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Abstract:  
 

Edge computing has emerged as a pivotal technology for managing computational 

workloads in latency-sensitive applications by offloading tasks from resource-

constrained Internet of Things (IoT) devices to nearby edge servers. However, 

optimizing task offloading while ensuring energy efficiency remains a significant 

challenge. This paper proposes a Hybrid AI-Based Task Offloading (HATO) model, 

integrating Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to 

dynamically allocate computational resources while minimizing energy consumption. 

The HATO framework formulates task offloading as a multi-objective optimization 

problem, considering factors such as device workload, network latency, edge server 

availability, and energy constraints. Experimental evaluations demonstrate that the 

proposed model achieves a 27.3% reduction in energy consumption, a 19.6% 

improvement in task completion time, and a 31.2% enhancement in overall edge server 

utilization compared to conventional heuristic-based methods. The reinforcement 

learning module adapts task offloading strategies in real-time, ensuring optimal 

computational load balancing while minimizing latency. The proposed Hybrid AI-

Based Approach outperforms baseline models in diverse edge computing scenarios, 

making it a scalable and efficient solution for next-generation IoT applications. 

 

1. Introduction 
 

Edge computing has emerged as a key technology 

for managing computational workloads in latency-

sensitive applications by offloading tasks from 

resource-constrained IoT devices to nearby edge 

servers [1]. This paradigm addresses the limitations 

of cloud computing by reducing latency, bandwidth 

consumption, and energy usage, enabling real-time 

processing for applications such as smart cities, 

autonomous vehicles, and healthcare monitoring 

systems [2]. However, efficiently allocating 

computational resources while optimizing task 

offloading strategies remains a critical challenge in 

http://dergipark.org.tr/en/pub/ijcesen
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edge computing environments [3]. Task offloading 

involves deciding which tasks to execute locally 

and which to offload to edge or cloud servers based 

on multiple constraints such as device energy 

consumption, network conditions, and processing 

capabilities [4]. Traditional heuristic-based task 

scheduling algorithms, such as greedy and round-

robin approaches, often fail to adapt dynamically to 

changing network conditions, leading to inefficient 

resource utilization and increased energy 

consumption [5]. To address these issues, recent 

studies have explored AI-driven solutions, 

leveraging techniques such as Reinforcement 

Learning (RL), Deep Neural Networks (DNNs), 

and Federated Learning (FL) to optimize task 

scheduling in real-time [6]. 

Among AI-based solutions, Reinforcement 

Learning (RL) has gained significant attention due 

to its ability to learn optimal task offloading 

policies through trial and error interactions with the 

environment [7]. RL-based approaches, such as 

Deep Q-Networks (DQN) and Proximal Policy 

Optimization (PPO), have demonstrated superior 

performance in dynamically adjusting task 

execution strategies while minimizing latency and 

energy consumption [8]. However, standalone RL 

models often struggle with convergence speed and 

computational overhead, making them less practical 

for real-time IoT and edge computing environments 

[9]. 

To overcome these limitations, Hybrid AI-Based 

approaches have been proposed, combining 

Reinforcement Learning with Deep Neural 

Networks (DNNs) to enhance decision-making 

capabilities [10]. In this study, we introduce the 

Hybrid AI-Based Task Offloading (HATO) model, 

which leverages Deep Reinforcement Learning 

(DRL) integrated with Neural Network-based 

prediction models to optimize task scheduling in 

edge computing systems [1]. By formulating task 

offloading as a multi-objective optimization 

problem, the proposed HATO framework 

dynamically allocates computing resources while 

considering factors such as network latency, energy 

efficiency, task priority, and workload balance [2]. 

The primary objective of this research is to design 

an adaptive and energy-efficient task offloading 

strategy that enhances the performance of edge 

computing systems by reducing task execution 

delays and minimizing energy consumption [3]. 

Unlike traditional static offloading methods, the 

proposed approach continuously learns from the 

system’s operational dynamics and adjusts 

offloading decisions in real time [4]. Through 

reinforcement learning-based reward functions, the 

model balances computational load across edge 

servers, ensuring optimal task distribution while 

preventing system congestion and overutilization 

[5]. One of the major challenges in task offloading 

optimization is balancing computational efficiency 

with communication overhead [6]. Since IoT 

devices have limited processing power, excessive 

communication with edge nodes can increase 

network congestion and transmission delays [7]. 

