation and confidence 

averaging are the two ensemble procedures used to 

build ensemble models for ultimate detectionFigure 

1 CNN is a popular deep-learning model, often 

utilized in image identification and classification 

tasks [7]. Figure 2 provides a summary of the 

recommended IDS framework. No additional feature 

extraction or data reconstruction steps are required 

when using the photos as inputs into CNN models. 

Pooling, fully connected, and convolutional layers 

are the three types of layers that make up a 

conventional CNN [7]. Convolution procedures 

allow for the automated extraction of picture feature 

patterns in convolutional layers. To avoid over-

fitting, local correlations are utilized. The data 

complexity in pooling layers may be decreased 

without sacrificing crucial information. The output 

is generated, and all features are coupled through 

fully connected layers. For Deep Neural Network 

(DL) models, Transfer Learning (TL) is the process 

of shifting the weights of a CNN model trained on 

one dataset to another [16]. Numerous image 



Sivananda Hanumanthu, Gaddikoppula Anil Kumar / IJCESEN 11-1(2025)1301-1313 

 

1305 

 

processing jobs have seen the practical application 

of the TL approach. This is because only features 

learned particular characteristics for a specific 

dataset are represented by the upper layers of CNN 

models. However, feature patterns picked up by 

CNN models' lower layers are frequently general 

patterns that may be used for various purposes [16]. 

Consequently, the lowest layers of CNN models may 

be used right away in multiple applications. Fine-

tuning can be used to improve the effectiveness of 

the TL process for DL models. A portion of the top 

layers are unfrozen to retrain, while the majority of 

the pre-trained model's layers stay frozen (i.e., their 

weights are kept) during the fine-tuning process. The 

learning model can adjust the pre-trained model's 

higher-order attributes to suit the target task or 

dataset better [16]. Our selection of VGG16, 

VGG19, Xception, Inception, and InceptionResnet 

as the core CNN models in the proposed system is 

based on their strong performance in most photo 

classification tasks [9]. These CNN models have 

shown excellent results on various picture 

classification tasks after prior training on the 

ImageNet dataset. With over a million photos over 

1,000 classifications, the ImageNet dataset is a 

standard for picture manipulation [9]. The 16- and 

19-layer VGG16 and VGG19 models presented in 

[17] for the ImageNet Challenge had an error rate of 

7.3% lower. Compared to the VGG16 design's five 

convolutional layer blocks, the VGG19 architecture 

has three more convolutional layers. The Inception 

network, initially introduced in [18], uses 

convolutional feature extractors that combine 

several contexts to produce a variety of feature 

patterns, therefore reducing the computational cost 

through dimensionality reduction. In Xception [19], 

depthwise separable convolutions are used instead of 

regular network convolutions, making it a network 

extension for Inception. Comparing Xception to 

Inception, the former requires somewhat less 

memory—First appearance. By integrating the 

leftover linkages between Resnet and the Inception 

network, Resnet further expands Inception [9]. The 

first appearance of image classification tasks is that 

Resnet models perform better than Inception models 

but also need twice as much work and memory. The 

vehicle network datasets train five state-of-the-art 

CNN models via fine-tuning and transfer learning. 

The following paragraph displays the ensemble 

models constructed using the top three CNN models 

as the foundation.  

 

3.1 Proposed Ensemble Learning Model 

 

By combining many base learning models, ensemble 

learning creates an ensemble model that performs 

better overall. Ensemble learning is often applied in 

data analytics difficulties due to its tendency to 

produce better results than a single learner [2]. To 

determine which class has the highest confidence 

value, base learners' classification probability values 

are combined in an ensemble learning technique 

called confidence averaging [20]. Softmax layers in 

DL models can provide a posterior probability list, 

including each class's classification confidence. 

