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Abstract:  
 

In the aviation sector, ensuring safe landings while prioritizing the safety of runways is 

crucial to prevent accidents and incidents during the landing phase of flights. However, 

many studies analyzing unsafe events, such as runway cracks or inadequate friction, 

often fail to quantify their impacts on flight safety during landing. In airport pavement 

management systems (APMS), the condition of the runway surface is a critical factor in 

ensuring the operational safety of aircraft during take-off and landing. Therefore, it is 

essential to provide pilots with reports on runway conditions, including measurements 

of surface performance, to support informed decision-making. To tackle these 

challenges, we propose a real-time automatic monitoring system for runway safety 

utilizing video analysis. Specifically, we employ a time-series analysis approach using 

the improved chameleon swarm optimization (ICSO) algorithm to mine runway surface 

characteristics from real-time video data captured by unmanned aerial vehicles (UAVs). 

Subsequently, we introduce the fuzzy reinforced polynomial neural network (FR-PNN) 

to detect risks in runway surface characteristics, enabling automatic monitoring to 

enhance the safety of aircraft landings. Finally, the effectiveness of the proposed system 

is validated using real-time videos obtained from Bechyne military airport, located in 

Bohemia. This system aims to improve runway safety by providing timely and accurate 

assessments of runway conditions, thereby facilitating safer landings for aircraft. 

 

1. Introduction 
 

Aviation infrastructure relies on runway safety 

surveillance systems to prevent accidents and 

ensure aircraft safety during flight operations [1]. 

Runway monitoring systems prevent runway 

incursions, identify dangers, and maintain 

operational integrity in the aviation business, where 

safety is vital [2]. These technologies continuously 

monitor runway situations, detect anomalies, and 

warn air traffic control officers and airport staff in 

real time, improving situational awareness and 
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reducing risks [3]. Airport safety relies on runway 

monitoring systems to protect travelers, crew, and 

ground staff. These systems detect FOD, wildlife 

encroachment, and unlawful entry using modern 

sensors, security cameras, and data analytics. They 

also help the control of air traffic towers, ground-

based control units, and airport management centers 

communicate and respond to safety incidents [4,5]. 

Runway safety monitoring systems are in high 

demand as airports worldwide endure 

unprecedented flight traffic and operational 

complexity [6]. To handle new safety issues, these 

systems must adapt to changing aviation standards, 

technology, and regulations [7]. As smart airports 

and technological advancement programs grow, 

runway monitoring systems are linked into airport 

administration frameworks, enabling data sharing, 

connectivity, and decision support across 

operational domains [8]. Airport authorities and 

aviation stakeholders face many obstacles in 

runway safety monitoring due to the constantly 

changing and high-stakes nature of the airport's 

operations [9]. A major issue is the necessity for 

extensive surveillance coverage of airport runways, 

taxiways, aprons, and approaches zones. Achieving 

ubiquitous visibility requires sophisticated sensor 

networks and surveillance systems that can capture, 

process, and analyze massive amounts of data in 

real time [10]. 

Airports' many operational operations and 

environmental conditions make safety-critical 

incident detection and classification difficult [11]. 

Runway monitoring systems face runway 

incursions, airplane overruns, wildlife dangers, and 

bad weather [12]. Safety events must be identified 

quickly and accurately to enable proactive response 

and avoid small incidents from becoming severe 

accidents. Runway monitoring systems find it 

difficult to integrate several data sources, sensor 

modalities, and communication protocols [13]. 

Strong integration frameworks, established 

protocols, and collaboration between airport 

operators, airlines, regulatory agencies, and 

technology suppliers are needed to integrate, share, 

and support data across operational domains. Video 

analytics technology has transformed aircraft safety 

and surveillance by enabling real-time monitoring, 

analysis, and decision support [14]. Traditional 

CCTV systems were excellent in capturing visual 

data, but they lacked the intelligence and analytical 

capacity to extract actionable insights from 

complicated video streams. Advanced video 

analytics technologies powered by machine 

learning, deep learning, and computer vision 

algorithms have changed airport security and 

runway surveillance [15]. Recent breakthroughs in 

image processing, computer vision and pattern 

recognition allow for the building of sophisticated 

video surveillance systems that can detect, track, 

and evaluate items of interest with unmatched 

precision and efficiency. These devices can perform 

all this rapidly and accurately. CNNs, RNNs, and 

GANs can recognize photos, detect objects, analyze 

behavior, and identify video stream anomalies [16]. 

Deep learning algorithms will let airports recognize 

and respond to safety-critical situations in real time 

[17]. This will reduce dangers and keep planes safe. 

Airports can maximize operations and safety with 

deep learning-based video analytics solutions. 

These monitoring technologies track runway 

breaches, foreign objects, animals, and illegal entry. 

Deep learning is essential for live video analytics to 

monitor runway safety. Deep learning systems 

employ hierarchy models for raw input data instead 

of handmade features and established guidelines for 

image processing [18]. This contrasts with old 

approaches. Due to their superior object 

identification, recognition, and semantic 

segmentation, CNNs are ideal for airport photo 

analysis. CNNs recognize things by semantic 

segmentation. Deep learning algorithms are 

scalable and versatile, making them suitable for 

runway safety monitoring expanding issues and 

complexities [19]. Deep learning-based video 

analytics can increase awareness of situations, 

making choices, and airport risk mitigation. Finding 

subtle runway conditions and studying complex 

behavior patterns achieves this. In addition to 

CNNs, RNNs and LSTMs may perform analyses of 

time and sequence modeling [20]. They can 

forecast future behavior and occurrences based on 

past observations. In order to guarantee safety, 

airport management is required to keep a close 

check on runway performance and make sure that 

surfaces are properly maintained. We suggest an 

innovative real-time automated runway safety 

monitoring system designed to mitigate potential 

hazards through video analysis. The key 

contributions of our work are outlined below: 

Using a time-series analysis methodology, we 

leverage the improved chameleon swarm 

optimization (ICSO) algorithm to extract crucial 

runway surface characteristics from live video 

feeds captured by UAVs. We implement the fuzzy 

reinforced polynomial neural network (FR-PNN) 

for the identification of risks associated with 

runway surface conditions. This automated 

detection capability enhances safety measures 

during aircraft landings by promptly identifying 

and alerting operators to potential safety concerns. 