The HATO model tackles this issue by 

implementing a hybrid Deep Q-Network (DQN) 

combined with a predictive neural network, 

reducing unnecessary offloading while maintaining 

high system responsiveness [8]. 

Furthermore, security and privacy concerns must be 

addressed when implementing AI-driven task 

offloading strategies in edge computing 

environments [9]. As tasks are distributed across 

multiple edge nodes, there is an inherent risk of 

data breaches, unauthorized access, and adversarial 

attacks [10]. To mitigate these risks, the proposed 

framework integrates lightweight encryption 

techniques and privacy-preserving federated 

learning algorithms to ensure secure and efficient 

task execution [1]. 

Extensive simulations and real-world experiments 

validate the effectiveness of the HATO model in 

comparison with existing task scheduling 

techniques [2]. The results demonstrate a 27.3% 

reduction in energy consumption, a 19.6% 

improvement in task completion time, and a 31.2% 

enhancement in edge server utilization over 

baseline models [3]. These improvements highlight 

the scalability and adaptability of Hybrid AI-Based 

task offloading strategies in modern edge 

computing architectures [4]. 

The rest of this paper is organized as follows: 

Section 2 discusses related works and literature 

survey, Section 3 details the proposed 

methodology, Section 4 presents the experimental 

results, and Section 5 concludes the study with 

insights into future research directions in AI-driven 

task optimization for edge computing [5]. 

 

2. Literature Survey 
 

The growing adoption of edge computing in 

Internet of Things (IoT) applications has 

necessitated the development of efficient task 

offloading strategies to enhance computational 

efficiency and reduce latency [11]. Traditional 

cloud-based task scheduling often introduces 

excessive delays due to centralized processing, 

making edge computing a preferable alternative for 

real-time applications [12]. However, optimizing 

task offloading while balancing energy 

consumption, latency, and server load remains a 

critical research challenge [13]. Several studies 

have explored heuristic-based task scheduling 
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approaches, such as greedy algorithms, genetic 

algorithms (GA), and ant colony optimization 

(ACO), to improve task execution efficiency in 

edge computing [14]. While these methods offer 

moderate improvements, they often fail to adapt to 

dynamic workloads and network conditions [15]. 

To address this limitation, researchers have turned 

to Artificial Intelligence (AI)-based models that 

leverage machine learning (ML) and reinforcement 

learning (RL) techniques for adaptive task 

offloading [16]. 

One promising approach involves Deep 

Reinforcement Learning (DRL), which enables 

intelligent decision-making by continuously 

learning from the environment and optimizing task 

scheduling in real time [17]. Studies have shown 

that Deep Q-Networks (DQN) and Proximal Policy 

Optimization (PPO) outperform traditional methods 

by effectively managing computational resource 

allocation and minimizing task execution delays 

[18]. However, DRL models often require 

extensive training and computational resources, 

limiting their applicability in resource-constrained 

edge devices [19]. 

To mitigate the computational overhead of DRL-

based task offloading, researchers have proposed 

hybrid AI models that integrate Neural Networks 

(NNs) with heuristic optimization algorithms [20]. 

For example, recent work has demonstrated that 

combining Long Short-Term Memory (LSTM) 

networks with Particle Swarm Optimization (PSO) 

can enhance the predictive accuracy of task 

execution times, leading to better load balancing 

across edge servers [21]. These hybrid models 

provide a balance between real-time adaptability 

and computational efficiency [22]. 

Another critical research area focuses on energy-

efficient task offloading strategies. Edge devices 

are often battery-powered, necessitating low-power 

computation strategies to extend operational 

lifetimes [23]. Studies have proposed energy-aware 

federated learning models, where IoT devices 

collaboratively train local models without 

transmitting raw data, reducing network congestion 

and energy consumption [24]. These techniques 

improve system sustainability while maintaining 

high task scheduling efficiency [25]. 

Security and privacy concerns in AI-based task 

scheduling have also gained significant attention 

[26]. Since edge computing involves distributing 

tasks across multiple nodes, data integrity and 

confidentiality must be ensured [27]. Researchers 

have explored the integration of blockchain with 

federated learning to enhance secure task execution 

while maintaining decentralized control [11]. 

Moreover, adaptive load balancing strategies have 

been studied to enhance QoS (Quality of Service) 

in multi-edge computing environments. Multi-agent 

reinforcement learning (MARL) has been explored 

as a solution for dynamic task allocation, allowing 

edge nodes to cooperatively optimize system 

performance under varying workloads [12]. Such 

models reduce server congestion, improve response 

times, and enhance overall system scalability [13]. 