According to the confidence averaging technique, 

which first calculates the average classification 

probability of base learners for each class, the class 

label with the most significant average confidence 

value is the final classification result. Each class's 

confidence value is ascertained using the softmax 

function [20]: 

 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧)𝑖 =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗𝐶

𝑗=1

           (1) 

 

Assuming that C is the number of classes in the 

dataset and z is the input vector, 𝑒𝑧𝑖   and 𝑒𝑧𝑗  Where 

the vectors representing the input and output, 

respectively, are the conventional exponential 

functions. The confidence averaging method's 

anticipated class label may be expressed as follows: 

 

�̂� = argmax
𝑖∈{1,……,𝑐}

∑ 𝑝𝑗(𝑦=𝑖 | 𝐵𝑗,𝑥)𝑘
𝑗=1

𝑘
           (2) 

 

Where 𝐵𝑗  is the 𝑗𝑡ℎ Base learner, where k is the total 

number of base CNN learners chosen, and in the 

suggested IDS, k = 3;  𝑝𝑗(𝑦 = 𝑖 | 𝐵𝑗, 𝑥) demonstrates 

the class value's prediction confidence in a data 

sample x utilizing 𝐵𝑗.By employing classification 

confidence, confidence averaging allows the 

ensemble model to identify ambiguous classification 

outcomes and rectify the misclassified samples, in 

contrast to the traditional voting technique, which 

considers the class labels. Although the confidence 

averaging strategy itself has a temporal complexity 

of just O(NKC), where N denotes the number of 

instances, K the number of base CNN models, and C 

the number of classes, the computing cost of a whole 

ensemble model is dependent on the complexity of 

its base learners [21]. Because K and C are often 

small, the confidence averaging approach executes 

quickly.A further ensemble technique for DL models 

is concatenation [22]. Using concatenate techniques, 

a concatenated CNN aims to create a new 

concatenated layer with all the features, combining 

the highest-order features generated from the top 

dense layer of basic CNN models. Following the 

concatenated layer, a drop-out layer is applied to 

remove redundant features, and a softmax layer is 

added to construct a new CNN model. 

Concatenation allows the highest-level elements to 

be combined to create a whole new model. It adds to 
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the model training time, though, as the new model 

has to be re-trained using the entire dataset. The 

computing cost of the concatenation approach is 

O(NF), where N and F are the number of data 

samples and features, respectively, that have been 

extracted from the dense layers of the basic CNN 

models. 

 

3.2 Hyper-Parameter Optimization (HPO) 

 

To enhance the models' performance and more 

closely match the base models to the chosen datasets, 

CNN models' hyper-parameters must be adjusted 

and refined. As with other deep learning models, 

CNN models feature many hyper-parameters that 

require tuning. These hyperparameters fall into two 

categories: those used for model creation and those 

used for model training [10]. It is essential to specify 

hyper-parameters throughout the model design 

process, which are called hyper-parameters in the 

model design. The proposed tunneling theory 

framework's model-design hyper-parameters are the 

number of frozen layers (expressed as a percentage), 

the learning rate, and the dropout rate. The batch 

size, epoch count, and early stop patience are hyper-

parameters used for model training to strike a 

compromise between training speed and model 

performance. The hyper-parameters above directly 

impact CNN models' structure, efficacy, and 

efficiency. HPO is an automated procedure that uses 

optimization approaches to adjust the hyper-

parameters of ML or DL models [10]. PSO is one of 

the most popular metaheuristic optimization 

approaches for HPO problems. It finds the ideal 

hyper-parameter values by utilizing swarming 

particles' cooperation and information exchange 

[10]. Each group member is assigned a place at the 

beginning of PSO. 𝑥𝑖⃗⃗  ⃗ and velocity 𝑢𝑖⃗⃗  ⃗ Following 

every cycle, each particle's velocity is modified 

according to its optimal location. 𝑝𝑖⃗⃗  ⃗ as well as the 

present worldwide ideal position  𝑝  shared by further 

people: 

 
𝑢𝑖⃗⃗  ⃗ ≔  𝑢𝑖⃗⃗  ⃗ +∪ (0, 𝜑1)(𝑝𝑖⃗⃗⃗  − 𝑥𝑖⃗⃗⃗  )+ ∪ (0, 𝜑2)(𝑝 − 𝑥𝑖⃗⃗⃗  ),           

(3) 
where U(0, ϕ) is the constant acceleration 

distribution that is continuous and uniform  𝜑1 and 

𝜑2. Eventually, the particles might progressively 

approach the potential areas to find the global 

optimum. O(NlogN) time complexity and support 

for many hyper-parameters are why PSO is selected 

in the suggested framework [10]. 

 

3.3 Proposed Algorithm  

 

We have developed an algorithm called Optimized 

Ensemble Learning Based Intrusion Detection 

(OEL-ID). This algorithm aims to improve the 

nitrogen detection process by leveraging multiple 

pre-trained deep learning models through transfer 

learning. We also utilized an ensemble approach to 

maximize the benefits of combining models, 

enhancing the cyber attack detection process to 

safeguard IoT use cases. 