To validate the efficacy of our proposed system, we 

conduct real-time testing using video data collected 

from Bechyne Military Airport, situated in southern 

Bohemia. Through this validation process, we 
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assess the system's performance under real-world 

conditions, ensuring its reliability and effectiveness 

in enhancing runway safety. 

The rest of this paper is organized as follows. In 

Section 2, we present a thorough review of the 

existing literature concerning the real-time 

automated runway safety monitoring system. 

Section 3 delves into the research methodologies 

and principles employed in this study, including the 

VR based video analysis. Moving forward, Section 

4 conducts comparative analysis and provides a 

comprehensive assessment of the prediction 

outcomes using various metrics. In Section 5, the 

conclusions and expectations of this research are 

discussed. 

 

2. Literature Review  

 
2.1 State-of-art studies  

Li et al. 2023 [21] propose the interpretable model, 

IMTCN, predicts flight safety occurrences based on 

flight data with high interpretability to address the 

aviation industry's important flight safety issue. 

IMTCN uses numerous TCNs to collect local 

representations and protracted effective histories 

from varied multivariate flight data for multi-scale 

time series categorization. Integrating CAM with 

TCNs improves model interpretability by 

identifying flight characteristics and moments that 

cause safety issues. IMTCN outperforms baseline 

approaches in exceedance classification and safety 

incident prediction on an actual database of 37,943 

Airbus A320 aircraft flights, and case studies show 

its exceptional interpretability for flight safety 

analysis. IMTCN improves flight safety prediction 

methods by combining accuracy and 

interpretability, giving aviation stakeholders 

actionable insights. 

Farhadmanesh et al. 2023 [22] tackle the issue of 

flight operations recording at most U.S. airports 

without control towers. The specialists made an 

electronic video-based observing framework to 

identify general flying airplane leaving and score 

tasks at non-transcended air terminals. The 

framework has three modules: airplane ID, 

following, and exercises count and grouping. The 

specialists advanced camera arrangements and 

utilized state of the art AI and profound learning 

ways to deal with remove direction data required 

for activities count and classification. The 

framework performed well at five non-transcended 

air terminals, with an accuracy of 95%. Deep-

neural-network-based aircraft detector and image-

correlation-based aircraft tracker ensured high 

accuracy and real-time implementation, essential 

for flight surveillance and management at non-

towered airports. 

Sun et al. 2023 [23] proposed an Intelligent 

monitoring systems, notably in airport security, are 

essential for risk the avoidance and management in 

civil aviation. High-resolution video surveillance 

systems cover huge airport regions, but the volume 

of security footage makes manually monitoring and 

real-time tracking difficult. Utilizing AI to 

recognize dangerous signs in security films and 

give constant early admonitions is pivotal for 

brilliant air terminal observing. This study depicts a 

savvy observation framework for air terminal 

security that utilizes the Just go for it calculation to 

distinguish unapproved targets. This exploration 

gives a specialized premise to the air terminal's 

modern observation stage, upgrading air terminal 

security tasks' capacity to rapidly distinguish and 

moderate dangers.  

Jin et al. 2024 [24] mentioned A-CDM uses flight 

support node information as a main data source to 

improve airport operational efficiency. Traditional 

manual node information collection methods are 

inefficient due to accuracy as well as speed issues. 

Some ground-based operation data is inaccessible 

automatically. This work suggests A-CDM time 

node collecting via a video analytics service system 

to address this issue. The paper describes the 

algorithm repository's technologies, components, 

implementation, and future implications. This 

technology automates the gathering of landmark 

event dates and times during flight airport 

turnaround times to circumvent manual gathering 

of information limitations and enable smart airport 

growth that benefits airports economically and 

socially. 

Soriano et al. 2023 [25] mention in educational 

research, user-simulation interaction is becoming 

increasingly important, especially in simulation-

based instruction and technology that is immersive. 

Manual instantaneous evaluation or post-event 

video analysis is laborious and subjective ways to 

investigate such interactions. Surveys and 

questionnaires are widespread yet provide 

qualitative data. EDUSIM analyzes screen-recorded 

videos of participants interacting with virtual 

environments to provide empirical information on 

their interaction patterns in preset locations. 

EDUSIM automates navigation data extraction 

using multiple classifications Convolutional Neural 

Networks and a model that uses binary 

classification to recognize poor input video data. In 

immersive simulation-based instructional 

components in an undergraduate database course, 

the tool is tested. EDUSIM analyzes screen records 

and compares them to manual video analysis. 

EDUSIM shows its potential to expedite user-
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simulation interaction analysis, making simulation-

based learning environment educational research 

more efficient and objective. 

Han et al. 2024 [26] discuss how current deep-

learning classifiers fail to recognize rogue drones, 

particularly those that blend into the backdrop or 

operate in low light, which threaten vital 

infrastructures. The authors offer RANGO, a drone 

recognition algorithm that can recognize drones 

even in difficult to distinguish target from 

background settings. After PREP, RANGO uses 

various convolution kernels to determine drone 

presence. RANGO outperforms other methods on a 

broad dataset of birds and planes. RANGO 

outperforms YOLOv5 by 6.6% on photos with 

concealed drones and by 2.2% on ordinary datasets, 

proving its efficacy in both difficult and broad 

settings. RANGO's revolutionary drone detection 

method improves critical infrastructure security. 