Recent advances in meta-learning for task 

scheduling have further improved the adaptability 

of AI-driven models in edge computing. Meta-

learning techniques enable models to learn task 

execution patterns across different workloads, 

allowing faster adaptation to new application 

scenarios with minimal retraining [14]. Research 

has demonstrated that meta-learning-based task 

offloading can reduce computation delays by 30% 

while minimizing energy consumption by 25% 

compared to conventional approaches [15]. 

Finally, hybrid 5G-enabled edge computing 

architectures have been explored to facilitate real-

time IoT applications. The integration of 5G 

network slicing with federated task offloading has 

demonstrated improvements in latency reduction 

and network efficiency [16]. These advancements 

highlight the importance of combining AI-driven 

task offloading with next-generation 
 

 
Figure 1. Block Diagram of Proposed work 
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communication technologies to optimize 

performance, energy consumption, and system 

reliability [17]. 

 

3. Methodology 
 

The proposed Hybrid AI-Based Task Offloading 

(HATO) model optimizes energy-efficient task 

scheduling in edge computing environments. The 

methodology is structured into several key phases: 

problem formulation, system model, task offloading 

strategy, reinforcement learning framework, neural 

network-based optimization, and performance 

evaluation. Figure 1 is block diagram of proposed 

work and figure 2 is system model of proposed 

work. Figure 3 shows reinforcement learning-based 

optimization. 

 

3.1 Problem Formulation 

Task offloading in edge computing is modeled as a 

multi-objective optimization problem, where the 

goal is to minimize energy consumption, task 

completion delay, and computational cost. Given a 

set of loT devices 𝐷, each device generates 

computational tasks 𝑇𝑖, which can either be 

processed locally or offloaded to an edge server 𝑆𝑗. 

The decision variable 𝑂𝑖 determines whether a task 

is executed locally ( 𝑂𝑖 = 0 ) or offloaded ( 𝑂𝑖 = 1 

). 

The objective function is defined as: 

min∑  𝑁
𝑖=1 (𝛼𝐸𝑖 + 𝛽𝑇𝑖 + 𝛾𝐶𝑖)  (1) 

where: 

 𝐸𝑖 is the energy consumption of task 𝑖, 

 𝑇𝑖 is the task execution time, 

 𝐶𝑖 is the computational cost, 

 𝛼, 𝛽, 𝛾 are weight factors that balance the 

trade-offs between energy, delay, and cost. 

 

Figure 2. System Model of Proposed work 

3.2 System Model 

The task execution model consists of three 

components: 

Local Execution Model: If a task 𝑇𝑖 is processed 

locally, the required energy is computed as: 

𝐸𝑙𝑜𝑐𝑎𝑙 = 𝑃𝑐𝑝𝑢 × 𝑡𝑙𝑜𝑐𝑎𝑙    (2) 

where 𝑃𝑐𝑝𝑢 is the CPU power consumption and 

𝑡local  is the local execution time given by: 

𝑡local =
𝑆𝑖

𝑓
device 

     (3) 

where 𝑆𝑖 is the task size (in cycles) and 𝑓device  is 

the CPU processing speed of the loT device. Edge 

Execution Model: If a task is offloaded to the edge 

server, execution time consists of transmission 

delay 𝑡trans , processing delay 𝑡edge , and queuing 

delay 𝑡queшe : 

𝑇offload = 𝑡trans + 𝑡edge + 𝑡queue   

 (4) 

where: 

𝑡trans =
𝑆𝑖

𝐵log2(1+𝑆𝐼𝑁𝑅)
    (5) 

 

 

 

 
Figure 3. Reinforcement Learning-Based Optimization 
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𝐵 is the available bandwidth, and 𝑆𝐼𝑁𝑅 is the 

signal-to-interference-noise ratio.  

Energy Consumption Model: The total energy 

consumption for offloaded tasks is: 

𝐸offload = 𝑃𝑡𝑥 × 𝑡trans + 𝑃𝑟𝑥 × 𝑡𝑒𝑑𝑔𝑒  

 (6) 

where 𝑃𝑡𝑥 and 𝑃𝑟𝑥 are the transmission and 

reception power consumption. 

3.3 Task Offloading Strategy 

To optimize task scheduling, an adaptive offloading 

strategy is formulated. The decision is based on: 

 Energy constraints: If 𝐸local > 𝐸offlood, , 

offloading is preferred. 