 
Algorithm: Optimized Ensemble Learning Based 

Intrusion Detection (OEL-ID) 

Input: UNSW-NB15  dataset D, deep learning models 

M 

Output: Attack detection results R, performance 

statistics P 

 

1. Begin  

2. D’Preprocess(D) 

3. (T1, T2) SplitData(D’) 

4. For each model m in M 

5.    Configure m with TL 

6.    Compile m 

7.    Optimize m with PSO 

8.    m'TrainModel(T1) 

9. End For 

10. ensembleModelFindBestModels(M) 

11. Save ensembleModel 

12. Load ensembleModel 

13. RTestTheModel(ensembleModel, T2) 

14. PEvaluation(R, ground truth) 

15. Display R 

16. Display P 

17. End 

Algorithm 1. Optimized Ensemble Learning Based 

Intrusion Detection (OEL-ID). 

 

The UNSW-NB15 dataset is an input for different 

deep-learning models based on the algorithm 

described in this paper. It preprocesses the data and 

splits it into two sets: a training dataset (T1) and a 

testing dataset (T2) at a ratio of 80%-20%. For T1, 

the algorithm sets up multiple deep learning models 

using transfer learning to harvest the ability of 

performance. The algorithm identifies the best-

performing models and ensembles the top three to 

improve IoT security. An ensemble method that 

combines the strengths of the most performant 

models to enhance intrusion detection capabilities. 

Then, a basic model is saved for later use. In this 

phase, when new network traffic arrives, the 

ensemble model is loaded to perform the intrusion 

detection in real-time. The suggested framework of 

deep learning employs a learning approach in the 

training phase to learn the attack signatures and to 

apply its knowledge in the attack detection process. 

 

3.4 Dataset Details  

 

It is used in this research because it has diversified 

attack flows suitable for cyberattack detection  
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Table 1. Details Of Dataset in Terms of Different Attack Classes, Labels and Network Flows. 

Traffic Class Label # Samples Composition 

BENIGN BENIGN 2273097 80.301% 

Brute Force 
FTP-Patator 7938 0.281% 

SSH-Patator 5897 0.209% 

Botnet Bot 1966 0.07% 

DDoS 

DDoS 128027 4.523% 

DoS GoldenEye 10293 0.364% 

DoS Hulk 231073 8.163% 

DoS 
DoS Slowhttptest 5499 0.195% 

DoS slow loris 5796 0.205% 

Heartbleed Heartbleed 11 0.001% 

Infiltration Infiltration 36 0.002% 

PortScan 
PortScan 158930 5.615% 

Web Attack- Brute Force 1507 0.054% 

Web Attack 
Web Attack – SQL Injection 21 0.001% 

Web Attack - XSS 652 0.024% 

Total  2830743 100% 

 
Table 2. Performance Metrics of Different Models. 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

VGG16 96.54 94.85 94.29 94.57 

VGG19 93.59 93.87 92.59 93.23 

Inception 94.08 94.01 90.87 92.41 

Xception 93.67 95.74 93.29 94.50 

InceptionResNet 96.54 94.56 96.56 95.55 

Proposed Model (OEL-ID) 98.89 96.89 98.74 97.81 

 

experiments. Table 1 shows different attack classes 

and data distribution dynamics.The UNSW-NB15 

dataset encapsulates real-time network traffic flows. 

It includes benign network flows and attack flows of 

various categories. Each network flow has 78 

features.  

 

 
Figure 2. Confusion Matrix 

 

3.5 Performance Evaluation  

 

Confusion matrix is conceptually illustrated in 

Figure 2. It reflects four possible cases when the 

proposed system detects a given test sample. When 

there is an attack in the given sample and if the 

proposed algorithm detects it as such, this case is 

known as True Positive (TP). When there is no 

attack in the given sample and if the proposed  

algorithm detects it as usual, this case is known as 

True Negative (TN). When there is no attack in the 

given sample and if the proposed algorithm detects 

it as having an attack, this case is known as False 

Positive (FP). When an actual attack is in the given 

sample, and the proposed algorithm detects it as 

usual, this case is known as a False Negative (FN). 

Based on the confusion matrix and the four cases 

described above, different performance metrics are 

derived and used to evaluate the proposed system. 

