
 

 
 

Copyright © IJCESEN 

 

International Journal of Computational and Experimental 

Science and ENgineering 

(IJCESEN) 
 

Vol. 11-No.2 (2025) pp. 1707-1715 
http://www.ijcesen.com 

ISSN: 2149-9144 

 Research Article  
 

1707 
 

 

Comparative Evaluation of Feature Selection Techniques and Machine Learning 

Algorithms for Alzheimer's Disease Staging 
 

Gayathri L1*, Muralidhara B L2, Rajesh B3 

 
1Department of Computer Science and Applications, Bangalore University, Karnataka, India 

* Corresponding Author Email: gayathri.lingaraju@gmail.com  - ORCID: 0009-0003-4553-3468  
 

2Department of Computer Science and Applications, Bangalore University, Karnataka, India 
Email: murali@bub.ernet.in - ORCID: 0000-0001-7994-8694  

 

3Mahindra University, School of Management, India, 

Email: rajesh.balarama@mahindrauniversity.edu.in  - ORCID: 0000-0001-7011-5338 

 
Article Info: 

 
DOI: 10.22399/ijcesen.1077 

Received : 22 January 2025 

Accepted : 05 March 2025 

 

Keywords : 

 
Alzheimer's disease,  

Feature selection,  

Machine learning, 

Feature extraction,  

Texture analysis. 

Abstract:  
 

Dementia encompasses a range of brain disorders characterized by cognitive decline, with 

memory loss as a hallmark symptom. Alzheimer's disease (AD), the most common form 

of dementia, progressively affects cognitive functions, leading to severe memory loss. 

Early and accurate detection of AD is essential for timely intervention, preventing further 

neuronal damage, and improving patient outcomes. This study employs machine learning 

(ML) techniques, feature selection methods, and texture analysis to enhance AD 

diagnosis. By systematically evaluating various feature selection techniques and 

Principal Component Analysis (PCA) in conjunction with multiple ML algorithms, the 

study identifies the most effective approach for classifying AD stages. The integration of 

texture-based features with ML models demonstrates a significant improvement in 

distinguishing Cognitive Normal, Mild Cognitive Impairment, and AD stages. These 

findings highlight the clinical significance of combining feature selection and texture 

analysis with ML for early AD diagnosis, facilitating more precise disease classification 

and contributing to personalized treatment strategies. 

 

1. Introduction 

Alzheimer's disease (AD) is a progressive 

neurodegenerative disorder defined by the gradual 

deterioration of brain cells and their connections. 

This decline leads to memory loss, cognitive 

impairment, and challenges in performing daily 

tasks. The disease's progression involves shrinking 

of the brain, particularly the hippocampus, and 

enlargement of fluid-filled spaces within the brain 

[1]. AD poses a major public health crisis globally, 

affecting millions of people and imposing 

substantial economic and social burdens [2]. The 

number of people living with dementia is alarmingly 

high, with over 50 million affected worldwide. This 

figure is expected to nearly triple by 2050, reaching 

approximately 152 million individuals [3]. India is 

also struggling with a rising tide of dementia. With 

an estimated 6.1 million elderly citizens, 

approximately 3.7% or 46,000 individuals are 

currently living with Alzheimer's [4]. Notably, the 

widespread occurrence of dementia is 

disproportionately higher among women and in rural 

areas [5], underscoring the critical need for effective 

prevention, diagnosis, and treatment strategies. AD 

is typically categorized into three stages: Cognitive 

Normal (CN), Mild Cognitive Impairment (MCI), 

and AD patients. Accurate diagnosis, particularly 

during the early stages, remains a challenge in 

healthcare. 

In medical imaging, texture features play a vital role 

in capturing patterns within Magnetic Resonance 

Imaging (MRI) that indicates the presence and 

progression of AD. Texture features quantify 

variations in pixel intensity, capturing details about 

the structural properties of brain tissue. These 

features can highlight differences between healthy 

and diseased brain regions, providing valuable input 

for classification models. 

Feature selection techniques are utilized to boost the 

efficiency and accuracy of classification models. 

These methods, help in determining the most 
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influential features from a large dataset, thereby 

reducing dimensionality and improving model 

performance. Additionally, Principal Component 

Analysis (PCA) is used as a dimensionality 

reduction technique that reduces data dimensions 

while preserving variance. 

