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Abstract:  
 

The Model equation for the laser heating process is a two dimensional partial 

differential equation in cylindrical coordinate that is time dependent and involves 

a source term. This work presents a sequential method in obtaining solution to 

the laser heat equation using a unique method of solution known as Finite 

Element Method; a numerical approach as against the analytical method. The 

approach was used in analyzing the temperature of the irradiated material within 

the domain of the material. This was done by multiplying the model differential 

equation by a weighted function and carrying out integration over the domain of 

the problem to obtain the weak form of the equation. Triangular and rectangular 

Langrage interpolation functions were used for the spatial discretization and 

Alpha family of approximation was used for the time approximation. The domain 

of the problem was discretized manually using eight triangular and 4 rectangular 

finite element mesh. To obtain more accurate solutions, a programme written 

with MATLAB software was used to further discretize the domain into smaller 

finite elements (4000 triangular element mesh and 2000 rectangular element 

mesh). The results obtained was plotted and compared with literature. 

  
 

1.  Introduction 

The Finite Element Method (FEM) (Sometimes 

referred to as Finite Element Analysis (FEA) is a 

numerical technique for finding approximate 

solution to partial differential equation (PDE), 

ordinary differential equation (ODE) as well as 

integral equations. This solution approach is based 

on either eliminating the differential equation 

completely (steady state problem), or rendering 

the PDE into an approximating system of ordinary 

differential equation, which are then numerically 

integrated using standard techniques. The concept 

of Finite element is well treated in many standard 

texts [1] and [2].As a result of the complexity and 

relative longer time to obtain analytical solution to 

several engineering model partial differential 

equation being developed by various researchers, 

approximate method of solutions (such as Finite 

difference and Finite Element) are often used for 

such analysis. Also to aid the computation some 

commercially developed Finite Element software 

like ANSYS, ADINA, Abaqus, GetFEM++, 

VisualFEA, JMAG, Nastran, Mecway are also 

used for analysis as well as to carry out 

simulations. Finite Element Method of numerical 

solution have been used to solve various 

engineering problems, [3] used finite element to 

analyze the distribution of velocity in viscous 

incompressible fluid flow using Lagrange 

interpolation function. Reference [4] investigated 

the Boussinesq-type flow model for non linear 

dispersive wave. They used Finite element 

discretization technique in their analysis of the 

wave equation.  
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Reference [5] Investigated numerically the mixed 

convection heat transfer through a vertical wavy 

isothermal channels the governing equations 

consisting of continuity, momentum and energy 

equations were solved numerically by finite 

element method using Characteristic Based Split 

(CBS) algorithm, the effect of Reynolds, Prandtl 

and Grashof numbers on flow and thermal fields 

were also investigated.  Reference [6] used finite 

element method to analyze convective heat 

transfer in a porous medium. This method was 

used to analyze the convection in vertical surface 

embedded in the medium and convection in a 

confined porous medium enclosure. Considerable 

research studies have been carried out to explore 

heating and machining processes. Reference [7] 

gave an overview of the state of the art laser 

beam machining in general with special emphasis 

on applications of short and ultra-short lasers. 

The research showed that in micro-machining, 

shorter pulses reduce heat-affected damage of the 

material and opens new ways for nanometer 

accuracy.  Reference [8] examined the laser 

thermal stresses during the laser drilling process. 

Other works on laser beam machining include 

those of [9]–[13].  

Reference [14] used a numerical solution to 

analyze the partial differential heat equation. 

They examined the cavity depth and formations 

in the irradiated steel. Also [15] used Laplace 

transformation method to obtain an analytical 

solution for laser short pulse heating due to 

evaporative boundary condition. In this paper the 

laser heat equation is solved using both 

rectangular and triangular Finite Element 

discretization. A program written with MATLAB 

was used to increase the number of elements used 

for the discretization and to decrease the time 

step which consequently produced very accurate 

solution relative to the manual discretization.  

