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Abstract:  
 

In the realm of Industrial Internet of Things (IIoT), ensuring reliable network operations 

is paramount, as faults can lead to significant operational disruptions. Traditional 

centralized fault diagnosis approaches often grapple with challenges related to data 

privacy, latency, and scalability. To address these issues, we propose a novel fault 

diagnosis framework that integrates deep learning with federated learning principles. 

Our approach enables IIoT devices to collaboratively train a global fault detection 

model without the need to share raw data, thereby preserving data privacy. Each device 

processes its local data using deep learning models and shares only the model updates 

with a central server. The server aggregates these updates to construct a comprehensive 

global model, which is then redistributed to all devices. This iterative process ensures 

that the model learns from diverse data sources, enhancing its ability to detect a wide 

range of faults. Experimental evaluations demonstrate that our federated learning-based 

framework achieves a fault detection accuracy of 95%, with a communication overhead 

reduction of 40% compared to traditional centralized methods. These results underscore 

the potential of our approach to enhance fault diagnosis in IIoT networks while 

maintaining data privacy and reducing operational costs. 

 

1. Introduction 
 

The Industrial Internet of Things (IIoT) has 

revolutionized manufacturing by enabling 

interconnected devices to enhance operational 

efficiency and productivity [1]. However, this 

increased connectivity also introduces challenges, 

particularly in maintaining the reliability and 

security of IIoT networks [2]. Faults within these 

networks can lead to significant operational 

disruptions, making effective fault diagnosis 

essential [3]. Traditional centralized fault diagnosis 
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methods often require aggregating data from 

various devices to a central server for analysis [4]. 

While effective in some scenarios, this approach 

raises concerns regarding data privacy, as sensitive 

information must be transmitted and stored 

centrally [5]. Additionally, centralized systems can 

face scalability issues and increased latency, 

especially as the number of connected devices 

grows exponentially [6]. To address these 

challenges, researchers have explored the 

integration of deep learning techniques with 

federated learning frameworks for fault diagnosis in 

IIoT networks [7]. Deep learning models, known 

for their ability to automatically extract complex 

features from raw data, have shown promise in 

identifying anomalies and faults within industrial 

systems [8]. However, training these models 

typically requires large, labeled datasets, which 

may not be readily available in a single location [9]. 

Federated learning offers a solution by enabling 

multiple devices to collaboratively train a shared 

global model without the need to exchange raw 

data [10]. In this paradigm, each device processes 

its local data and shares only model updates with a 

central server, preserving data privacy and reducing 

the risk of sensitive information exposure [1]. The 

central server aggregates these updates to construct 

a global model that benefits from the diverse data 

distributed across all participating devices [2]. 

Implementing federated learning in IIoT 

environments presents its own set of challenges [3]. 

Variations in data distribution across devices, 

limited computational resources, and 

communication constraints must be carefully 

managed to ensure efficient and effective model 

training [4]. Strategies such as model compression, 

adaptive learning rates, and efficient 

communication protocols have been proposed to 

mitigate these issues and enhance the performance 

of federated learning systems in industrial settings 

[5]. Recent studies have demonstrated the potential 

of federated learning-based approaches in 

improving fault diagnosis accuracy while 

maintaining data privacy [6]. For instance, 

integrating federated learning with optimization 

algorithms has shown promise in enhancing model 

performance in IIoT applications [7]. These 

advancements suggest that combining deep learning 

with federated learning frameworks can provide a 

robust and scalable solution for fault diagnosis in 

IIoT networks, real-time fault detection [8-10]. 

 

2. Literature Survey 
 

The integration of deep learning and federated 

learning has emerged as a promising approach for 

fault diagnosis in Industrial Internet of Things 

(IIoT) networks [11]. This literature survey 

explores recent advancements in this domain, 

highlighting key methodologies and their 

contributions. 

Deep learning techniques have been extensively 

applied to fault detection in industrial machinery 

due to their ability to learn complex patterns from 

data [12]. For instance, convolutional neural 

networks (CNNs) have been utilized to analyze 

vibration signals, effectively identifying anomalies 

in rotating machinery [13]. Similarly, autoencoders 

have been employed to reconstruct input data, 

enabling the detection of deviations indicative of 

faults [14]. 

Federated learning (FL) addresses data privacy 

concerns by allowing models to be trained across 

decentralized devices without centralizing data 

[15]. In the context of IIoT, FL has been combined 

with optimization algorithms, such as particle 

swarm optimization, to enhance fault diagnosis 

performance [16]. This approach enables 

collaborative model training while preserving the 

confidentiality of sensitive industrial data. 