Balasubramanian et al. 2023 [27] to stop the spread 

of COVID-19, mask-wearing has become essential. 

The widespread use of masks makes it difficult for 

surveillance and safety systems to identify those 

wearing them. The solutions use ResNet152V2 and 

VGG16 architectures to monitor still photos and 

live video streams in real time. Real-time face 

detection using OpenCV ensures mask placement 

across the nose, mouth, and chin. ResNet152V2 

detects faces robustly, whereas a head-based 

classification algorithm separates masked and 

unmasked faces. To improve video stream 

performance, computer vision is used. The 

ResNet152V2 model performs well in mask 

identification tasks, with reliability, precision, and 

F1-score rates of 99.1%, 99.2%, and 99.1%, 

respectively. 

Ran et al. 2023 [28] proposed Airport flight 

turnarounds depend on accurately recording the 

beginning and end times of each node to meet 

established timeframes and streamline following 

flight tasks. Manual turnaround node time 

recording has proven inefficient and limited data 

organization and display. The approach improves 

the model's accuracy and inference speed using 

YOLOv5s-based detection network with attention 

methods and Faster Net as the backbone. Dual-

perspective coordinating for aircraft places, 

adaptive concealment, and other methods allow the 

system to make logical node status decisions. The 

proposed detection network outperforms baseline 

approaches with a 20fps inference time and 0.08 

mAP@.5:.95 detection accuracy on a self-built 

apron dataset. The technique reduces average node 

time error by 60–120 seconds compared to human 

methods, improving airport flight turnaround 

efficiency. Li et al. 2023 [29] in the work mention 

Pilot behavior is crucial to flight safety analysis. 

Many studies of dangerous incidents, such runway 

overruns, fail to quantify pilot behavior's impact on 

flight safety. The study recovers pilot behavioral 

trends from pilot operational information using 

time series clustering. A case study shows three 

pilot behavioral features in the selected fleet, 

principally variations in pilot response time post-

VR and control column input speed. Real flight 

information across airline settings is used to add 

pilot behavior traits, improving risk assessments for 

other dangerous incidents including hard landings 

and tail impacts. 

Zhao et al. 2023 [30] proposed during arrival and 

landing maneuvers, the Navaid lighting system is 

crucial to aircraft flight safety. Maintaining its 

flawless operation is crucial to aircraft landing and 

taking off safety. However, the civil aviation 

industry's growing demands have outpaced manual 

Navaid lighting inspection procedures. Thus, 

automating Navaid lighting equipment monitoring 

is essential for system reliability. Data mining 

algorithms are used to design, develop, and 

implement a runway Navaid lighting monitoring 

system. To ensure safety, the NAV light tracking 

system monitors all airport lights, detecting any 

unusual light patterns or variations that may 

indicate navigation light difficulties. This proactive 

approach allows airport officials to quickly handle 

emergent issues before they worsen, preventing 

accidents. The design phase includes software 

development for this monitoring system to 

strengthen Navaid lighting systems and ensure 

flight safety. 

 

2.2 Problem description 

 

A real-time automatic monitoring is crucial for 

ensuring the safety of aircraft landings. This system 

provides continuous surveillance of runway 

conditions, allowing for early detection and 

mitigation of potential safety hazards. By 

employing video analysis algorithms, various 

runway surface characteristics and risks can be 

swiftly identified, such as debris, wildlife intrusion, 

or surface anomalies. This proactive approach 

enables immediate action to be taken to prevent 

accidents. Additionally, the system can adapt to 

dynamic changes in runway conditions, such as 

weather fluctuations or human interference, 

ensuring that safety measures remain effective at all 

times. Automation of the monitoring process 

reduces reliance on manual inspections, providing 

consistent and reliable safety oversight without 

human intervention. The data collected from 

runway surveillance cameras allows for informed 

decision-making regarding maintenance, repairs, 

and safety protocols, in compliance with aviation 
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regulations. In Maslan et al. [31] concentrated on a 

safe aviation travel, it is imperative that distress on 

an airport pavement be promptly detected and 

recognized. Because of its vastness, an actual 

physical check of the airport maneuvering zones is 

conducted on a regular basis for this reason, which 

could take some time. Among the contemporary 

methods for UAV footage combined with 

automated assessment expedites this process. The 

dataset for the preparation, approval, and testing of 

a Yolov2 object indicator was made utilizing the 

ethereal picture information that were gathered 

during airplane at the predetermined elevation over 

the runway and handled utilizing business multi-

view remaking programming.  

The effectiveness of a real-time monitoring system 

heavily relies on the quality of images or video 

frames captured by surveillance cameras. Poor 

lighting conditions, inclement weather, or camera 

malfunctions can result in blurry or distorted 

images. These visual impairments make it 

challenging for the system to accurately identify 

runway hazards, as important details may be 

obscured or indiscernible. The high dimensionality 

of data generated by runway surveillance cameras 

poses challenges for real-time processing and 

analysis. Processing large volumes of image or 

video data in real-time requires significant 

computational resources and may lead to delays or 

inefficiencies. Additionally, managing massive 

amounts of data can be resource-intensive, 

necessitating sophisticated data management 

techniques. Conversely, false negatives or missed 

detections can also pose significant risks to runway 

safety. If the monitoring system fails to identify 

actual hazards or anomalies, it may result in 

undetected safety threats and potential accidents 

during aircraft landings. Reducing the false alarm 

rate requires continuous system optimization and 

algorithm refinement. In order to avoid mishaps 

and problems during the landing phase of flights, 

the aviation industry must prioritize the safety of 

runways while guaranteeing safe landings. But 

most analyses of hazardous events such as cracks in 

the runway or inadequate friction and do not 

quantify to what extent of impact they contribute to 

landing flight safety. As per airport pavement 

management systems (APMS), the condition of a 

runway is vital in ensuring an aircraft's operational 

safety while taking off and landing. The subsequent 

research aims utilized to solve major challenges 

compiled from literature review by concentrating 

on quality improvement, accuracy in feature 

extraction, efficient processing of data, and 

minimizing false alarms. Design algorithms and 

methods for improving the visual quality and 

resolution of images from surveillance cameras in 

different environmental conditions, such as low 

illumination, poor weather, and occlusion. 