2. Methodology 

The governing equation being solved is the heat 

equation in cylindrical coordinate with an 

exponential source term (the Laser pulse), given 

as;  

2 2

(1 ) exp( )exp
2 2

T k dT T r
c r k I r zp o f

t r r dr z a
  

  
     

  

   
              

(1) 

Where c Specific heat capacity,     k Thermal conductivity absorption coefficient  p

density, reflectivity  laser peak power intensity   Gaussian parameter or I a
f





  

   

conditions are as follows;  

Initial condition at time t 0

 

t  0  ( , , 0)T r z To  
                                  

 (2)   

At the boundary, 

z  b ( , , )T r b t To  
                                     (3)

  

r   ( , , )a T a z t To  
  (4)

   

From Symmetry

 

At position 
(0, , )

r 0 0
r

T z t
  


  

At the surface where 
( , 0, )

 z 0 0
z

T r t
  

     (5)
  

To obtain the weak form of (1), we multiply (1) 

by a weight function V and integrate over the 

domain 

2 2

0 (1 ) exp( )exp rdrdz
2 2

 
T k dT T r

c V r Vk V I r zp o f
t r r dr z a

  
  

      
   

      
                


  (6) 

 

Representing 
2

(1 ) exp( )exp
2

r
I r zo f

a
   

  
    

  

    (7)   

as f

 

and carrying out integration by parts our 

week form becomes; 

0  
r

T V dT V T
Vr c Vf k r k r drdz q Vdsp n

t r dr z z


   
   

    

    
     

    
 

 (8)   

 

 

where  + 
T T

q r n r nn r z
r z

 


 
                     (9)  

To obtain the Finite Element model, we assume 

an approximation solution for an element “e” of 

the form; 
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  ( , , ) ( ) ,
1

n e e
T r z t T t r zj j

j
 

             (10)  

 

The semi discrete finite element model is 

obtained by substituting the finite element 

approximation for the dependent variable T  and 

substituting V for ,i where    is the Lagrange 

interpolation function for a two dimensional 

differential equation.  

We have the equation in Matrix form as; 

     e e e e e e
M T K T F Qij j ij j i i



  
 

       
 

        (11) 

Where functions enclosed in square brackets and 

curly brackets are square and column matrix 

respectively. 

Also, 

dT
T

dt




                                                       
(12) 

   p i j

zaa b zaa be
Mij zaa zaa

c r drdz 
 

    (13) 

 
zaa b raa a

e

ij
zaa raa

d dd dj ji i
r r

dr dr dz dz
K k drdz

   


 

   
 

   (14) 

   e
2

1 exp exp
2

 
zaa b raa a

i
zaa raa

r
r I r zoi f

a
f drdz  

 

  
   
       

   
       (15) 

The coefficient matrix for  
e

Mij , 
e

Kij  and 
e

fi  are 

evaluated from (13), (14) and (15); 

Where for the rectangle interpolation,  and i j  

takes values of 1, 2, 3 and 4

  

And for the triangular interpolation,  and i j  

takes values of 1, 2 and 3.

 
The results of the integration are shown in 

matrix form, using the rectangular interpolation 

functions  

           

           

           

           

4 2 2 4
 

36 36 72 72

2 3 4 3 4 2

36 36 72 72

2 3 4 3 4 2

72 72 36 36

4 2 2 4

72 72 36 36

ab a raa ab a raa ab a raa ab a raa

ab a raa ab a raa ab a raa ab a raa

e
M cpij

ab a raa ab a raa ab a raa ab a raa

ab a raa ab a raa ab a raa ab a raa



   

   


   

   

 
 
 
 
 
 
 
 
 
 
      

(16) 

Using triangular interpolation function we 

obtain; 

   
 

    

4 3

2
12

3 2 2

a raa raa a raa
ab cpe

M raa a raa raaij

a raa raa a raa


  

   

  

 
 
 
 
 

      (17) 

