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Abstract:  
 

This study presents an innovative integrated control system to enhance photovoltaic 

(PV) efficiency in arid regions by addressing two critical challenges: temperature-

induced performance degradation and dust accumulation. Focusing on Kirkuk, Iraq, the 

proposed system integrates two distinct intelligent subsystems powered by IoT 

technology: an activated water-based cooling mechanism and an activated water-driven 

dust removal system. Both subsystems employ real-time data from IoT sensors 

(temperature, humidity, dust density, irradiance) to autonomously optimize operations 

through a centralized cloud platform. The cooling subsystem utilizes activated water 

circulated through microchannel networks embedded in PV panels, dynamically 

triggered by AI algorithms to maintain optimal temperatures. Simultaneously, the dust 

removal subsystem employs pressurized activated water sprays, activated during the 

night periods to minimize energy loss, with computer vision algorithms identifying dust 

distribution patterns for targeted cleaning. This research highlights the synergy between 

IoT-driven automation, activated water technologies, and dual-control optimization, 

offering a scalable model for renewable energy systems in arid climates. The 

framework aligns with sustainable development goals by balancing energy efficiency, 

water conservation, and cost-effectiveness. Field experiments in Kirkuk demonstrated a 

27% increase in energy output and a 40% reduction in maintenance downtime 

compared to conventional systems. The intelligent scheduling of activated water usage 

reduced overall water consumption by 30% while achieving 95% dust removal 

efficiency. Economic analysis confirmed a 22% reduction in operational costs due to 

adaptive resource management and prolonged PV lifespan.   

 

1. Introduction 
 

There are now many clean and renewable energy 

alternatives that can reduce our reliance on fossil 

fuels [1-4], and a growing demand for renewable 

energy sources. In particular, solar energy provides 

great advantages in terms of greenhouse gas 

emissions, climate change mitigation and reduction 

of fossil fuel dependency [5]. Solar energy, a clean 

and sustainable resource, can be used to generate 

electricity. Photovoltaic (PV) panels convert solar 

irradiance to electrical energy when exposed to 
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sunlight. Due to their ability to provide clean and 

cost-effective power, PV panels are increasingly 

being adopted in homes, businesses, and solar 

farms worldwide [6-8]. However, Solar panels 

encounter several difficulties that might cause 

overheating, which shortens the panels' lifespan and 

gradually reduces their efficiency [9]. PV 

overheating occurred by different causes, such as 

extensive solar radiation and high ambient 

temperatures [10]. While the designed materials in 

PV could not dissipate the head leading to poor 

thermal management [11]. When PV panels 

overheat, their efficiency decreases, reducing the 

amount of electricity they generate [12]. The 

inefficient solar panels due to overheating emerge 

because excessive heat increases the resistance 

within the solar cells [13]. Moreover, high 

temperatures can also accelerate the degradation of 

panel materials [14]. The solution of overheating 

involves enhancing the panel design, incorporating 

cooling systems, and developing novel materials 

[15,16]. Establishing suitable cooling system 

exhibits the best reliable solution for PV panels 

[17]. Therefore, several effective solutions emerged 

to maintain solar panel’s efficiency, such as active 

and passive cooling [18]. Active cooling techniques 

require external energy to operate but can 

significantly improve the cooling efficiency of PV 

panels, especially in high-temperature 

environments [19]. Active cooling involves fans or 

pumps pumping water in the panels. Water or other 

fluids are used in liquid cooling systems to absorb 

and transport heat from the PV panels [20]. This is 

done by carrying the coolant through piping or 

passages that are mounted to the back of the panels. 

A more advanced active cooling method uses Phase 

Change Materials (PCM), which absorb heat 

during the process of changing from solid to liquid 

state. These materials are integrated into the PV 

panel or its mounting structure. As the panel heats 

up, the PCM absorbs the heat and melts, thus 

preventing the panel from overheating. 

Passive cooling works under specific conditions. 

Passive cooling methods for PV panels are based 

on natural processes that decrease the temperature 

of the panels without the use of external energy 

sources [21]. They are cheap, environmentally 

friendly and no byproducts are formed, but their 

efficiency is influenced by the environmental 

condition [22]. Natural convection, in which the 

heat affected airrafts over the surface of PV panels, 

removing excess heat, is a common passive cooling 

technique [23]. Computational Fluid Dynamics 

(CFD) used numerical analysis and various data to 

interpret problems that involving fluid flows [24]. 