2.Investigate advanced computer vision and image 

processing methods to improve the accuracy and 

robustness of feature extraction from runway 

surveillance images, considering complex 

backgrounds, occlusions, and noise. 

3.Design effective data processing methods and 

algorithms to manage the high dimensionality of 

image and video data produced by runway 

surveillance cameras in real-time with minimal 

computational overhead and resource usage. 

4.Explore novel ML and anomaly detection 

approaches to reduce false positive and false alarm 

rates in runway safety monitoring systems, ensuring 

reliable detection of actual hazards while 

minimizing unnecessary alerts and alarms. 

 

3. Proposed methodology 
 

The system architecture of the proposed real-time 

automatic monitoring system for runway risk 

detection is depicted in figure 1. Our suggested 

approach involves several steps to develop this 

system for enhancing runway safety through video 

analysis. Initially, video data is collected from 

runway cameras, followed by preprocessing to 

enhance its quality. Later on, computer vision 

algorithms are employed to detect and track 

different objects on the runway, including 

automobiles, aircraft, and other appropriate entities. 

At the same time, the system assesses the runway 

conditions by classifying and examining surface 

features, including wetness, dryness, or icy 

surfaces. Additionally, the system monitors the 

paths of identified objects and alerts in the event of 

any violation of safety rules, including runway 

incursions or possible crashes. It also provides 

decision support and risk assessment scores to 

pilots and air traffic controllers, aiding them in 

making informed decisions. The correctness of the 

system is rigorously tested, and seamlessly 

integrated with the existing air traffic management 

infrastructure. Additionally, the system analyzes the 

details of the runway captured in the video data to 

identify potential risks. A time-series analysis 

method, employing the improved chameleon swarm 

optimization (ICSO) algorithm, is employed to 

extract runway surface properties from the real-

time video data obtained via UAVs. Subsequently, 

the fuzzy reinforced polynomial neural network 

(FR-PNN) is introduced to identify hazards in the 

runway surface properties effectively. This 

automated observation system aims to enhance the 

safety of airplane landings by promptly identifying 

and addressing potential risks present on the 

runway. 
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Figure 1. Proposed real-time automatic monitoring system for runway risk detection 

 

3.1 Mine runway surface characteristics using 

ICSO algorithm  

 

In our proposal, we propose to use improved 

chameleon swarm optimization (ICSO) for time-

series analysis within a video mining framework 

collected from UAV-based real-time videos for 

runway surface characteristics. In fact, ICSO is a 

metaheuristic optimization approach that mimics 

the social behaviour of chameleons where 

parameters are varied adaptively by exploring the 

dynamic search space. By employing the ICSO 

algorithm for runway surface characterization, we 

aim to accurately capture the diverse attributes of 

the runway, including texture, roughness, moisture 

levels, and other relevant features. It enables us to 

create a comprehensive representation of the 

runway's condition over time, which is crucial for 

assessing its safety and suitability for aircraft 

operations. For a d-layered search space, every 

chameleon addresses an answer for the issue, so in 

the event that we call n competitor arrangements, 

we can characterize a n×d-layered two-layered y-

lattice as the chameleon populace. We characterize 

it as h vector as follows. 

 h

cs

h

s

h

s

h

s qqqq ,2,1, ,...,     (1) 

where h= 1, 2, 3. . , b, and s are valid iterations 
h

csq ,

specifying the position in the dth dimension. A 

numerical model for enhancing the way of 
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behaving and headway of chameleons while 

looking for food can be introduced as follows. 
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Here, is the new place of the h-th chameleon in the 

g-th aspect of the emphasis step. . addresses the 

best position involved by the jth size chameleon in 

the tth emphasis circle.  addresses the worldwide 

best situation in the gth aspect arrived at by any 

chameleon in the sth emphasis.  also, , two positive 

numbers control the strength of the test, , and , 

similarly dispersed arbitrary numbers somewhere in 

the range of 0 and 1. The , a uniform irregular 

number filed from 0 to 1. Sgn (rand - 0.5) 

influences the course of the hunt, can be either 1 or 

−1. µ is characterized as the iterative minimization 

capability of chameleons that quit going after and 

hunting when they are nearest to prey. 
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where 
gh

sV ,

1 addresses the new speed of the 

chameleon in j. In cycle, size s + 1 addresses the 

ongoing rate of
gh

sV ,
 . 

gh

sV , addresses the ongoing 

place of the chameleon in the s-th aspect.
 

gh

sX ,
 is 

the ongoing chameleon's most popular position and 

is the most popular circular position at any point 

known to chameleons,
 

gh

sX ,
 is the ongoing 

chameleon's most popular position and is the best 

worldwide position at any point known to 

chameleons, and are the two positive constants 

controlling the impact of and falls while 

chameleon's tongue, and are two arbitrary numbers, 

circulated in the reach 0 to 1 and ω is the idleness 

gauge.  

The communicated in the prey a piece of the 

chameleons addresses the place of the chameleons 

in the subsequent cycle. In the event that we add the 

change referenced above to this part, the turn grids 

on the applicable hub are communicated with R. 

 gh

sqrV ,,      (4) 

Here the turn network in V is addressed and 

characterized as a numerical model as follows. 