Also for rectangular interpolation function; Due 

to the presence of the exponential function, the 
e

f
i

 coefficient matrix would be evaluated 

numerically.  Fig. 1 and 2 shows the local nodes 

(node1, node2, node3 and node4) four each of 

the four rectangular elements and the local 

nodes (node 1, node 2, and node 3) four each of 

the eight triangular elements that make up the 

domain respectively, as well as the global nodes 

when assembled (node1, node2, …, node8 and 

node9).fter inputting boundary condition the 

assembled equation using Rectangular Lagrange 

interpolation function we have and for the 

triangular interpolation function 
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     

  

3 2 3 2

2 2 2 2
2 2 212 3 12 36 3 12 6

  
12 12

3 2

2 2
2 2 4 36 3

12

a raa a a raa aa raa a raa
b ba b a raa a b a raa

a ab ab ab a ab

a raa aa raa
ba b a raa

ab a ab

e
K kij

 
     

  


 





      
                

          
   
   
   
   

  
      
   



  

  

3 2

2 2
24 312 6

  
12

3 2 3 2

2 2
2 4 3 4 312 6 6 3

 
12

a raa aa raa
b a b a raa

a ab ab

a raa a a raa aa raa a raa
b ba b a raa

ab a ab a ab


  

 

 
   

  

   
        

      
   
   
   

  

      
                

          
   
  
  
   

  

     

2 2
2 2

 
12

3 2 3 2

2 2 2 2
2 2 212 3 12 312 6 6 3

12 12

a b a raa

ab

a raa a a raa aa raa a raa
b ba b a raa a b a raa

a ab ab ab a ab

 

 
     

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 




 

      

                          
   
   
   
    











                        

(18)

 

   

       

   

2 2
 0

2 2

2 2
22 2

 
2 2 2

2 2
0

2 2

b a raa b a raa

a a

a b a raab a raa a a raae
K kij

a ab b

a a raa a a raa

b b

  

    


  

 
 
 
 
 
 
 
 
 
 

                                       (19) 

. 

   

 

 

 

 

 

 

Fig. 1: Four rectangular element mesh showing     Fig. 2: Eight triangular element mesh showing nodal 

positions                 nodal positions 
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1 1 1 3 1 3
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K K K K

K K K K K K

K K K K K K
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 

 

    
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 
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 
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T
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 
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   
   

     

1 1 1 1
1

11 12 14 13 1 1
1 1 1 1 1 2 1 2
21 22 11 24 23 14 2 12  
1 1 1 3 1 3 1 3
41 42 44 11 43 12 4 14

1 2 3 41 1 2 1 3 1 2 3 4
3 4 2 131 32 41 34 21 33 44 22 11

5

M M M M T FF

M M M M M M FF FFT

M M M M M M FF FT

FF FF FF FFM M M M M M M M M
T

  
 

  

      

     
  
 

   
   
   
      


 
 
 
 
 
 

 

  

                       (20) 

Where; 

   

1 1 0 0 0 0 0
1 1

2 21 2 1 2 0 0 0
12 132 1 2 1

3 31 3 1 3 0 0 0
14 134 1 4 1

2 2 4 3 3 4 41 2 3 4 1 2 3 4
42 43 12 24 23 14 133 4 2 1 3 4 2 1

TFF F o

TK K oFF FF F F
ToK KFF FF F F To

K K K K K K K TFF FF FF FF F F F F o

 
 

 

      

       
       
       
      
      
      

     

 

   

0 0 0 0 0

2 2
0 0 0

12 13
3 3

0 0 0
14 13

2 2 4 3 3 4 4
42 43 12 24 23 14 13

To

TM M o

ToM M
To

M M M M M M M To



 

   
   
   

  
  
  
  

                          (21)

            

  And the assembled equation using Triangular Lagrange interpolation function is: 

   

   

   

       