Machine Learning (ML) has become a potent 

instrument in disease classification, offering robust 

algorithms capable of learning from complex 

datasets [6]. Integrating feature selection and 

dimensionality reduction techniques with ML 

models enhances the classification performance of 

AD stages, ultimately contributing to improved 

patient outcomes. 

This study evaluates the effectiveness of various 

feature selection methods alongside PCA in 

combination with multiple ML algorithms to 

identify the optimal approach for classifying AD 

stages. To enhance efficiency, only half of the most 

important features were selected based on each 

feature selection method, which aids in reducing 

dimensionality, minimizing computational 

complexity, and eliminating redundant or less 

relevant features. This comparative analysis 

provides valuable insights into the most effective 

feature selection methods for AD classification. 

 

2. Literature review 
 

Computer-aided diagnosis (CAD) systems have 

become indispensable tools for assisting physicians 

in recent years. Numerous studies have focused on 

developing CAD systems to aid in the detection of 

AD stages. This section reviews existing research 

that employed traditional ML techniques, texture 

analysis and feature selection methods, for AD 

diagnosis. 

Several studies have explored ML approaches and 

feature selection techniques for AD classification, 

emphasizing the importance of selecting optimal 

features to enhance predictive performance. 

Alshamlan et al. [7], compared Support Vector 

Machine (SVM), Random Forest (RF), and Logistic 

Regression (LR) with feature selection methods such 

as Minimum Redundancy Maximum Relevance 

(mRMR) and Mutual Information (MI), finding that 

LR combined with mRMR achieved the highest 

accuracy. Arjaria et al. [8], investigated various ML 

algorithms, including SGD, k-NN, Decision Tree, 

AdaBoost, Neural Network, and Naïve Bayes, 

alongside feature selection and dimensionality 

reduction techniques like Information Gain, Gini 

Index, Chi-Squared, and PCA to optimize 

classification performance. Similarly, Uddin et al. 

[9], developed an ML model integrating 

GaussianNB, Decision Tree, Random Forest, 

XGBoost, Voting Classifier, and GradientBoost, 

leveraging clinical, demographic, and brain imaging 

features for AD classification, with the Voting 

Classifier combined with the Select K Best feature 

selection algorithm achieving the highest validation 

accuracy. Further studies have refined feature 

selection techniques to improve classification 

performance. Gu et al. [10], designed a pipeline 

integrating supervised and unsupervised feature 

selection methods, validated through a bootstrap 

sampling-based workflow on the ADNI dataset. 

Their findings demonstrated that incorporating 

stability with discriminability significantly enhances 

AI model performance. Yue et al. [11], developed an 

explainable prediction model using ensemble 

learning and feature selection on longitudinal aging 

study data from China, evaluating five feature 

selection techniques and nine ML classifiers. Their 

model identified critical predictive features for AD 

and MCI, achieving high accuracy, sensitivity, and 

specificity. Collectively, these studies highlight the 

effectiveness of combining advanced feature 

selection and classification techniques to enhance 

ML-based AD diagnosis. Few studies have explored 

ML approaches for AD classification using different 

feature extraction techniques. In study [12], authors 

Reddy and Nagireddy (2022), combined multiple 

features, including GLCM, 3D SIFT, HOG-TOP, 

and Complete LBP of Sign and Magnitude-Three 

Orthogonal Planes (CLBPSM-TOP), to classify 

subjects into CN, MCI, and AD using the OASIS 

dataset. Their ensemble approach, integrating SVM 

and k-NearestNeighbors (KNN), outperformed 

individual classifiers. In [13], AlSaeed & Omar 

(2022), investigated CNN-based feature extraction 

for automated AD classification using MRI images, 

analyzing the impact of fully connected layers and 

evaluating performance with Softmax, SVM, and RF 

classifiers. The study by Ahmadi et al. [14], employs 

ML techniques to assess the severity of AD using 

MRI images, with the Kaggle dataset categorized 

into four severity levels. A hybrid approach 

combining 12 feature extraction methods is utilized 

for diagnosis, followed by feature reduction using 

PCA. Six traditional ML classifiers such as, 

Decision Tree, KNN, Linear Discriminant Analysis, 

Naïve Bayes, SVM, and ensemble learning are 

applied to classify disease severity. Optimization is 

performed during training to enhance classifier 

performance. Additionally, a Convolutional Neural 

Network (CNN) model is trained using the extracted 

features, demonstrating superior accuracy in 

predicting the disease compared to traditional ML 

algorithms. 