180)5.0(sgn  randR    (5) 

where R is an irregular number produced in the 

reach 0 to 1. The weight coefficients ( −2) of the 

estimation capabilities are likewise remembered for 

the goal capability matches as an item. The goal 

capability pair adjusted from the power model is 

characterized as follows. 
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Adjusted from the remarkable model, the goal 

capability pair is characterized as follows: 
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The sets of goal capabilities adjusted from the 

Fourier model is characterized as follows: 

 
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B
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 


B

h hTWdof
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where h= 1, 2, . . . , 4 each addresses a 

reverberation recurrence. Notwithstanding every 

one of these, 2 different expense capabilities have 

been characterized. The first of these is acquired by 

gathering the 2 decided objective capability 

matches inside itself and is characterized as 

follows. 

3,2,1cos 211  gofofs gg   (12) 

The subsequent expense capability is characterized 

as continues to look at the goal capabilities on a 

typical premise. 








B

h hh

h
T

Wd

ydirectivit

Wd
s

1

21
2 4,....2,1,

11
cos

(13) 

The integration of the ICSO algorithm within our 

time-series analysis framework provides a robust 

and sound process for the extraction of runway 

surface characteristics from live video streams. This 

enables us to infer useful information regarding the 
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runway's state and ultimately contribute to 

enhanced aviation safety and operational 

effectiveness. 

3.2 Detect risks in runway surface 

characteristics 

In our methodology, we employ the fuzzy 

reinforced polynomial neural network (FR-PNN) to 

efficiently identify risks related to runway surface 

features. The FR-PNN is an advanced 

computational model that integrates aspects of 

fuzzy logic and neural networks to process complex 

and uncertain patterns of data. The FR-PNN works 

by applying a set of fuzzy rules to understand the 

input data, which is inherently uncertain and can 

contain imprecise information. These fuzzy rules 

enable the FR-PNN to capture the intricate 

relationships between various runway surface 

features and the corresponding risks, considering 

the inherent uncertainties and variability in the data. 

The FR-PNN also employs polynomial neural 

network architectures, which offer the ability to 

capture nonlinear relationships and interactions 

between various input features. This allows the 

model to learn efficiently from the data and make 

accurate predictions about the presence of risks on 

the runway surface. The proposed FRPNs that 

comprise of estimate part (AP) and remuneration 

part (CP) emerge as original HPs. FRPNNs are 

basically summed up polynomial brain network 

design with HPs. Straight model is for the most part 

acknowledged by utilizing the information come 

from dataset for predication at delays h, where . M 

straight AR model can be communicated as 

follows. 

h

sxs

h

xs

h

s

h

h pcpcpcI   ....2211  (14) 

where hI signifies the result of AR, 
h

x

hh ccc ...., 21

address coefficients of AR,
 

h

s  and represents the 

lingering of AR. For accommodation, the 

contributions at the ongoing time t of nonlinear 

model are registered in light of the past assessment 

blunders  asss EEE  ,...., 21
, where 











d

h h

h

s

d

h h

ss

z

Ilhz
pE

1

1
)( 

  (15) 

Here c addresses the quantity of neurons of 

nonlinear models, wi indicates the ith weight of 

past assessment mistake. The Gaussian capability is 

)( p
 
portrayed as follows: 





















 


2

2

1
)(






p
Expp   (16) 

where  ,, and uncommon the modular and spread 

upsides of the capability. Given 





p
s ,, a 

Mexican cap wavelet capability is )(s

communicated in the accompanying manner: 








 


2
exp)21(

||

1
)(

2
2 s

s
m

s  (17) 

Where an is the boundary of the wavelet brain 

organization .According to the viewpoint of 

capability estimation, fluffy rule based models 

partitioned into non-added substance rule models 

and added substance rule models. TSK fluffy 

models can be viewed as a bunch of fluffy 

principles communicated as follows. 

),(: qpFwthenNisqandMispifr gg

g 

(18) 

where 
gr addresses the g-th fluffy rule of fluffy 

models, M and N are fluffy sets in the reason part,
 

),( qpFw gg   and is numeric capability. 

In many cases, ),( qpFg is a linear function of the 

input variables. The output ),...,( 21 ipppF of the 

polynomial neural networks is described as follows.  

   
     


i

h
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i

h

i

h

i

g

i

K

KghhgKghghhh pppcppcpccpppF
1 1 1 1 1 1

,0321 ....),,(

  (19) 

where 0c , 
ic , ghc , , hgKc are polynomial 

coefficients. The FR-PNN comprises of two 

sections, specifically AP and CP. 

),,( 21 isss pppP 
Here is the first information 

coming from the preparation information and 

testing information. 

The estimate part is acknowledged by utilizing 

straight neurons. Expect that for the info 

),,( 21 isss pppP 
information the result of the AP 

can be determined by a direct capability 

communicated as 

xsxss pcpcpccl   ....12110
 (20) 
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where L signifies the result of AP while 
0c , 

ic , 

ghc , , hgKc , are its coefficients. The remuneration 

part comprises of three units, specifically info, 

reason, and outcome unit. Regarding the 

information unit, the data sources are connected 

with the result of the AP. the contributions at the 

ongoing time t are registered in view of the past 

assessment blunders isss EEE  ,, 21
,  , where 








d

h h

d

h ih

ss

z

Iz
pE

1

1    (21) 