1 2 1 2 1 2

11 33 12 32 13 31

1 1 3 4 1 4

21 22 11 33 23 32

2 2 5 6 2 5

23 22 11 33 21 12

1 2 1 4 2 5 1 2 4 5 7 8

31 13 32 23 12 21 33 11 22 22 11 33

1

0
2

0 4

5

K K K K K K T

TK K K K K K

TK K K K K K

TK K K K K K K K K K K K

    
   
         
     
   
            

  

   

   

   

   

       

1 2 1 2 1 2

1 1 3 3 1 2 3 2 1 3 3 11

1 1 3 4 1 4

2 1 2 2 1 1 3 3 2 3 3 22

2 2 5 6 2 5

2 3 2 2 1 1 3 3 2 1 1 2
4
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 (23) 

3. Results and Discussion 

With a domain for the analysis of axial depth z 

=3.5×10-6 meters and radius R= 25×10-6 meters 

and using the parameters in Table 1, using Alpha  

family of approximation the computed results are 

tabulated and shown graphically. 
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Table 1: Parameters used for the analysis 

Parameters Value 

Gaussian Parameter a 120000-1 I/m 

Ambient temperature To 298 K  

Thermal conductivity k 52 W/(mK) 

Reflectivity fr  0.9 

Density   7836kg/m3 

Absorption coefficient   6.16×107 I/m 

Specific heat capacity Cp 330 J/kgK 

Laser peak power intensity Io 1×1013 W/m2 

 

Substituting the above parameters in Table 1 and 

the element size into (13), (14) and (15) to obtain 

the ,   and M K f  element matrix for each of the 

elements making up the assembly as shown in 

Fig. 1 and Fig. 2 respectively. 

For the Finite Element Analysis of the two 

dimensional time dependent partial differential 

equation, the solution comprises of two parts viz 

the semi discrete spatial approximation and the 

time approximation. For the semi discrete spatial 

approximation, uniform rectangular Lagrange 

interpolation functions were used to obtain the 

finite element model. Due to the rapid heating 

process, time spent during change of state (solid 

and liquid state) of the steel was assumed to be 

negligible and an average value of thermal 

conductivity k  and specific heat capacity pc  

was used for both states. Alpha α family of 

Approximation was used in the time analysis and 

the time step used was made as small as possible 

to improve the accuracy of the results. The 

accuracy of the method used in our analysis 

depends on the mesh discretization for the spatial 

approximation, and also the time step used for 

the time approximation. Highly accurate results 

are gotten from discretization with larger number 

of elements and smaller time step. To achieve 

this discretization a Finite Element Computer 

Programme is usually necessary. Table 2 and 

Table 3 shows the results of our computation of 

temperature values for 6 nano seconds using a 

discretization of 100 rectangular elements and 

200 Triangular elements respectively. However 

with the computer programme developed we 

went further to discretized the domain using 

2000 rectangular elements and 4000 triangular 

elements and the results were plotted alongside 

the results of [14] in Fig. 3 to 18. Fig. 3 to Fig. 

10 shows comparison of temperature distribution 

along the z-axes at some specified radial 

positions inside the substrate material for four 

different heating periods Fig. 11 to Fig. 18shows 

comparison of temperature distribution along the 

r-axes at some specified axial positions inside the 

substrate material for four different heating 

periods. From the Figures, the temperature 

values increases as the time of irradiation is 

increased, but at relatively high distance away 

from the surface (at depth close to 3.5μm and 

radius close to 25μm) the temperature variation 

with time is minimal as it is almost constant and 

this conforms to the boundary conditions of (5) 

and (6). At early heating periods of about 6ns, 

evaporation of the surface in the region of the 

irradiated spot centre begins and as the time 

period progresses, the cavity is formed in the 

surface vicinity of the substrate material. This is 

due to the laser power intensity distribution 

across the irradiated spot, which is Gaussian and 

energy absorbed from the irradiated field is 

unidirectional and along the axial direction. This 

in turn results in higher temperature gradients in 

the axial direction than that of the radial 

direction. As the depth below the surface 

increases towards the solid bulk, temperature 

decay becomes gradual. This occurs because of 

the energy balance attained between the internal 

energy gain from the irradiated field and 

diffusional energy transfer to solid bulk from the 

surface region [14]. 