Few-Shot Learning and Meta-Learning Approaches 

A significant challenge in fault diagnosis is the 

scarcity of labeled fault data [17]. To mitigate this, 

federated meta-learning frameworks have been 

proposed, enabling models to adapt quickly to new 

fault types with minimal data [18]. These 

frameworks leverage prior knowledge from related 

tasks, facilitating efficient learning in data-

constrained environments [19]. 

Implementing FL in IIoT environments necessitates 

consideration of computational and communication 

constraints [20]. Efficient asynchronous federated 

learning methods have been developed, allowing 

edge nodes to select and train subsets of models, 

thereby reducing communication overhead and 

accommodating resource limitations [11]. 

To further bolster data integrity and security in 

federated learning systems, blockchain technology 

has been integrated [12]. This combination ensures 

verifiable integrity of client data and addresses data 

heterogeneity issues in IIoT failure detection [13]. 

The decentralized nature of blockchain 

complements the collaborative framework of FL, 

enhancing trustworthiness in fault diagnosis 

applications [14]. 

Time-series data analysis is crucial for early fault 

detection in industrial systems [15]. Deep anomaly 

detection models, incorporating attention 

mechanisms and recurrent neural networks, have 

been proposed to capture temporal dependencies 

and identify anomalies in IIoT data [16]. These 

models enhance the accuracy of fault detection by 

effectively modeling the temporal dynamics 

inherent in industrial processes [17]. 
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Data drift, resulting from changing operational 

conditions, poses challenges to maintaining model 

accuracy [18]. Drift-aware fault diagnosis systems 

have been developed, employing continual learning 

techniques to adapt to new data distributions 

without frequent model retraining [19]. This 

adaptability is essential for sustaining reliable fault 

detection in dynamic industrial environments [20]. 

Industrial data is often contaminated with noise, 

which can impede fault detection accuracy [11]. To 

address this, smart filter-aided domain adversarial 

neural networks have been introduced, enhancing 

model robustness against noise and improving fault 

diagnosis performance in challenging industrial 

scenarios [12]. 

The deployment of machine learning models in 

fully distributed industrial settings has been 

explored to monitor continuous processes [13]. 

These systems utilize distributed architectures to 

facilitate real-time fault detection and diagnosis, 

ensuring timely responses to potential issues [14]. 

Recent surveys have synthesized advancements in 

machine learning-based fault detection within IIoT, 

emphasizing the roles of federated learning and 

intrusion detection systems [15]. These 

comprehensive reviews provide insights into 

current trends and identify future research 

directions, underscoring the importance of 

integrating advanced machine learning techniques 

to enhance fault diagnosis in industrial applications 

[16-20]. 

 

3. Methodology 
 

In this study, we propose a Deep Learning-Enabled 

Federated Fault Diagnosis (DL-FFD) model for 

Industrial IoT (IIoT) networks. The methodology is 

structured into multiple stages, including data 

preprocessing, feature extraction, federated 

learning-based training, and fault classification. The 

proposed framework ensures privacy preservation 

while maintaining high fault diagnosis accuracy. 

Figure 1 shows the block diagram of proposed 

work. 

 

Figure 1. Block Diagram of Proposed Work 

3.1 Data Preprocessing and Feature Extraction 

Raw sensor data from IloT [21,22] devices is first 

preprocessed to remove noise and outliers. Standard 

techniques such as min-max normalization and 

principal component analysis (PCA) are applied to 

enhance data quality and reduce dimensionality. 

Given an input signal 𝑥𝑖, normalization is applied 

as: 

𝑥𝑖
′ =

𝑥𝑖−min(𝑥)

max(𝑥)−min(𝑥)
    (1) 

where 𝑥𝑖
′ represents the normalized feature. 

Feature extraction is performed using a short-time 

Fourier transform (STFT) to convert time-series 

sensor data into the frequency domain: 

𝑋(𝑡, 𝜔) = ∫  
∞

−∞
𝑥(𝑡′)𝑤(𝑡′ − 𝑡)𝑒−𝑗𝜔𝑡

′
𝑑𝑡′ 

 (2) 

where 𝑋(𝑡, 𝜔) is the transformed signal, 𝑤(𝑡′ − 𝑡) 
is the window function, and 𝜔 represents the 

frequency component. 

 

3.2 Federated Learning-Based Fault Diagnosis 

Instead of centralized training, our model follows a 

federated learning (FL) [23,24] approach, where 

multiple lloT devices train local models and share 

only model updates with a central server. Each 

local model is trained using a deep convolutional 

neural network (CNN) to extract spatial features 

from the time-series data. 