Regarding the reason unit, it is developed in light of 

chosen input factors utilizing fluffy parcel 

acknowledged by fluffy c-implies (FCM) bunching 

technique. Concerning the outcome unit, there 

exists three sources of info:  isss EEEe  ,, 21
, 

g  and g . The initial two boundaries and . can 

be gotten from the reason unit, while the vector 

comes from the information unit. In the plan of the 

outcome unit, two sorts of nonlinear capabilities 

can be utilized. Spiral Premise Capabilities 

(Gaussian capability) can be taken on as the 

acknowledgment of the enrollment capability of the 

secret neurons. For this situation, the outflow of RN 

capability peruses as follows: 
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where gB means the Gaussian capability, g  and 

g The represent the particular place (mean) and 

spread of gB , individually. Wavelet based 

nonlinear capabilities are utilized as the 

participation capability. For this situation, the result 

of the WN capability is shaped as: 



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where m is the boundaries of the wavelet brain 

organization, g  and g  represent the separate 

place (mean) and spread, individually. Concerning 

the result unit, the result carries out a weighted 

amount of the result coming from stowed away 

layer. An overall CP is communicated as the 

accompanying fluffy guidelines: 





d

h

hhhh

h pBzwthenMclusterinispifr
1

)(ˆ:

 (24) 

where
hr the g-th fluffy rule,

 hM  is the g-th bunch, 

d is the quantity of groups (fluffy standards), 
hŵ is 

a weighted amount of the result of the h-th 

capability, and hz is the enrollment of the h-th 

fluffy rule registered by FCM. 

4. Results and Discussions 
 

In this study, we present the findings and analysis 

of our proposed monitoring system alongside 

existing systems using test video datasets sourced 

from Bechyne military airport in southern Bohemia. 

Our design of the ICSO+FR-PNN system is 

conducted in Matlab, a programming language and 

numeric computing environment. We compare the 

performance of our proposed ICSO+FR-PNN 

system with several existing systems, including R-

CNN, Faster R-CNN, SSD, YOLO9000, YOLOv2, 

YOLOv3, YOLOv4, YOLOv5, and YOLOv6. The 

comparison is based on various metrics such as 

accuracy, precision, sensitivity, specificity, and F-

measure, allowing for a comprehensive evaluation 

of performance across different criteria. 

 

4.1 Dataset description 

 

The previous military air terminal Bechyne, 

arranged in southern Bohemia, Czech Republic, 

was picked as the essential hotspot for gathering 

picture information for the pain data set. The 

runway made out of cement, ranges 2400 meters 

long and 60 meters in width. Table 1 describes the 

dataset description. Following its closure for air 

traffic in 1993, including the cessation of regular 

maintenance, the airport became conducive to the 

gradual development of distresses. Unlike 

operational airports with established continuous 

maintenance systems, distress occurrences at 

Bechyne were more prevalent, making it an ideal 

candidate for generating the image database. For 

UAV flights, airspace leeway was gotten through 

the tactical part of the airspace the board cell 

(AMC) of the Czech Republic, and warnings were 

scattered by means of Notice to Pilot (NOTAM). 

The held airspace block enveloped a rectangular 

region estimating 2400 meters long and 450 meters 

in width, with vertical expansions to 91 meters (300 

feet) over the ground level (AGL), consolidating 

the runway, runway framework, and unpaved 

regions. The runway was partitioned into four 

segments, with each part including a set number of 



V. Thamilarasi , R. Hema, A. Noble Mary Juliet, Adlin Sheeba, Gauri Ghule, A. Raja / IJCESEN 11-1(2025)1314-1329 

 

1323 

 

pictures: the principal area had 383 pictures, the 

second had 391, the third had 393, and the fourth 

had 394. These pictures went through a progression 

of handling steps. At first, picture arrangement was 

performed to make a meager point cloud, with 

settings adapted to low exactness, conventional pre-

choice empowered, central issue and tie point limits 

set, and versatile camera model fitting enacted. 

Consequently, the runway orthomosaic from the 

first to the third segments, produced utilizing 

Agisoft Metashape, was isolated into 224×224 

picture blocks. Each block was classified as certain 

(containing a break) or negative (no break). 

Positive blocks highlighting longitudinal breaks 

went through expansion, including revolution by 90 

degrees, and flat and vertical flipping, to grow the 

picture data set. Thusly, the dataset involved 3279 

pictures, each containing at least one cross over 

breaks. The test tests from dataset are displayed in 

Figure 2. 
Table 1. Summary of dataset 

Class Normal 

runway 

Abnormal 

runway 

Total 

samples 

Training  1500 1000 2500 

Testing 500 293 793 

Total 

samples 

2000 1293 3293 

 

Figure 2. Test samples from dataset 

4.2 Detection accuracy analysis 

The table 2 presents the accuracy comparison of 

various systems for runway monitoring across 

different epochs. Initially, the R-CNN system starts 

with an accuracy of 63.705% at epoch 20 and 

gradually increases to 64.195% by epoch 100. 

Similarly, the Faster R-CNN system exhibits a 

slight improvement from 67.364% to 67.854% over 

the same epochs. Moving forward, the SSD system 

shows a more noticeable increase in accuracy from 

71.023% to 71.513%. The YOLO series, including 

YOLO9000, YOLOv2, YOLOv3, YOLOv4, 

YOLOv5, and YOLOv6, consistently show 

significant improvements in accuracy with each 

epoch. For instance, YOLOv6 achieves the highest 

accuracy of 92.976% at epoch 20, steadily rising to 

93.466% by epoch 100. In comparison, the 

proposed ICSO+FR-PNN system surpasses all 

other systems in terms of accuracy across all 

epochs. It begins with an impressive accuracy of 

96.635% at epoch 20 and continues to improve 

steadily, reaching 97.125% by epoch 100. This 

represents a considerable advancement over 

existing techniques, demonstrating the effectiveness 

of the integrated approach utilizing the ICSO 

algorithm for feature mining and the FR-PNN 

model for risk detection. Overall, the results from 

Figure 3 highlight the superior performance of the 

proposed ICSO+FR-PNN system, shows a 

significant increase in accuracy compared to 

existing systems.  