Precision, recall, F1-score, and accuracy are widely 

used metrics for performance evaluation. These 

metrics are expressed in Eq. 2, Eq. 3, Eq. 4, and Eq. 

5. 

 

Precision (p) = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
            (4) 

 

Recall (r) = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
            (5) 

 

F1-score = 2 ∗
(𝑝∗ 𝑟)

(𝑝+𝑟)
           (6) 
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Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
           (7) 

 

All these metrics result in a value between 0.0 and 

1.0, reflecting the least and highest performance, 

respectively.  

 

4. Experimental Results 
 

The experiments were conducted on a high-

performance computing environment equipped with 

an Intel Core i9-12900K processor, NVIDIA RTX 

3090 GPU with 24GB VRAM, 64GB DDR5 RAM, 

and running on Ubuntu 20.04 LTS. The deep 

learning models were implemented using 

TensorFlow 2.9, Keras, Scikit-learn, PyTorch, 

NumPy, Pandas, and Matplotlib. The UNSW-NB15 

dataset containing diverse network traffic data was 

used for training and evaluation. A few data 

preprocessing steps were performed to have good 

quality input features. Values that were missing and 

redundant were removed. First, this was 

standardized using the StandardScaler function 

within the Python package Scikit-learn. To preserve 

a balanced evaluation, we did a stratified split of the 

dataset where 80 percent of it was used for training 

and the remaining 20 percent for testing. Principal 

Component Analysis (PCA) was performed to 

minimize the data complexity and enable its 

characteristics highlights. 

The OEL-ID is an ensemble model that combines 

transfer learning and hyperparameter optimization 

using PSO. We have chosen five pre-trained CNNs, 

namely, VGG16, VGG19, Xception, Inception, and 

InceptionResNet, for extracting features. They 

unfreezed and configured the top layers of these 

trained models on the UNSW-NB15 dataset. Key 

hyper-parameters (batch size, learning rate, dropout 

rate, number of frozen layers) were optimized with 

PSO. The top 3 models were then ensembled by 

merging their feature extraction layers, followed by 

a dropout layer and a softmax classifier. In addition, 

the performance of the models is the accuracy, 

recall, precision, and F1-score. 

We followed the particular setup of hyperparameter 

settings and training configurations for replication. 

The batch size was optimized in the range of 16 — 

256 further using PSO and the learning rate was 

initialized to 1e-3 but tuned to the range of 1e-5 — 

1e-2. Dropout was tuned between 0.2 and 0.5, and 

the Adam optimizer was applied with a decay rate 

1e-6. The training was performed for 50 epochs and 

was stopped early without improvement for five 

consecutive epochs. Hidden layers used ReLU 

activation functions, softmax for the output, and 

sparse categorical cross-entropy as the loss function. 

A prototype intrusion detection application was 

developed to demonstrate real-time implementation. 

Network traffic data from UNSW-NB15 was 

processed in real time, and feature extraction was 

performed using pre-trained CNN models. The 

trained OEL-ID model classified network traffic into 

standard or attack categories. A web-based 

dashboard was built using Flask and Plotly to 

visualize classification results and monitor attack 

trends. The detailed steps, hyperparameter settings, 

and source code provide a clear framework for 

reproducibility by other researchers in the field. 

Table 2 is performance of each DL model and the 

proposed optimized ensemble learning-based 

intrusion detection (OEL-ID). Comparison of model 

results: Accuracy, Precision, Recall, and F1-score 

for each model showcases better ensemble 

performance. Compared to the separate models of 

VGG16 (96.54%) and Inception (94.08%), this 

model achieves an accuracy of 98.89%, which is 

significantly higher. We also achieve 98.74% and 

97.81% for recall and F1-score, demonstrating 

adequate labeling of cyber threats in the OEL-ID 

framework. The improvement is achieved using the 

strengths of several pre-trained models through 

Particle Swarm Optimization (PSO) for IoT 

intrusion detection. The efficiency of the different 

deep learning models for intrusion detection using 

the UNSW-NB15 is 

 

 
Figure 3. Performance Comparison of Deep Learning 

Models. 
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shown in Figure 3. The models assessed are VGG16, 

VGG19, Inception, Xception, InceptionResNet, and 

the proposed Optimized Ensemble Learning-Based 

Intrusion Detection (OEL-ID) Framework. The 

following bar chart shows accuracy, precision, 

recall, and F1-score for each model, showing the 

superiority of the ensemble-based approach in this 

case. Although good performances are achieved for 

all models, the OEL-ID model demonstrates the best 

performance accuracy of 98.89 percent, outdoing 

each deep learning model used individually. The 

results show that combining different models can 

improve ID and decrease classification crises. 