The literature survey reveals a notable lack of focus 

on texture features integrated with feature selection 

methods in conjunction with the performance of ML 

algorithms for AD diagnosis. While numerous 
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studies explore ML techniques and feature 

extraction individually, the synergistic impact of 

texture analysis, feature selection, and ML remains 

underexplored. Addressing this gap is crucial, as 

texture features can provide valuable insights into 

structural brain changes associated with AD, and 

optimal feature selection methods can enhance the 

discriminative power of ML models. This study aims 

to bridge this gap by systematically evaluating the 

role of texture features, feature selection and ML 

algorithms in improving AD stage classification. 

 

3. Methodology 
 

The following pseudocode provides an overview of 

the methodology employed in this study, 

encompassing the key steps of preprocessing MRI 

images, extracting texture-based features, selecting 

the most relevant features, and training ML models 

to classify AD stages. This structured representation 

highlights the workflow's key components and 

ensures replicability of the proposed approach. 

 

3.1 Dataset 

 

For this experiment, 1,026 3D brain 1.5T T1-

weighted structural MRI scans were selected, 

including balanced 402 images of CN, AD, and MCI 

from ADNI database (http://adni.loni.usc.edu/)  

[15]. The slice thickness of MRI was 1.2 millimeters. 

The rows, columns, and slices have dimensions of 

256 × 256 × 166, with voxels measuring 1.0 × 1.0 × 

1.2 mm3. Figure 1 represents different stages of AD 

in coronal view. 

 

   

Figure 1. Sample MRI images representing stages 

(shown from left to right): CN, MCI, and AD. 

 

Pseudocode for AD Stage Classification Workflow  

BEGIN 

 

Step 1: Load and preprocess MRI images 

    LOAD 3D MRI images 

    FOR each image: 

       APPLY skull removal 

       CO-REGISTER images to a standard 

anatomical template 

       NORMALIZE voxel intensities 

     

Step 2: Feature extraction 

    INITIALIZE feature vector as empty 

 

    FOR each 3D MRI image: 

       COMPUTE GLCM features: energy, 

homogeneity, contrast, entropy, 

correlation, dissimilarity 

       COMPUTE GLHA features: mean, 

variance, skewness, kurtosis 

       COMPUTE NGTDM features: coarseness, 

contrast, busyness, complexity, 

strength 

       COMBINE GLCM, GLHA, NGTDM features 

into feature vector 

 

   STORE all feature vectors in database 
Step 3: Feature selection 

    APPLY feature selection methods: 

      ANOVA, Chi-Square, Mutual 

Information Classifier (MICIF), PCA 

and ML algorithms 

    SELECT top 50% of ranked features for 

each method 

    STORE selected features 

 

 

 

Step 4: Train machine learning models 

    SPLIT dataset into training (80%)   

and testing (20%) 

    INITIALIZE classifiers: KNN, DTC, GNB, 

SVM, MLP, RFC, GBC, XGB, ADB, ETC, CBC 

 

    FOR each feature selection method: 

        FOR each classifier: 

            TRAIN classifier on    

training set using selected 

features 

            TEST classifier on testing set 

        RECORD accuracy, ROC-AUC, 

precision, recall, F1-score 

 

Step 5: Evaluate performance 

    COMPARE metrics across classifiers and 

feature selection methods 

    IDENTIFY best-performing combination 

of feature selection method and 

classifier 

 

Step 6: Output results 

    DISPLAY top-performing model and 

feature selection combination 

     

END 
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3.2 Preprocessing 

The dataset acquired from ADNI underwent initial 

preprocessing steps during its acquisition, 

specifically addressing Gradwarp, B1 non-

uniformity, and N3biasfield correction. Gradwarp 

utilizes an algorithm to enhance image appearance 

by eliminating distortion caused by gradient 

nonlinearity, which is particularly significant for 

non-linear gradient models. This correction 

improves image geometry, enhancing the utility of 

image information for analysis. B1 non-uniformity 

correction is used to rectify color and intensity 

distortions in the image, often caused by improper 

radio frequency transmission. Additionally, N3 bias 

field correction is applied to address intensity 

distortions resulting from dielectric effects during 

acquisition [16]. N3 bias field-corrected images 

underwent skull stripping using the deepbrain [17] 

method in Python. The extracted skull is linearly 

registered against 1mm MNI152-space using FSL-

FLIRT [18]. 