 Latency constraints: If 𝑇local > 𝑇offload, , 

offloading is preferred. 

 Network conditions: If the available 

bandwidth is high, offloading is beneficial. 

The offloading decision function is given by: 

𝑂𝑖 =

{
1,  if (𝐸local > 𝐸offlood )  and (𝑇local > 𝑇offload )

0,  otherwise 
 (7) 

3.4 Reinforcement Learning-Based Optimization 

A Deep Q-Network (DQN) with Policy Gradient 

(PG) optimization is used to dynamically adjust 

offloading decisions. The RL agent interacts with 

the environment, learning optimal policies to 

minimize energy and delay. 

State Space ( 𝑆 ): Includes 

 Device CPU utilization 

 Network bandwidth 

 Task size 

 Energy level 

Action Space (𝐴) : Two actions are defined: 

 𝐴 = 0 (Local execution) 

 𝐴 = 1 (Offload to Edge Server) 

Reward Function (𝑅) : The agent receives rewards 

based on system performance: 

𝑅 = −(𝛼𝐸 + 𝛽𝑇 + 𝛾𝐶)    (8) 

where negative values encourage the agent to 

minimize energy and latency. 

3.5 Neural Network-Based Prediction 

To enhance decision-making, a Long Short-Term 

Memory (LSTM)-based neural network predicts 

task execution times using historical data. The 

model learns from past execution patterns and 

prevents network congestion by forecasting 

workload spikes.The LSTM model updates its 

weight parameters using: 

ℎ𝑡 = 𝜎(𝑊ℎ𝑥𝑡 + 𝑈ℎℎ𝑡−1 + 𝑏ℎ)   (9) 

The Hybrid AI-Based Task Offloading (HATO) 

model integrates reinforcement learning and deep 

neural networks to optimize task scheduling in edge 

computing. The model dynamically minimizes 

energy consumption, reduces task execution delays, 

and improves resource utilization. Experimental 

results demonstrate that HATO outperforms 

traditional heuristic-based methods, achieving: 

27.3% reduction in energy consumption 

19.6% improvement in task completion time 

31.2% enhancement in edge server utilization 

Future work will focus on integrating multi-agent 

reinforcement learning for large-scale IoT 

environments, enhancing security mechanisms, and 

extending adaptive task scheduling for 6G 

networks. 

4. Results and Discussions 

The performance of the proposed Hybrid AI-Based 

Task Offloading (HATO) model was evaluated 

using real-time edge computing simulation 

scenarios. The primary evaluation metrics included 

energy efficiency, task execution time, offloading 

accuracy, and network resource utilization. The 

results were compared against traditional heuristic-

based approaches such as Greedy Scheduling, 

Round-Robin, and Genetic Algorithm (GA) 

optimization methods. The HATO model achieved 

a 27.3% reduction in energy consumption, 

significantly outperforming traditional task 

scheduling techniques. This improvement is 

attributed to the reinforcement learning-based 

adaptive offloading decisions, which dynamically 

optimize CPU utilization and minimize 

unnecessary computation loads on IoT devices. 

Furthermore, the model demonstrated a 19.6% 

improvement in task execution time, ensuring 

faster processing and reducing computational 
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delays.The accuracy of task offloading decisions 

was another key performance factor. The HATO 

model achieved an offloading decision accuracy of 

92.4%, significantly higher than conventional 

algorithms, which averaged around 78%. This 

improvement highlights the effectiveness of 

reinforcement learning in selecting optimal 

offloading strategies based on real-time network 

conditions and workload variations. Additionally, 

the 31.2% increase in edge server utilization 

demonstrates the model's capability to efficiently 

distribute computing workloads across edge nodes, 

preventing system congestion and reducing latency 

spikes. Another critical aspect analyzed was 

communication overhead and data transmission 

efficiency. Since federated task scheduling relies 

on continuous data exchange between edge nodes 

and IoT devices, it is essential to maintain a 

balance between task execution accuracy and 

network congestion. The HATO framework 

reduced data transmission overhead by 40%, 

optimizing bandwidth utilization and minimizing 

redundant task allocation. This optimization is 

particularly beneficial for 5G-enabled edge 

computing networks, where network traffic and 

energy consumption must be minimized. 

Furthermore, the robustness of the HATO model 

was tested against adversarial network conditions 

such as low bandwidth availability, high device 

workload fluctuations, and increased network 

interference. The model effectively adapted to 

these dynamic conditions, ensuring stable task 

execution with minimal service degradation. 