The OEL-ID model performs better than individual 

deep learning models for the following three 

reasons. It leverages transfer learning firstly with 

trained architectures and pre-trained architectures 

fine-tuned to cybersecurity use cases. Instead, this 

utilizes features obtained from large-scale datasets to 

help in detection. Second, ensemble learning 

enhances decision-making by aggregating 

predictions from several outperforming models. 

These weaknesses are collectively alleviated, 

allowing for higher recall rates while lowering the 

amount of false positives reported. Thirdly, particle 

swarm optimization (PSO) is adapted for 

hyperparameter searching, allowing dynamic 

refinement of learning and dropout rates, which is 

necessary to generalize the model optimally. 

We demonstrate through experiments that the OEL-

ID framework achieves a record-high recall of 

98.74 percent which ensures low false negatives 

leading to no cyber threats getting through 

undetected. It also features a higher precision of 

96.89 percent, reducing false positives, thus making 

it a more reliable option for real-life IoT security 

applications. The F1-score, which is a weighted 

average of precision and recall, is 97.81 percent, 

proving that the model is competent in tackling 

cybersecurity threats. The performance 

improvements indicatethe benefit of combining 

transfer learning, ensemble learning, and PSO 

optimization which make the OELID framework a 

very attractive solution for the security of the IoT 

environment. In Table 3, we provide an ablation 

study of the OEL-ID model, showing the effect of 

different components on performance. The final 

baseline model (using a single CNN) reached an 

accuracy of 91.34%, a mean accuracy of 94.21% 

with transfer learning. Using PSO optimization 

raises the accuracy even more to 96.12%, optimizing 

hyperparameters for better generalization. Finally, 

the ensemble learning mechanism that assembles 

multiple models improves its accuracy up to 97.45%. 

With all the improvements fed into the OEL-ID 

model, the complete OEL-ID model achieves 

maximum accuracy of 98.89% with top precision, 

 
Table 3. Ablation Study of OEL-ID Model 

Model 

Configura-

tion 

Accurac

y 

(%) 

Precisio

n 

(%) 

Recal

l 

(%) 

F1-

Scor

e 

(%) 

Baseline 

Model 

(Single 

CNN) 

91.34 89.87 90.12 90.99 

With 

Transfer 

Learning 

94.21 92.45 93.15 92.79 

With PSO 

Optimizatio

n 

96.12 94.98 95.78 95.37 

With 

Ensemble 

Learning 

97.45 96.32 97.12 96.71 

Full OEL-

ID Model 
98.89 96.89 98.74 97.81 

 

 
Figure 4. Ablation Study of OEL-ID Model 

 

recall and F1-score. These results confirm the 

importance of combining multiple deep learning 

sub-techniques to detect any intrusion. 

The ablation study of OEL-ID model, which shows 

the effect of different enhancements on 

performance, shown in figure 4. The accuracy rate 

of the baseline model (CNN) is 91.34 percent. With 

transfer learning, the accuracy of the model 

increases to 94.21 percent, an apparent benefit of 
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easy transfer to extract features. This improvement 

enables the model to capture stronger signals leading 

to a reduction of false positives and an increase in 

precision. 

This is extremely effective but dynamic tuning of 

hyper parameters can increase the accuracy by 

removing the limit thus the PSO optimization 

increases the performance of the model by 

optimizing hyper parameters making it 96.12 

percent accuracy. This modification close the loop 

be far more efficient, learning to generalize well 

across a variety of cyber threat types. This 

combination of several deep learning models is 

ensemble learning, and when applying it, the final 

accuracy is 97.45 percent. Combining models saves 

the weaknesses of each model and increases the 

recall, so the overall system becomes more accurate 

in detecting an attack. 

Using transfer learning, PSO optimization, and 

ensemble learning, the developed full OEL-ID 

model obtains the highest accuracy of 98.89 

percent. The precision, recall and F1-score achieves 

their maximum values, which shows a balanced 

performance. These findings validate that 

integrating several deep learning strategies 

powerfully augments the performance of the IoT 

IDS, which serves as a resilient approach to 

addressing the issue of cybersecurity. 