3.3 Feature Extraction 

Feature extraction techniques are crucial for 

capturing the essential characteristics of images, 

specifically in case of medical imaging for disease 

classification. In this work, three prominent texture 

analysis techniques are employed: GLCM, Gray 

Level Histogram Analysis (GLHA), and 

Neighboring Gray-Tone Difference Matrix 

(NGTDM). 

GLCM is a technique that analyzes the spatial 

correlation between pixels in an image. It quantifies 

the frequency of pixel pairs with defined intensities 

and spatial arrangements. By examining these co-

occurrence patterns, GLCM extracts essential 

texture features such as energy, homogeneity, 

contrast, entropy, correlation, and dissimilarity. 

These parameters offer insights into image texture 

characteristics, including uniformity, similarity, 

intensity variation, randomness, pixel 

interdependence, and local image variation [19,20]. 

The mathematical formulas for GLCM features are 

presented below. 
   

𝐸𝑛𝑒𝑟𝑔𝑦 = ∑ ∑ 𝑃(𝑖, 𝑗)2𝑁
𝑗=1

𝑁
𝑖=1                   (1) 

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 = ∑ ∑
𝑃(𝑖,𝑗)

1+|𝑖−𝑗|

𝑁
𝑗=1

𝑁
𝑖=1  (2) 

 

Contrast = ∑ ∑ 𝑃(𝑖, 𝑗). (𝑖 − 𝑗)2𝑁
𝑗=1

𝑁
𝑖=1   (3) 

Entropy = − ∑ ∑ 𝑃(𝑖, 𝑗) log 𝑃(𝑖, 𝑗)𝑁
𝑗=1

𝑁
𝑖=1   (4) 

Correlation = ∑ ∑
(𝑖−𝜇𝑖)(𝑗−𝜇𝑗)𝑃(𝑖,𝑗)

𝜎𝑖𝜎𝑗

𝑁
𝑗=1

𝑁
𝑖=1        (5)  

Dissimilarity = ∑ ∑ 𝑃(𝑖, 𝑗) |𝑖, 𝑗|𝑁
𝑗=1

𝑁
𝑖=1   (6) 

where, P(i,j): Probability of pixel pairs with intensity 

levels i and j occurring in the image. 𝜇𝑖,𝜇𝑗: Mean 

intensity of rows and columns, 𝜎𝑖𝜎𝑗: Standard 

deviation of rows and columns. 

GLHA analyzes the spread of pixel intensities within 

an image. By plotting the frequency of occurrence of 

different gray levels, a histogram provides valuable 

understanding of the image's characteristics. From 

histogram, core statistical metrics such as mean, 

variance, skewness, and kurtosis are calculated to 

quantify image properties like overall brightness, 

contrast, asymmetry, and peakedness [21]. GLHA 

features are calculated using the formulas presented 

in Equations (7) to (11). 

𝑀𝑒𝑎𝑛 (𝜇) =
1

𝑁
 ∑ 𝑥𝑖

𝑁
𝑖=1    (7) 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝜎2) =  
1

𝑁
 ∑ (𝑥𝑖 −  𝜇)2𝑁

𝑖=1  (8) 

 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =  
1

𝑁
 ∑ (𝑥𝑖−𝜇)3𝑁

𝑖=1

𝜎3   (9) 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =  
1

𝑁
 ∑ (𝑥𝑖−𝜇)4𝑁

𝑖=1

𝜎4    (10) 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝑝(𝑥𝑖) log 𝑝(𝑥𝑖)  (11) 

where, 𝑥𝑖: Intensity of pixel i, N: Total number of 

pixels. p(𝑥𝑖): probability of intensity 𝑥𝑖. 

NGTDM is a texture analysis method that focuses on 

the contrast between a pixel and its neighbors. It 

quantifies the differences in gray levels between a 

pixel and the average gray level of its surrounding 

pixels within a defined region. Key features 

extracted from NGTDM include coarseness, which 

measures texture granularity; contrast, reflecting 

local intensity variations; busyness, indicating the 

rate of gray level change; complexity, representing 

image intricacy based on gray level fluctuations; and 

strength, quantifying the distinctiveness of textures 

within the image [22]. Equations (12) to (16) define 

the mathematical calculation of NGTDM features. 