For each IloT device 𝑖, the local model 𝑓𝜃𝑖 is 

trained using the following loss function: 

ℒ𝑖 =
1

𝑁𝑖
∑  
𝑁𝑖
𝑗=1 (𝑦𝑗 − 𝑓𝜃𝑖(𝑥𝑗))

2
   (3) 

where 𝑁𝑖 represents the number of local training 

samples, 𝑦𝑗 is the actual fault label, and 𝑓𝜃𝑖(𝑥𝑗) is 

the predicted fault label. 

The Federated Averaging (FedAvg) Algorithm is 

used to aggregate local model updates: 

𝜃𝑔𝑙𝑜𝑏𝑎𝑙 = ∑  𝐾
𝑖=1

𝑁𝑖

𝑁
𝜃𝑖    (4) 

where 𝜃global  is the global model, 𝐾 is the total 

number of participating IloT devices, and 𝑁 is the 

total number of training samples. 

3.3 Fault Classification 

After federated learning [25-35] convergence, the 

final global model is distributed to all lloT devices 

for real-time fault diagnosis. The classification 
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decision is made using softmax activation, which 

calculates the probability of each fault class 𝑘 : 

𝑃(𝑦 = 𝑘 ∣ 𝑥) =
𝑒𝑧𝑘

∑  𝐶
𝑗=1  𝑒

𝑧𝑗
    (5) 

where 𝑧𝑘 represents the activation value for class 𝑘, 

and 𝐶 is the total number of fault categories.

 

Figure 2. Flowchart of Proposed work 

After the federated learning model has been trained 

and aggregated, the final global model is distributed 

to all participating IloT devices for real-time fault 

diagnosis. The fault classification process utilizes a 

deep convolutional neural network (CNN) with a 

softmax activation function at the output layer to 

determine the probability distribution across 

multiple fault categories. 

The predicted class label �̂� is then determined by 

selecting the class with the highest probability: 

�̂� = arg⁡max
𝑘

 𝑃(𝑦 = 𝑘 ∣ 𝑥)   (6) 

where arg max finds the class index 𝑘 that 

corresponds to the maximum probability. To ensure 

high fault classification accuracy, the categorical 

cross-entropy loss function is used for training: 

ℒ = −∑  𝐶
𝑘=1 𝑦𝑘log⁡𝑃(𝑦 = 𝑘 ∣ 𝑥)  

 (7) 

where 𝑦𝑘 is the actual fault class label encoded as a 

one-hot vector, and 𝑃(𝑦 = 𝑘 ∣ 𝑥) is the predicted 

probability for class 𝑘. 

Classification Decision and Fault Severity Levels 

The model's decision-making process follows a 

multi-class classification approach, where each 

detected fault is categorized into predefined levels 

of severity, such as: 

 Normal Condition (Class0) 

 Minor Fault (Class 1 ) 

 Moderate Fault (Class2) 

 Severe Fault (Class3) 

For critical applications, a decision threshold is 

applied to distinguish between minor and severe 

faults. A threshold-based confidence score is 

defined as: 

 Decision Score = max
𝑘

 𝑃(𝑦 = 𝑘 ∣ 𝑥)  (8) 

If the confidence score is below a predefined 

threshold 𝜏, the sample is classified as an uncertain 

prediction, triggering an alert for further manual 

inspection. 

 

Figure 3. Training and Testing Process 

By leveraging federated deep learning, the 

proposed fault classification framework ensures 

high accuracy, low latency, and improved 

generalization across diverse industrial fault 

conditions. 

4. Results and Discussions 
 

The performance of the proposed Deep 

Learning-Enabled Federated Fault Diagnosis 

(DL-FFD) model was evaluated using real-time 

Industrial IoT (IIoT) sensor datasets. The key 

evaluation metrics included accuracy, precision, 

recall, F1-score, and computational efficiency. 

The results demonstrated that the DL-FFD 

model achieved a fault classification accuracy 

of 95.6%, significantly outperforming 

traditional centralized learning approaches, 

which achieved only 88.3% accuracy. The 

federated learning framework preserved data 

privacy while maintaining high classification 

performance across multiple IIoT devices. To 

analyze fault detection effectiveness, the 

confusion matrix revealed a high true positive 

rate (TPR) of 96.2% for severe faults and a 

false positive rate (FPR) reduction of 38% 

compared to traditional models. The model’s 

precision and recall values exceeded 94%, 

indicating its robustness in differentiating fault 

classes. Additionally, the use of softmax-based 
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classification improved decision confidence, 

ensuring reliable fault categorization with 

reduced uncertainty. The computational 

efficiency was evaluated by comparing the 

communication overhead of centralized vs. 

federated learning. The proposed FL-based 

approach reduced data transmission by 40%, as 

only model gradients were shared instead of 

raw data. Moreover, training time per federated 

round was 23% faster due to efficient local 

model updates and reduced network congestion. 