 

5. Discussion 

 
IoT environments exhibit many features that reflect 

the complexity of the cyber threat, which means that 

self-learning systems offer much more robust 

security solutions than traditional rule-based 

intrusion detection systems. Traditional techniques 

cannot cope with the changing patterns of attacks 

which yields a high rate of undetected threat and 

false positives. Although existing deep learning-

based intrusion detection models have shown 

potential, most of them fall short in terms of 

generalization, typical feature extraction, and 

hyperparameter tuning, which makes them 

unfeasible for practical applications. In this research, 

we tackle these challenges with an optimally tuned 

ensemble learning-based intrusion detection 

framework, utilizing transfer learning and PSO for 

signal intensity amplitude ratio for enhanced 

detection accuracy and model robustness. 

One fundamental weakness pointed out by the state 

of the art is that existing models lack the ability to 

easily combine heterogeneous feature 

representations from multiple sources. Most of the 

intrusion detection frameworks are based on single 

deep learning models which are prone to overfitting 

and biased for individual attacks. In addition, 

systematic hyperparameter search would have 

increased the models flexibility to perform well in 

real cases, a fact that is usually lost]} To address 

these concerns, the presented methodology 

combines diverse pre-trained CNNs for a strong 

generalization of discriminative features, utilizes 

PSO for parameter optimization of every base 

learner, and applies an ensemble strategy to 

strengthen the classification performance. 

Compared with the state-of-the-art approaches, the 

experimental results validate the proposed model 

which has an accuracy of 98.89%. By leveraging 

both transfer learning and ensemble learning, it can 

improve attack category-wise generalization, 

providing reduced false alarm and higher confidence 

in detecting attacks. These hyperparameters lead to 

a faster convergence and more stability of the model 

making the system more applicable to real-time 

usage in Cybersecurity. This research adds value to 

state-of-the-art by overcoming the current set of 

limitations, paving the way for reliability adaptation 

to real-time IoT environments for deep learning 

models targeting intrusion detection. Availability of 

transfer learning, PSO optimization, and ensemble 

learning portfolio provides a new practical direction 

to enhance detection accuracy. The limitations of 

this study and avenues for future research are 

discussed in section 5.1. 

 

5.1 Limitations of the Study 

 

Limitations and Future Directions Still, this study is 

not without limitations. First, the computational 

complexity of the ensemble model based on PSO 

optimization exacerbates training time and demands 

heavy hardware usages which restricts its utilization 

from real-time IoT scenarios. Over the last few 

years, transfer learning has been popular in 

improving feature extraction, however, relying on 

pre-trained CNN architectures, which were designed 

on other types of data (e.g., image) may not represent 

the characteristics of network traffic very well. 

Third, the model performance is heavily dependent 

on the training dataset, and updating the model may 

be a mandatory as the IoT networks are dynamically 

changing and it is necessary in practice that unseen 

attack patterns are applied. 

 

6. Conclusion and Future Work 
 

In this work, we present a deep learning based 

framework using transfer learning approach and 

apply it on pre-trained models to mitigate 

cybersecurity in IoT scenarios. We further use 

Particle Swarm Optimization (PSO) for 

hyperparameter tuning to ensure that deep learning 

models perform their best in our system. Our system 

can potentially beat isolated models by taking the 
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combination of best-performing models in an 

ensemble way. Based on this framework and the 

optimization mechanisms, we develop our 

algorithm, called Optimized Ensemble Learning 

Based Intrusion Detection (OEL-ID), to improve 

intrusion detection and cybersecurity in IoT 

scenarios. We conducted an empirical study on the 

UNSW-NB15 benchmark dataset for our method, 

resulting in an accuracy of 98.89% which has 

surpassed current deep learning models. This shows 

that our system holds a high potential towards its 

integration into IoT scenarios, enhancing security of 

underlying applications. If any of the activities are 

classified as attacks, this indicates the presence of an 

attack type According to the training data, our 

framework is also supervised and it should be noted 

here. However, we might not be able to identify any 

future unknown/index attacks types with our system. 

Such limitation has to be solved with further 

research. In the future, we will contribute to either 

building or improving the system based around the 

unsupervised learning approaches to identify unseen 

attacks. 
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