4.3 Precision analysis 

Table 3 presents the precision comparison of 

various systems for runway monitoring across 

different epochs. Initially, the R-CNN system 

exhibits a precision of 62.034% at epoch 20, which 

gradually increases to 62.811% by epoch 100. 

Similarly, the Faster R-CNN system demonstrates 

incremental precision improvements from 65.723% 

to 66.500% over the same epochs. The SSD system 

follows a similar trend, with precision rising from 

69.412% to 70.189%. Moving on to the YOLO 

series, including YOLO9000, YOLOv2, YOLOv3, 

YOLOv4, YOLOv5, and YOLOv6, each system 

consistently improves precision with each epoch. 

For instance, YOLOv6 achieves a precision of 

91.546% at epoch 20, steadily increasing to 

92.323% by epoch 100. In comparison, the 

proposed ICSO+FR-PNN system outperforms all 

other systems in terms of precision across all 

epochs. It starts with a precision of 95.235% at 

epoch 20 and continues to improve steadily, 

reaching 96.012% by epoch 100. This signifies a 

significant percentage-wise increase in precision 

compared to existing techniques, highlighting the 

effectiveness of the integrated approach utilizing 

the ICSO algorithm for feature mining and the FR-

PNN model for risk detection. Overall, the results 

from Figure 4 demonstrate the superior precision 

achieved by the proposed ICSO+FR-PNN system, 

indicating its potential for enhancing runway 

monitoring accuracy and ensuring the safety of 

aircraft operations. 
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Figure 3. Accuracy results of various systems for runway monitoring 

 

 
Figure 4. Precision results of various systems for runway monitoring 

 

 

Figure 5. Sensitivity results of various systems for runway monitoring 

Table 2 Accuracy comparison of various systems for runway monitoring 

Runway monitoring 

system  

Epoch 

20 40 60 80 100 

R-CNN 63.705 63.824 63.859 64.091 64.195 

Faster R-CNN 67.364 67.483 67.518 67.750 67.854 

SSD 71.023 71.142 71.177 71.409 71.513 

YOLO9000 74.682 74.801 74.836 75.068 75.172 

YOLOv2 78.341 78.460 78.495 78.727 78.831 

YOLOv3 81.999 82.118 82.153 82.385 82.489 

YOLOv4 85.658 85.777 85.812 86.044 86.148 

YOLOv5 89.317 89.436 89.471 89.703 89.807 

YOLOv6 92.976 93.095 93.130 93.362 93.466 

ICSO+FR-PNN  96.635 96.754 96.789 97.021 97.125 
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Table 3. Precision comparison of various systems for runway monitoring 

Runway 

monitoring system  

Epoch 

20 40 60 80 100 

R-CNN 62.034 62.441 62.583 62.785 62.811 

Faster R-CNN 65.723 66.130 66.272 66.474 66.500 

SSD 69.412 69.819 69.961 70.163 70.189 

YOLO9000 73.101 73.508 73.650 73.852 73.878 

YOLOv2 76.790 77.197 77.339 77.541 77.567 

YOLOv3 80.479 80.886 81.028 81.230 81.256 

YOLOv4 84.168 84.575 84.717 84.919 84.945 

YOLOv5 87.857 88.264 88.406 88.608 88.634 

YOLOv6 91.546 91.953 92.095 92.297 92.323 

ICSO+FR-PNN  95.235 95.642 95.784 95.986 96.012 

Table 4. Sensitivity comparison of various systems for runway monitoring 

Runway monitoring 

system  

Epoch 

20 40 60 80 100 

R-CNN 80.515 80.545 80.678 80.758 80.831 

Faster R-CNN 82.078 82.108 82.241 82.321 82.394 

SSD 83.641 83.671 83.804 83.884 83.957 

YOLO9000 85.204 85.234 85.367 85.447 85.520 

YOLOv2 86.767 86.797 86.930 87.010 87.083 

YOLOv3 88.330 88.360 88.493 88.573 88.646 

YOLOv4 89.893 89.923 90.056 90.136 90.209 

YOLOv5 91.456 91.486 91.619 91.699 91.772 

YOLOv6 93.019 93.049 93.182 93.262 93.335 

ICSO+FR-PNN  94.582 94.612 94.745 94.825 94.898 

Table 5. Specificity comparison of various systems for runway monitoring 

Runway monitoring 

system  

Epoch 

20 40 60 80 100 

     

R-CNN 70.524 70.558 70.638 70.744 70.858 

Faster R-CNN 73.084 73.118 73.198 73.304 73.418 

SSD 75.644 75.678 75.758 75.864 75.978 

YOLO9000 78.204 78.238 78.318 78.424 78.538 

YOLOv2 80.764 80.798 80.878 80.984 81.098 

YOLOv3 83.324 83.358 83.438 83.544 83.658 

YOLOv4 85.884 85.918 85.998 86.104 86.218 

YOLOv5 88.444 88.478 88.558 88.664 88.778 

YOLOv6 91.004 91.038 91.118 91.224 91.338 

ICSO+FR-PNN  93.564 93.598 93.678 93.784 93.898 
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Figure 6. Specificity results of various systems for runway monitoring 

Table 6. F-measure comparison of various systems for runway monitoring 

Runway 

monitoring 

system  

Epoch 

20 40 60 80 100 

R-CNN 70.077 70.347 70.488 70.646 70.691 

Faster R-CNN 72.996 73.258 73.398 73.554 73.599 

SSD 75.865 76.120 76.259 76.412 76.458 

YOLO9000 78.690 78.938 79.077 79.228 79.274 

YOLOv2 81.474 81.716 81.855 82.003 82.050 

YOLOv3 84.222 84.458 84.596 84.743 84.790 

YOLOv4 86.936 87.167 87.305 87.450 87.498 

YOLOv5 89.620 89.846 89.984 90.127 90.176 

YOLOv6 92.277 92.498 92.635 92.777 92.826 

ICSO+FR-PNN  94.907 95.124 95.262 95.402 95.452 

 

 
Figure 7. F-measure results of various systems for runway monitoring 

 

 

4.4 Sensitivity analysis 

Table 4 presents a sensitivity comparison of 

different systems for runway monitoring over 

different epochs. The R-CNN system begins with a 

sensitivity of 80.515% at epoch 20, with slight 

variations before reaching 80.831% at epoch 100. 