For the laser model equation analyzed in (1), it 

was assumed that the thermal conductivity k and 

specific heat capacity pc

 

are constant and do not 

depend on the temperature of the irradiated 

material, but in reality it varies as the 

temperature increases as well as during phase 

change as the material changes from solid to 

liquid and then to vapor. However, these 

variations were not incorporated into the 

solution. Again it was assumed that the substrate 

material has sharp melting and boiling 

temperatures of 1880oC and 3030oC respectively, 

but during the laser heating, phase-change 

occurs.
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Table 2: Temperature values in Kelvin after 6 nano seconds using 100 rectangular element mesh 

 

Axial 

Depth 

(micro 

meters) 

Radius (micro meters) 

0.00 2.50 5.00 7.50 10.00 12.50 15.00 17.50 20.00 22.50 25.00 

3.50 298.00 298.00 298.00 298.00 298.00 298.00 298.00 298.00 298.00 298.00 298.00 

3.15 298.01 298.00 298.00 298.00 298.00 298.00 298.00 298.00 298.00 298.00 298.00 

2.80 297.98 297.98 297.99 297.99 298.00 298.00 298.00 298.00 298.00 298.00 298.00 

2.45 297.97 297.97 297.98 297.99 297.99 298.00 298.00 298.00 298.00 298.00 298.00 

2.10 298.52 298.47 298.36 298.23 298.12 298.05 298.02 298.01 298.00 298.00 298.00 

1.75 297.33 297.40 297.54 297.71 297.85 297.93 297.98 297.99 298.00 298.00 298.00 

1.40 285.65 286.87 289.54 292.67 295.20 296.78 297.56 297.87 297.97 297.99 298.00 

1.05 323.38 320.86 315.39 308.98 303.78 300.53 298.92 298.28 298.07 298.02 298.00 

0.70 825.21 773.30 659.12 525.71 417.45 350.08 316.87 303.68 299.42 298.31 298.00 

0.35 2875.80 2622.80 2063.50 1410.40 880.92 551.81 389.83 325.61 304.88 299.49 298.00 

0.00 7595.10 6881.90 5295.00 3443.60 1944.40 1013.80 556.52 375.57 317.28 302.18 298.00 

 
Table 3: Temperature values in Kelvin after 6 nano seconds using 200 triangular element mesh 

Axial 

Depth 

(micro 

meters) 

Radius (micro meters) 

0.00 2.50 5.00 7.50 10.00 
12.5

0 
15.00 17.50 20.00 22.50 25.00 

3.50 298.00 298.00 298.00 298.00 298.00 298.00 298.00 298.00 298.00 298.00 298.00 

3.15 298.07 297.80 298.22 298.16 297.80 297.90 298.00 298.03 298.03 298.01 298.00 

2.80 298.41 297.21 298.23 298.76 297.93 297.75 297.84 297.94 298.01 298.03 298.00 

2.45 299.84 295.80 297.14 299.64 298.84 298.10 297.82 297.79 297.88 297.96 298.00 

2.10 305.71 293.65 292.45 298.65 300.02 299.46 298.67 298.11 297.92 297.91 298.00 

1.75 328.96 296.58 281.89 289.96 296.55 299.27 299.66 299.03 298.43 298.11 298.00 

1.40 414.59 336.76 280.54 273.29 281.41 290.23 295.86 298.01 298.36 298.23 298.00 

1.05 698.48 531.72 380.85 303.26 278.51 278.86 286.91 293.35 296.52 297.66 298.00 

0.70 1518.90 1198.90 873.61 594.65 419.58 333.32 302.82 296.35 296.58 297.40 298.00 

0.35 3532.00 2969.80 2348.90 1592.20 982.21 599.38 408.44 331.56 306.44 299.72 298.00 