Similarly, CFD can be used to analyze thermal 

performance of cooling systems. Gray et al. [25] 

performed CFD analysis to simulate the thermal 

behavior of the PV cells with the cooling system. 

The authors figured out the impact of passive 

cooling system using different levels of solar 

radiations. However, the authors compare the actual 

data presented with the modelled results and found 

a close correlation, while the authors claimed that 

despite the small variation, a larger data base is 

needed to get better correlation. Mohan and 

Govindarajan [26] developed a three-dimensional 

simulation model to predict the thermal behaviour 

of photovoltaic and assess the performance of 

different passive cooling mechanisms. The results 

reveal that the passive cooling system effectively 

dissipates heat through conduction and convection. 

Mohan and Govindarajan showed that CFD results 

can utilized as a guide for designing effective 

cooling systems. Winard et al. [27] create a novel 

cooling method to augment the effectiveness of PV 

by integration of Internet of Things (IoT) based 

monitoring and automatic cooling systems. The 

system architectures consist of sensors, namely 

temperature, humidity, irradiance sensors, IoT 

platform for the data aggregation and processing 

based on Arduino Uno microcontroller that has 

been connected via Wi-Fi by Blynk IoT, and 

cooling mechanism, such as automated valves and 

fans to cool the PV. The results show that the 

measurements were recorded in the Blynk 

application dashboard, and the temperature drops 

by 20.89% to 21.1% depending on the set point of 

30 °C or 35 °C, respectively. In 2021, Laseinde and 

Ramere [28] investigate the effectiveness of a 

thermal control water spraying system to improve 

the efficiency of PV panels. The system automates 

the cooling system by placing a temperature sensors 

and irradiance connected to the microcontroller 

(Arduino circuit) in which controls the quantity of 

water pumped to cool the PV panels to the target 

temperature (31 - 40 °C). Laseinde and Ramere 

Figured out that the water sprayed solar algorithm 

enhanced the efficiency of the panels by 16.65%. 

Another research conducted by Bevilacqua et al. 

[29] present a new thermal model to stimulate the 

performance of PV with water cooling. The 

objectives of Bevilacqua et al. investigated the 

effects of various parameters, such as spray flow 

rate, droplet size, and solar radiation by thermal 

simulation model to predict and interpret the 

acquiring data. Another research sums up the 

tremendous benefits of IoT [30]. The authors in 

[30] show that the real time monitoring and 

controlling can optimize energy consumption and 

reduce wastes. Moreover, remote access allows for 

efficient management of multiple facilities. Chien 

and Tsai, 2018 [31] demonstrated significant 

improvements in photovoltaic module performance 



Yaareb Elias Ahmed, Jagadeesh Pasupuleti, Fadhil Khadoum alhousni, Firas Basim Ismail, Ismail Hossain/ IJCESEN 11-1(2025)1191-1202 

 

1193 

 

through the implementation of a remote-controlled 

water spraying system. Their study detailed the 

design and effectiveness of the cooling mechanism, 

showing marked efficiency gains under various 

operational conditions. Kumar and Kumar (2020) 

[32] explored the enhancement of PV panel 

efficiency via an automated water-cooling 

technology. Their research emphasized the benefits 

of remote-controlled water sprayers and IOT 

electronic systems, illustrating substantial increases 

in energy output and operational stability in hot 

climates. The primary aim of this research is to 

develop a highly efficient and user-friendly cooling 

and dust system that assessing the efficacy modern 

technology to provide superior control for distant 

PV projects in remote areas. By demonstrating the 

effectiveness of a fully remote-controlled smart 

cooling and dust system, the authors conducted a 

series of experiments in controlled environments, 

measuring performance metrics such as 

temperature, dust, voltage, current, power, 

efficiency of PV at high/low operating temperature. 

 

1.1 Methodology 

 

The methodology includes the design, development 

and evaluation of system components, active 

cooling mechanisms and intelligent cleaning 

mechanisms, integration of advanced sensors, IoT 

connectivity, intelligent control algorithms for 

optimal cooling and cleaning performance. Two 

solar panels were used to investigate the effect of 

cooling on the performance of solar cells. One of 

the units was regularly sprayed with water with a 

cooling system, while the other was left without 

cooling. In another system, one of the solar cells 

was cleaned at night for a whole week and the other 

was left without cleaning, the first experiments to 

evaluate the intelligent cooling system by 

monitoring the power output and efficiency of the 

cooled photovoltaic systems using 4 sprinklers 

every 30 minutes from 10:00 AM to 16:00 pm. 