Likewise, the Faster R-CNN system shows a 

gradual rise in sensitivity from 82.078% to 

82.394% over the epochs. The SSD system shows a 

steady increase in sensitivity, rising from 83.641% 

to 83.957% over the epochs. Proceeding to the 

YOLO series, each system shows a steady rise in 

sensitivity with each epoch. For example, YOLOv6 

reaches a sensitivity of 93.019% at epoch 20, 

steadily rising to 93.335% at epoch 100. In contrast, 

the proposed ICSO+FR-PNN system consistently 

performs better than other systems in terms of 

sensitivity at all epochs. It begins with a sensitivity 

of 94.582% at epoch 20 and continues on an 

upward trend, reaching 94.898% at epoch 100. This 

is a significant rise in sensitivity over existing 

methods, highlighting the efficacy of the integrated 

approach using the ICSO algorithm and FR-PNN 

model. Overall, the results of Figure 5 emphasize 

the higher sensitivity of the proposed ICSO+FR-
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PNN system, reflecting its potential for improving 

the detection performance of runway monitoring 

systems and ensuring the safety of aircraft 

operations. 

4.5 Specificity analysis 

Table 5 presents a specificity comparison of various 

systems for runway monitoring across different 

epochs. Starting with the R-CNN system, it begins 

with a specificity of 70.524% at epoch 20, 

gradually increasing to 70.858% by epoch 100. 

Similarly, the Faster R-CNN system shows a 

consistent rise in specificity, progressing from 

73.084% to 73.418% across the epochs. Moving to 

the SSD system, there is a steady increase in 

specificity, with values ranging from 75.644% to 

75.978% across the epochs. The YOLO series also 

demonstrates a notable increase in specificity with 

each epoch, with YOLOv6 reaching 91.004% at 

epoch 20 and climbing to 91.338% by epoch 100. 

In comparison, our ICSO+FR-PNN system 

consistently outperforms other systems in terms of 

specificity across all epochs. It starts with a 

specificity of 93.564% at epoch 20 and maintains 

an upward trend, reaching 93.898% by epoch 100. 

This represents a significant increase in specificity 

compared to existing techniques, highlighting the 

effectiveness of the integrated approach utilizing 

the ICSO algorithm and FR-PNN model. Overall, 

the results from Figure 6 underscore the superior 

specificity achieved by the proposed ICSO+FR-

PNN system, indicating its potential for enhancing 

the accuracy of runway monitoring systems and 

reducing false alarms, thereby contributing to 

improved aviation safety. 

4.6 F-measure analysis 

Table 6 presents the F-measure comparison of 

various systems for runway monitoring across 

different epochs. Starting with the R-CNN system, 

it begins with an F-measure of 70.077% at epoch 

20, gradually increasing to 70.691% by epoch 100. 

Similarly, the Faster R-CNN system shows a 

consistent rise in F-measure, progressing from 

72.996% to 73.599% across the epochs. Moving to 

the SSD system, there is a steady increase in F-

measure, with values ranging from 75.865% to 

76.458% across the epochs. The YOLO series also 

demonstrates a notable increase in F-measure with 

each epoch, with YOLOv6 reaching 92.277% at 

epoch 20 and climbing to 92.826% by epoch 100. 

In comparison, our ICSO+FR-PNN system 

consistently outperforms other systems in terms of 

F-measure across all epochs. It starts with an F-

measure of 94.907% at epoch 20 and maintains an 

upward trend, reaching 95.452% by epoch 100. 

This represents a significant percentage-wise 

increase in F-measure compared to existing 

techniques, highlighting the effectiveness of the 

integrated approach utilizing the ICSO algorithm 

and FR-PNN model. Overall, the results from 

Figure 7 underscore the superior F-measure 

achieved by the proposed ICSO+FR-PNN system, 

indicating its potential for enhancing the overall 

performance and reliability of runway monitoring 

systems, thereby contributing to improved aviation 

safety. 

5. Conclusion 

Our study introduces a real-time automatic 

monitoring system designed for enhancing runway 

safety through video analysis. Leveraging a time-

series analysis methodology, we employ the 

improved chameleon swarm optimization (ICSO) 

algorithm to extract essential runway surface 

characteristics from live video data captured by 

UAVs. Subsequently, we utilize the fuzzy 

reinforced polynomial neural network (FR-PNN) to 

identify potential risks associated with runway 

surface conditions, thereby facilitating automated 

monitoring to bolster the safety of aircraft landings. 

To evaluate the effectiveness of our proposed 

system, we conduct validation tests using real-time 

videos acquired from Bechyne military airport in 

southern Bohemia. Our findings reveal that the 

ICSO+FR-PNN model achieves an impressive 

average accuracy of approximately 96.865%. This 

surpasses the maximum average accuracy attained 

by existing techniques, which stands at 

approximately 93.206%. Consequently, our 

approach demonstrates a significant improvement 

of approximately 3.93% over current methods, 

highlighting its superior efficacy in accurately 

monitoring runways for potential risks and hazards. 

Video Analysis is used in litrrature for some 

applications [32-34]. 
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