The FedAvg aggregation strategy ensured 

balanced weight updates, contributing to 

improved convergence rates. A comparative 

study with state-of-the-art fault diagnosis 

methods showed that the DL-FFD model 

exhibited superior fault classification across 

diverse IIoT conditions, including sensor drift, 

noisy data environments, and varying 

operational loads. Unlike conventional deep 

learning models that require extensive labeled 

data, our federated approach leveraged 

distributed learning, enabling scalability across 

multiple industrial sites. The proposed 

framework also demonstrated robustness 

against adversarial attacks. The integration of 

differential privacy mechanisms prevented data 

leakage, ensuring secure federated updates. 

Future research will focus on optimizing model 

compression techniques to further reduce 

bandwidth consumption and enhance real-time 

fault detection capabilities in IIoT networks. 

Overall, the results confirm that the DL-FFD 

model is an efficient, scalable, and privacy-

preserving solution for intelligent fault 

diagnosis in IIoT systems. The figures (2-10) 

present the performance evaluation of the Deep 

Learning-Enabled Federated Fault Diagnosis 

(DL-FFD) model for Industrial IoT (IoT) 

networks across multiple epochs. Figure 4 is 

model accuracy over epochs. The accuracy of 

the model progressively increases from 80% to 

95.6% over 20 epochs.  

 

Figure 4. Model Accuracy Over Epochs 

 

 

Figure 5. Model Loss Over Epochs 

 

 

Figure 6. Precision and Recall Over Epochs 

 

 

Figure 7. F1 Score Over Epochs 

 

 

Figure 8. Communication Overhead Reduction Over 

Epochs 
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Figure 9. Training Time Reduction Over Epochs 

 

Figure 10. Data Transmission Reduction Over 

Epochs 

This indicates efficient learning and 

convergence of the federated deep learning 

model. Figure 5 is model loss over epochs. The 

training loss reduces from 0.8 to 0.2, 

showcasing effective optimization and minimal 

overfitting. Figure 6 is precision and recall over 

epochs. The precision and recall values improve 

from 75% to 94% and 78% to 96.2%, 

respectively, demonstrating the model’s ability 

to correctly classify faults while reducing false 

positives. Figure 7 is F1 score over epochs. 

The F1 score gradually increases from 76% to 

95%, reflecting balanced precision and recall 

performance. Figure 8 is communication 

overhead reduction over epochs. The 

communication overhead reduces by 40%, 

showcasing the efficiency of the federated 

learning approach, which minimizes the need 

for raw data transmission. Figure 9 is training 

time reduction over epochs. 

The training time per round is reduced from 30 

seconds to 23 seconds, highlighting the 

computational efficiency of federated learning 

compared to centralized training. Figure 10 is 

data transmission reduction over epochs. 

The data transmission overhead decreases from 

100% to 60%, confirming that federated 

learning optimizes network resources while 

maintaining model performance. 

 

4. Conclusions 

 
This study presented a Deep Learning-Enabled 

Federated Fault Diagnosis (DL-FFD) model for 

Industrial IoT (IIoT) networks, addressing key 

challenges such as data privacy, scalability, and 

real-time fault detection. The proposed federated 

learning framework enabled IIoT devices to 

collaboratively train a global fault diagnosis model 

without sharing raw data, thereby preserving data 

security while maintaining high classification 

accuracy. Experimental results demonstrated that 

the DL-FFD model achieved a fault classification 

accuracy of 95.6%, reducing communication 

overhead by 40% and improving computational 

efficiency by 23% compared to traditional 

centralized approaches. Additionally, the model 

showed resilience against adversarial attacks, 

ensuring robust and secure fault detection. The 

study highlighted the effectiveness of federated 

learning in IIoT environments, proving its potential 

for large-scale industrial applications. Future 

research will focus on further optimizing model 

aggregation techniques, integrating lightweight 

encryption for enhanced security. The proposed 

approach provides a scalable, privacy-preserving, 

and intelligent solution for real-time fault diagnosis, 

paving the way for more efficient and resilient IIoT 

networks. 
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