0.00 3696.90 4128.50 3462.00 2384.40 1440.50 819.70 497.06 361.49 314.93 301.81 298.00 
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Fig. 3: Temperature against axial distance at time 6 nano seconds (Comparison between this work and that of 

Yilbas et al. [13-15]) 

 

Fig. 4: Temperature against axial distance at time 12 nano seconds (Comparison between this work and that of 

Yilbas et al. [13-15]) 

 

 

Fig. 5: Temperature against axial distance at time 18 nano seconds (Comparison between this work and that of 

Yilbas et al. [13-15]) 
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Fig. 6: Temperature against axial distance at time 24 nano seconds (Comparison between this work and that of 

Yilbas et al. [13-15]) 

 

Fig. 7: Temperature against axial distance for radius 0 micro meters (Comparison between this work and that 

of Yilbas et al [13-15]) 

 

 

Fig. 8: Temperature against axial distance for radius 5 micro meters (Comparison between this work and that 

of Yilbas et al [13-15]) 
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Fig. 9 Temperature against axial distance for radius 10 micro meters (Comparison between this work and that 

of Yilbas et al [13-15]) 

 

 

Fig. 10: Temperature against axial distance for radius 15 micro meters (Comparison between this work and 

that of Yilbas et al[13-15]) 

 

 

Fig. 11: Temperature against radius at time 6 nano seconds (Comparison between this work and that of Yilbas 

et al. [13-15]) 
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Fig. 12: Temperature against radius at time 12 nano seconds  (Comparison between this work and that of 

Yilbas et al. [13-15]) 

 

 

Fig. 13: Temperature against radius at time 18 nano seconds. (Comparison between this work and that of 

Yilbas et al. [13-15]) 

 

 

Fig. 14: Temperature against radius at time 24 nano seconds (Comparison between this work and that of Yilbas 

et al. [13-15]) 
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Fig. 15: Temperature against radius at axial distance of 0 micro meters. (Comparison between this work and 

that of Yilbas et al. [13-15]) 

 

 

Fig. 16: Temperature against radius at axial distance of 0.35 micro meters (Comparison between this work and 

that of Yilbas et al. [13-15]) 

 

 

Fig. 17: Temperature against radius at axial distance of 0.665 micro meters. (Comparison between this work 

and that of Yilbas et al. [13-15]) 
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Fig. 18: Temperature against radius at axial distance of 0.98 micro meters(Comparison between this work and 

that of Yilbas et al.[13-15]) 

 

To accommodate the phase change process, a 

mushy zone is created and it should be 

considered if actual heating model is to be fully 

considered. That is, the Laser heating equation 

should be modified. For the modification an 

energy (or enthalpy) method can be used. In the 

enthalpy method, the governing equation of 

energy transport can be written in terms of an 

enthalpy equation. Once the phase change 

initiates, a mushy zone (partially solid and 

partially liquid or partially liquid and partially 

vapor) can be generated across the interface 

where the phase change occurs. During the phase 

change process, the temperature of the substrate 

material remains the same, but its enthalpy 

changes in this region. This can be formulated 

after considering the energy balance in the 

mushy zone, [14]. 

 

Conclusion 

The Laser heating equation (1) has been 

successfully solved using Finite Element Method 

a numerical method as against the analytical. It 

can therefore be concluded that the Finite 

Element Method is capable of adequately and 

accurately predicting the temperature distribution 

in the irradiated material, With its accuracy 

increasing as we increase the number of Finite 

Elements discretization, Such that using a mesh 

discretization up to 2000 rectangular elements 

and 4000 triangular elements by the help of the 

MATLAB program developed we have results 

that were highly accurate as seen from the 

graphs. The Finite Element procedures used in 

the analysis can be applied to all similar Laser 

heat equations by simply substituting appropriate 

parameters and boundary conditions into the 

formulated coefficient matrix equation in the 

MATLAB Finite Element program developed. 
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