𝐶𝑜𝑎𝑟𝑠𝑒𝑛𝑒𝑠𝑠 =  
1

∑ 𝑃(𝑖)𝑁
𝑖=1

 ∑
𝑃(𝑖)

1+𝑆(𝑖)

𝑁
𝑖=1  (12) 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =  ∑ 𝑃(𝑖)(𝑖 − 𝐼)̅2𝑁
𝑖=1   (13) 

𝐵𝑢𝑠𝑦𝑛𝑒𝑠𝑠 =  
∑ 𝑃(𝑖)𝑆(𝑖)𝑁

𝑖=1

∑ 𝑃(𝑖) |𝑖−𝐼̅|𝑁
𝑖=1

                (14) 

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = ∑ 𝑃(𝑖)(𝑖 − 𝐼)̅2𝑆(𝑖)𝑁
𝑖=1  (15) 
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𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ =
∑ 𝑃(𝑖)(𝑠(𝑖)+𝑆(𝑖+1))2𝑁

𝑖=1

∑ 𝑃(𝑖)𝑆(𝑖)𝑁
𝑖=1

                (16) 

where, S(i): Sum of absolute differences. 

The texture-features derived from GLCM, GLHA, 

and NGTDM are integrated to enhance the analysis 

of medical images, providing a deeper understanding 

of their structural and textural properties and leading 

to improved diagnostic accuracy. 

3.4 Feature Selection 

Feature-selection is essential in reducing 

dimensionality, improving model performance, and 

enhancing interpretability in ML tasks. This research 

employed multiple feature selection techniques, 

including Analysis of Variance (ANOVA), Chi-

Square, Mutual Information Classifier (MICIF), 

PCA, and various embedded ML models. 

1.  ANOVA: Is a statistical method used to identify 

notable differences between the means of multiple 

groups. In feature selection, ANOVA evaluates the 

significance of individual features by measuring the 

variance within groups to the variance between 

groups. Features with higher F-scores are considered 

more significant [23]. 

2. Chi-Square test: Determines whether categorical 

variables have a substantial relationship. In feature 

selection, it assesses the feature's independence from 

the target variable. Features with high Chi-Square 

values are more likely to be pertaining to 

classification tasks [24]. 

3. MICIF: MICIF evaluates the interdependence 

between attributes and target variable. Attributes 

with higher mutual information scores are deemed 

more predictive for classification [25]. 

4. PCA: A dimensionality-reduction technique that 

transforms high-dimension data into a low-

dimensional space while preserving most of the 

data's variance [26]. It does this by generating new 

uncorrelated variables, known as principal 

components, which capture the maximum 

information from the raw data. 

5. K-NearestNeighbors: KNN is a non-parametric 

method that evaluates feature importance by 

assessing how well features contribute to nearest 

neighbor classification accuracy [27]. 

6. DecisionTreeClassifier (DTC): DTC performs 

feature selection by prioritizing the most significant 

features at each node based on Gini impurity or 

information gain criteria. Features that lead to the 

high information gain are considered as most 

important [26]. 

7. ExtraTreesClassifier (ETC): ETC Combines 

multiple decision-trees and splits nodes based on 

random thresholds for feature values. The weight of 

each feature is derived from the reduction in 

impurity it achieves across all trees [28]. 

8. RandomForestClassifier (RFC): RFC [29], is an 

ensemble technique that constructs multiple decision 

trees. It computes feature importance by aggregating 

the decrease in impurity across all trees in forest, 

making it an effective tool for feature selection. 

9. XGBoosting (XGB): Is a high-performance 

gradient boosting library that uses the Gradient-

Boosting framework to create ML algorithms. 

Feature importance is measured by the gain, cover, 

and frequency of splits using each feature [30]. 

These feature selection methods are employed to 

enhance AD stage classification model performance 

by identifying and utilizing the most informative 

dataset features. 

3.5 ML Algorithms 

This section discusses the various ML algorithms 

employed to assess the classification task's 

performance based on different feature selection 

algorithms. A range of techniques, including 

instance-based, tree-based, Bayesian, margin-based 

learning, and neural network algorithms, were 

examined to evaluate their effectiveness in 

classifying data based on selected features. 

1. Instance-Based Learning 

KNN [27], is a simple, instance-based learning 

algorithm that operates on the principle of similarity. 

It classifies new instances by finding the 

predominant class among the k-nearestneighbors in 

the training set. In low-dimensional environments, 

this approach is helpful because to its simplicity and 

efficacy, but as dataset sizes and dimensions grow, it 

may become computationally costly. 