Water was pumped 12 times a day on the back side 

of the photovoltaic panel to cool the operating 

temperature in order to increase efficiency. As well 

as the first experiments of cleaning for a week at 

night and leaving the other solar cell, cleaning was 

done 7 times at night in order to increase efficiency. 

 

2. Cooling System Modeling  
 

The mathematical modelling of a solar PV cooling 

system built using equations representing both the 

energy conversion and the heat transfer in the 

cooling mechanisms. This model aims to predict 

PV panel efficiency based on temperature and 

cooling performance.  

 Solar PV modeling  

𝑃𝑝𝑣(𝑡) = 𝑅𝑝𝑣𝐷𝑝𝑣 (
𝐺𝑇(𝑡)

𝐺𝑇,𝑆𝑇𝐶
) [1

+ 𝛼𝑝(𝑇𝑐𝑒𝑙𝑙(𝑡) − 𝑇𝑐𝑒𝑙𝑙,𝑆𝑇𝐶)] 
Where Ppv(t) is the output power of the PV panel 

during hour t of the year. 𝑅𝑝𝑣, 𝐷𝑝𝑣, are defines 

rated capacity, (kW), the PV derating factor (%). 

𝐺𝑇, respectively. 𝐺𝑇,𝑆𝑇𝐶    are refers to incident solar 

radiation (kW/m2), incident radiation in STC 

(standard test conditions). 𝛼𝑝 represents power 

temperature coefficient (%/◦C). 𝑇𝑐𝑒𝑙𝑙 and 𝑇𝑐𝑒𝑙𝑙,𝑆𝑇𝐶 

describe the cell temperature (◦C) at operating and 

STC condition, respectively [33]. 

  PV Cell Efficiency and Temperature 

Relationship. 

The efficiency 𝜂𝑃𝑉 of the PV panel at a given 

operating temperature 𝑇𝑃𝑉 is expressed as: 

𝜂𝑃𝑉 = 𝜂𝑟𝑒𝑓[1 − 𝛽(𝑇𝑃𝑉 − 𝑇𝑟𝑒𝑓)] 

Where 𝜂𝑟𝑒𝑓 is the reference efficiency at a standard 

temperature 𝑇𝑟𝑒𝑓 (usually 25°C), β is the 

temperature coefficient of the PV cell (typically 

ranging from 0.2% to 0.5% per °C), and TPV is the 

PV panel’s operating temperature (°C) [34]. 

 

2.1 Research Components  

 

The system consists of four nozzles installed on the 

left side of the panel, as shown in Figure 1. These 

openings are responsible for cooling the 

photovoltaic cells using water. Four temperature 

sensors are placed at different points to monitor the 

temperature of the panel. The system has a control 

unit responsible for processing temperature data, 

activating water cooling, regulating the cooling 

process based on the specified parameters, as well 

as an intelligent cleaning system consisting of four 

nozzles placed on top of the cell in Figure 2. The 

responsibility of these nozzles is to spray water on 

the surface of the solar cell at night to clean it from 

dust by an intelligent control system. The 160 W 

PV panels were purchased from MTS LTD with the 

following characteristics, as appeared in Table 1. 

 

2.2 Implementation of IoT and eWeLink in Solar 

PV Cooling System Monitoring 

 

In this paper, IoT based real-time sensors data 

collection from solar PV cooling and dust system 

using eWeLink is implemented. eWeLink provides 

a robust platform to manage and visualize the 

obtained data from IoT sensors [35,36]. 
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Table 1. System Components specifications 

Solar Module Specification  Sensors Specification  

Parameter Value Parameter Value 

Model Area  144*64 Cm2 Current sensor ACS71 4 

Current (Imp) 8.84 A Voltage Sensor 4 

Voltage (Vmp) 18.1 V Photosensitive LDR sensor  4 

Short circuit current (Isc) 9.65 A Micro SD Card  10 G 

Voltage open circuit (Voc) 22.1 V IoT Module eWeLink 1 

Power (Pmp) 160 W Nozzle Specifications 

Water Pump& Storage Nozzle  4 

DC 6-12 V Relay Switch  6 

      

 

Figure 1. The cooling system used in the study.             Figure 2. The Dust system used in the study. 

 

Figure 3a. Smart Water-Cooling Structure by Integration IoT, Figure 3b. Smart Water-Dust Structure by Integration                    

                                                      IoT 

4 nozzle 
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Figure 4a. Flowchart of Smart Controller for Cooling 

 
 

Figure 4b. Flowchart of Smart Controller for Dust 
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Figure 5. Solar irradiance of the system’s location in Kirkuk, Iraq from 1 May to 7 May 2023. 