2. Tree-based Methods 

DTC is a hierarchical model that classifies data by 

sequentially splitting it based on feature values. Each 

internal node represents a decision based on a 

specific attribute, branches correspond to the 

possible outcomes of that decision, and leaf nodes 

represent class labels. The process continues untpure 

leaf nodes are reached, containing instances 

belonging to the same class [31]. RFC [29], is an 

ensemble method that builds multiple decision-trees 

and combines their predictions for classification or 

regression tasks. ETC, is similar to random forests 

but uses random splits of all observations at each 

node. It introduces more randomness to the tree-

building process and can achieve better performance 

by reducing variance [28]. Gradient Boosting 

Classifier (GBC) (Friedman, 2001), sequentially 

builds an ensemble of trees, where each new tree 

focuses on correcting the errors of its predecessors. 

This method effectively handles complex datasets 

and is versatile for both classification and regression 

problems. XGB, is a powerful and efficient ML 

library that specializes in gradient boosting [30]. 
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Designed for scalability and performance, it excels 

at creating complex models by combining numerous 

simpler models. Known for its speed and accuracy, 

XGB has gained popularity for various ML tasks and 

real-world applications. AdaBoost (Adaptive 

Boosting) [32], is an ensemble-learning method that 

sequentially integrates multiple weak classifiers to 

create a strong classifier. It assigns higher weights to 

misclassified instances in subsequent iterations, 

focusing the learning process on difficult examples. 

By iteratively improving the model's performance on 

challenging cases, AdaBoost effectively enhances 

overall classification accuracy. CatBoostClassifier 

(CBC) [33], is a high-performance gradient-boosting 

algorithm specifically designed to handle categorical 

features efficiently. It employs techniques like 

ordered boosting and categorical encoding to 

directly process categorical data without requiring 

extensive preprocessing. This enables CatBoost to 

achieve high performance on various datasets, 

particularly those with a significant number of 

categorical features. 

3. Bayesian Methods 

Gaussian Naive Bayes (GNB) [34], is based on 

Bayes' theorem with presupposition of independence 

between every pair of features. It's called 'naive' 

because it simplifies the calculation by assuming 

feature independence. GNB performs well in many 

real-world scenarios due to its simplicity and 

efficiency. 

4.  Margin-based learning 

SVM [35], constructs a hyperplane or set of 

hyperplanes in a multi-dimensional space to separate 

different classes. To handle complex, non-linear 

patterns, SVMs employ kernel functions that 

implicitly project data into higher-dimensional 

spaces, allowing for more sophisticated decision 

boundaries. 

5. Neural Networks 

Multi-layer Perceptron (MLP) [36], is a feedforward 

artificial neural network with multiple 

interconnected layers of nodes. It processes input 

data through hidden layers, applying non-linear 

transformations to extract complex patterns. The 

output layer produces predictions or classifications. 

MLPs are trained with backpropagation, which 

iteratively adjusts weights to minimize prediction 

errors. 

 

4. Results and discussion 

 
4.1 Evaluation Metrics 

 

The ROC-AUC score is particularly valuable in 

medical image classification as it offers a 

comprehensive assessment of a model’s diagnostic 

performance, especially when handling imbalanced 

datasets. In medical applications such as disease 

classification, tumor detection, or disease severity 

prediction, relying solely on accuracy is insufficient, 

as misclassifications can lead to serious 

consequences. Therefore, this study considers the 

ROC-AUC score as the primary performance metric 

for evaluating ML models. 

4.2 Performance Comparison 

The selection of an appropriate ML algorithm and 

feature engineering techniques is crucial for 

achieving optimal performance in classification 

tasks. This section provides a comparative analysis 

of different ML algorithms applied to the AD 

dataset, incorporating the outcomes of various 

feature selection methods. The evaluation metrics 

are utilized to measure the effectiveness of each ML 

algorithm. Table 1, summarizes the evaluation 

metrics across different feature selection methods 

and ML algorithms, emphasizing their impact on AD 

stage classification performance. A comprehensive 

assessment of ML algorithms using different feature 

selection approaches provides several key insights: 

Overall Performance: Overall, the models 

performed better with the feature selection methods 

that retained fifty percent of the most important 

features. This highlights the importance of selecting 

relevant features to enhance model performance. 