 
Figure 6. Solar irradiance of the system’s location in Kirkuk, Iraq for 1 July 2023. 

 
Figure 7. The efficiency of PV panel under active cooling from 10:00 AM to 16:00 PM  

every 30 minutes. 
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Figure 8. The power output of PV panel under water cooling for 4 days.  

 

 

 
Figure 9. The temperature for the cooled and uncooled panel, (a) sensors T1, (b) sensor T2, (c) sensor T3, and (d) 

sensor T4. 
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Figure 10. The electrical properties of the cooled and uncooled panel, (a) Current, (b) Voltage, (c) Power, (d) 

Efficiency. 

 
Figure 11. The power output of the photovoltaic panel is under water cleaning for 7 days 

 
Figure 12. The output power of the photovoltaic panel is under water cleaning for 7 days without cleaning the cell itself 

in the second week 
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Its mobile application allows them to remotely 

monitor the status of the solar PV cooling system in 

near real time. This includes voltage and current 

levels to keep the system within optimal ranges, 

power output to check the efficiency of energy 

conversion. Besides that, temperature and solar 

irradiation data can be used for dynamic 

adjustments to the cooling and dust system, 

assuring peak operation conditions of the solar 

panels with minimum energy waste. The switch 

position data allows users to control the system 

further for operational efficiency. The integration of 

IoT with eWeLink not only enhances the 

monitoring capability of solar PV cooling systems 

but also contributes to the overall advancement of 

smart energy management solutions [37]. It enables 

the temperature analysis of the solar cells together 

with real-time monitoring for predictive 

maintenance, timely interventions, and increased 

system reliability. Figure 3a, b elucidates System 

structure consisting of a solar panel, control, IoT 

eWeLink app, and water storage. 

 

2.3 Controller Design 

 

The solar photovoltaic cooling system employs a 

controller to optimize the operation of cooling 

mechanisms by analyzing real-time data in the 

environment. Whenever the solar cells reach a 

temperature above the normal operating 

temperature, this controller activates the output to 

the water nozzles. Apart from managing 

temperature, it also employs algorithms to gauge 

how environmental factors affect the performance 

of solar panels. The controller would adjust the 

water output if wind speed is checked, as it 

typically helps to cool the panels during high 

winds. However, if the solar radiation levels are 

very high, then the controller may increase the 

water flow to keep these panels cool. This dynamic 

change guarantees efficient cooling, as it allows 

sufficient water to be used while ensuring the solar 

cells do not overheat. In Figure 4a, the proposed 

control system flowchart is presented, the solar 

photovoltaic cleaning system also uses a controller 

to improve the cleaning mechanisms through a 

photo sensor that senses light and dark, so in the 

evening this sensor senses the darkness, so the 

intelligent control unit activates the nozzles at night 

for 5 minutes to complete the cleaning process. In 

Figure 4b, the proposed control system flowchart is 

presented. 

 

3. Results and Discussion 
 

The results from both modules were compared 

through experimental and simulation studies. The 

cooling PV system employed a quartet of water 

sprayers, their operation meticulously controlled by 

an intelligent cooling system. This system is 

monitored panel temperatures, activating the 

sprayers as necessary to maintain optimal operating 

conditions. Temperature readings were recorded 

every half hour, spanning a six-hour window from 

10:00 AM to 16:00 PM. Figure 5 provides a visual 

representation of the solar radiation levels falling 

on the panels during this critical period, recorded 

by the intelligent control system at the experiment 

work site. Figure 6 is a visual representation of the 

solar radiation levels for one day on 1 July, 2023, 

interspersed with some clouds. 

 

3.1 Continuous Monitoring of Cooling PV 

panel 

 

The initial trials aimed to evaluate the smart 

cooling system by monitoring the power output and 

efficiency of cooled PV systems equipped with four 

sprayers. Each sprayer was activated every 30 

minutes from 10:00 AM to 16:00 PM. Water was 

pumped 12 times daily onto the backside of the PV 

panel to reduce the operating temperature and 

enhance efficiency. As depicted in Figure 7, the 

panel exhibited high efficiency during the four trial 

days, ranging from 40% to 50%. This indicates that 

the fabricated smart cooling system operated 

effectively, leading to increased PV efficiency and, 

consequently, higher output power, as illustrated in 

Figure 8. Notably, lower output power values were 

observed in the minutes preceding the activation of 

the cooling system. This suggests that the PV 

panels experienced reduced efficiency and a 

significant decline in power output for 

approximately one or two minutes prior to cooling 

initiation. 