Tree-Based Methods: Among the algorithms, tree-

based methods such as RFC and ETC consistently 

outperformed other classifiers across most feature 

selection techniques. For instance, ETC achieved the 

highest score especially when paired with PCA and 

ETC feature selection methods. The strong 

performance of ETC can be attributed to its use of 

randomized split selection, which introduces 

diversity among trees, reduces overfitting, and 

improves generalization. 

Gradient Boosting Methods: GBC and XGB also 

showed robust performance, particularly with 

feature-selection methods like MICIF and PCA. 

XGBoost, in particular, demonstrated superior 

ROC-AUC scores, suggesting its effectiveness in 

distinguishing between classes. 

Impact of Feature Selection: Feature-selection 

methods such as ANOVA and MICIF provided a 

notable improvement in the performance of complex 

classifiers like GBC and XGB. The selection of the 

top 50% features seems to strike a balance between 

reducing dimensionality and retaining critical 

information. 

Algorithm-Specific Observations: KNN, 

demonstrated worse performance across all 

parameters, indicating its sensitivity to irrelevant 

features and high dimensionality. SVM, performed 
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moderately well but lagged behind tree-based and 

ensemble methods. GNB, struggled with lower 

performance metrics, likely due to its assumption of 

feature independence which is not well-suited for 

this dataset. Ensemble methods such as ADB and 

CBC provided mixed results, with CBC performing 

better in feature-rich environments but ADB 

struggling across various feature selection methods. 

The analysis shows the efficiency of tree-based and 

ensemble learning methods in handling the selected 

features for AD classification. Feature selection has 

a vital role in enhancing model performance, with 

methods such as PCA and MICIF showing 

considerable advantages. A bar plot (Figure. 2) of 

AUC-ROC scores across different feature-selection 

methods and ML algorithms further illustrates this, 

highlighting that model like RFC, GBC, and 

XGBClassifier consistently achieving higher scores, 

especially when paired with PCA and MICIF. 

Alzheimer's disease is studied and reported in the 

literature [37-40]. 

 

5. Conclusion 

This study has demonstrated the efficiency of 

various ML algorithms and feature-selection 

methods in classifying stages of AD. Tree-based and 

ensemble learning methods, particularly Random 

Forest, Gradient Boosting, and XGBoost, 

demonstrated superior results in classification of 

AD. The importance of feature selection was 

highlighted, with PCA and MICIF providing 

substantial benefits. While this study provides 

valuable insights, some limitations must be 

acknowledged. The dataset used might not fully 

represent the entire spectrum of AD classification. 

Including additional clinical and demographic 

information could potentially increase model 

performance. Additionally, exploring different 

hyperparameter tuning strategies for each algorithm 

may lead to further optimizations. Future research 

should explore on adopting deep learning technique, 

such as CNNs, to capture complex patterns in 

neuroimaging data. Additionally, investigating the 

impact of longitudinal data and multimodal 

information could give a more thorough insight of 

 

Author Statements: 

 

 Ethical approval: The conducted research is not 

related to either human or animal use. 
 

Table 1.  Score of different ML algorithms based on various feature selection methods. 

 

 

 

 

 

 

 

 

 
Figure 2. ROC-AUC score of ML algorithm across different feature selection method. 

Feature 

selection 

method 

ML algorithms  

KNN DTC GNB SVM MLP RFC GBC XGB ADB ETC CBC 

ANOVA 66.31 67.44 59.66 73.94 59.27 75.58 72.45 77.98 61.94 77.40 69.38 

Chi2 60.71 52.62 55.01 69.11 59.37 65.18 61.68 64.71 57.21 66.09 60.04 

MICIF 59.01 56.88 58.44 64.87 61.04 74.02 71.12 76.41 62.56 73.94 68.98 

PCA 61.96 63.66 67.42 70.90 65.11 81.65 78.86 83.71 67.05 89.49 67.20 

KNN 62.02 61.93 55.96 68.24 61.83 70.30 67.03 70.30 62.37 73.42 65.10 

DTC 61.28 66.79 59.46 67.77 61.77 76.89 69.71 76.94 61.84 79.29 66.25 

ETC 60.75 65.51 60.68 67.19 60.90 76.10 70.86 76.77 65.01 80.63 66.11 

RFC 57.89 61.34 60.59 65.97 60.54 75.11 70.79 76.17 63.67 79.64 66.29 

XGB 60.93 62.01 58.53 63.73 62.57 74.26 72.44 76.44 65.15 77.77 66.61 
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