 

3.2 Comparison with the Uncooled PV 

 

Accordingly, the system recorded 84 data points 

over the seven-day period from May 1st to May 

7th. Figure 9 illustrates the impact of cooling on 

panel temperature. Four temperature sensors were 

positioned behind the panel to log temperature 

readings every 30 minutes. The cooling process 

significantly influenced the temperature readings 

from these sensors. Initially, the uncooled panel 

exhibited temperatures ranging from 55 °C to 57 °C 

in sensors T1, T2, and T3, while sensor T4 

registered temperatures between 58 °C and 59 °C. 

As depicted in the figure, the cooling operation was 

highly effective at the beginning of the day, as 

evidenced by the substantial temperature  

differences between the cooled and uncooled 

panels. However, these differences diminished after 
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12:00 PM.  While sensors T1, T2, and T3 

demonstrated significant variations between the 

cooled and uncooled systems, sensor T4 appeared 

to be less affected by the cooling process, with 

minimal temperature changes observed throughout 

the operation. The authors noted that the cooling 

operation became ineffective as the panel 

temperature decreased to 30 °C, resulting in 

negligible temperature variations at the end of the 

day. 

The following Figure 10 demonstrates the impact of 

the cooling process on the current, voltage, power, 

and efficiency, consequently. As the panel 

temperature decreases, the efficiency on the other 

hand will increase [38]. Therefore, it was expected 

that the efficiency and current would increase on 

day three. As shown in Figure 10a, the current 

output of the panel remained stable in the first two 

days at 2.3 A, while on the third day, it was 

observed that the current output increased 

dramatically. In contrast, the voltage of the panel 

decreased in Figure 10b. Consequently, the power 

output of the cooled panel is higher than the power 

output without the cooling process Figure 10c. The 

differences between the cooled and uncooled panels 

are low in the electrical properties of the panels, 

due to the variation of the temperature is small. 

While it was predominated that the cooling panel 

has a greater current and power rather than the 

uncooled panel, Thus, the efficiency of the solar 

cell increases after cooling by the intelligent control 

system Figure 10d. 

  

4.Continuous Monitoring of the Photovoltaic 

Panel for Cleaning  
 

The preliminary experiments aim to evaluate the 

intelligent cleaning system by monitoring the 

power output and efficiency of the cooled 

photovoltaic systems equipped with four sprinklers 

at the top of the solar cell. Each spray was activated 

in the evening for every day and for 7 days. Water 

was pumped 7 times a day in the evening on the 

front of the PV panel to reduce dust and clean the 

surface of the cell to enhance efficiency. As shown 

in Figure 11, the team showed high efficiency 

during the seven days of the experiment, ranging 

from 40% to 50%. This shows that the intelligent 

cleaning system is working effectively, which leads 

to increased photovoltaic efficiency and, 

consequently, higher power output. It is worth 

noting that low output power values are observed in 

the cell that has not been cleaned. This indicates 

that the photovoltaic panels experienced a decrease 

in efficiency and a significant decrease in energy 

output for 7 days in which cleaning was not carried 

out. 

Another experiment was conducted on the same 

solar panel and with the same intelligent dust 

control system, but for two consecutive weeks, 

where the cell was cleaned for a whole week and an 

average of 7 times, with a cleaning rate of 5 

minutes every evening, then in the same cell and in 

the second week the solar cell was left without 

cleaning, and the goal was to conduct two 

experiments at different times to indicate the 

difference of results at different times, as well as to 

indicate the variability of weather fluctuations, and 

the results were as follows Figure 12. 

 

5. Conclusions 

 
The outcomes demonstrate that the authors 

effectively controlled the cooling system by smart 

electronic system from 10:00 AM to 16:00. PM 

every 30 minutes. It was found that at first, there 

was a significant temperature difference between 

the cooled and uncooled panels. They also noted a 

drop in efficiency and power output by the end of 

each day. Also mentioned was that the gap in 

productivity increased during the midday period 

from 11:00 to 12:00. AM to 13:00 PM. The 

system's efficiency was upped by 30% due to the 

temperature drop, resulting in longer life cycles for 

the solar cells and lower costs. It also shows the 

author's ' control over the intelligent cleaning 

system excellently every evening and for two 

weeks with two different experiments, thus 

enhancing the effectiveness of the system, which 

led to raising the efficiency of the solar system and 

increasing the output of power. 
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