Unlike traditional static scheduling approaches, 

HATO continuously learns from real-time system 

feedback, making proactive adjustments to 

enhance system reliability and efficiency. The 

comparison with state-of-the-art AI-driven task 

offloading models further validates the superiority 

of the HATO approach. When benchmarked 

against Deep Q-Network (DQN)-based offloading 

models and federated learning-based optimization 

techniques, HATO demonstrated a 15% higher 

energy savings rate and 12% lower task failure 

rates, proving its adaptability across diverse edge 

computing applications. In summary, the results 

indicate that the Hybrid AI-Based Task Offloading 

(HATO) model is a scalable, energy-efficient, and 

intelligent task scheduling framework that 

significantly enhances computational performance, 

network efficiency, and edge resource utilization. 

The findings validate the effectiveness of 

combining deep reinforcement learning with neural 

network-based predictive models to optimize real-

time task execution in edge computing 

environments. Future research will focus on 

integrating multi-agent reinforcement learning 

(MARL) for large-scale IoT networks, further 

enhancing the model’s adaptability in complex 6G 

and next-generation edge computing architectures. 

 

 
Figure 4. Task Offloading Accuracy Over Training 

Epochs 

 

 
Figure 5. Energy Savings Over Training Epochs 

 

 
Figure 6. Reduction in Task Execution Time 

Over Training Epochs 

 

 
Figure 7. Edge Server Utilization Efficiency 
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Over Training Epochs 

 

Figure 8. Offloading Decision Accuracy Over 

Epochs 

 

Figure 9. Reduction in Communication Overhead Over 

Training Epochs 

 

Figure 10. Latency Reduction Over Training 

Epochs 

The following bar graphs provide a detailed 

visualization of the performance of the Hybrid AI-

Based Task Offloading (HATO) model in an edge 

computing environment. Figure 4 is task 

offloading accuracy over training epochs. The task 

offloading accuracy reached 92.4%, demonstrating 

the effectiveness of the reinforcement learning-

based task scheduling mechanism. This highlights 

how HATO continuously learns optimal task 

distribution strategies, significantly improving 

accuracy compared to traditional models. Figure 5 

is energy savings over training epochs. 

The HATO model achieved 27.3% energy savings, 

reducing unnecessary computational overhead on 

IoT devices. This energy efficiency was attained 

through adaptive task allocation strategies, which 

minimize redundant processing and ensure optimal 

resource utilization. Figure 6 shows reduction in 

task execution time over training epochs. Task 

execution time was reduced by 19.6%, 

demonstrating HATO’s efficiency in minimizing 

delays. This improvement ensures that edge-based 

applications operate in real-time, making the 

model highly effective for latency-sensitive 

applications such as smart healthcare and industrial 

automation. The model optimized server workload 

balancing, resulting in a 31.2% increase in edge 

server utilization. This improvement indicates that 

the HATO model efficiently distributes 

computational loads across available edge nodes, 

preventing congestion and reducing system 

downtimes. Figure 7 is edge server utilization 

efficiency over training epochs and figure 8 is 

offloading decision accuracy over epochs. The 

offloading decision accuracy reached 92.4%, 

showcasing the robust learning capability of the 

proposed HATO model. Unlike rule-based 

approaches, HATO dynamically adjusts offloading 

decisions based on real-time environmental 

conditions, ensuring optimal task execution. Figure 

9 shows reduction in communication overhead 

over training epochs and figure 10 shows latency 

reduction over training epochs. 

The communication overhead was reduced by 

40%, which highlights the efficiency of 

bandwidth-aware task scheduling. The model 

significantly minimizes unnecessary data 

transmissions, thereby improving network resource 

utilization in large-scale IoT deployments. The 

latency was reduced by 40%, confirming that 

HATO effectively minimizes network delays. The 

combination of deep reinforcement learning and 

predictive neural networks ensures adaptive task 

scheduling with minimal service disruption, 

making the model ideal for real-time edge 

computing environments. Deep learning has been 

reported in the literature for different applications 

[28-34]. 

 

4. Conclusions 

 
In this study, we proposed the Hybrid AI-Based 

Task Offloading (HATO) model for optimizing 

energy-efficient task scheduling in edge computing 

environments. The model integrates deep 

reinforcement learning (DRL) with neural network-

based prediction to dynamically allocate 

computational workloads, minimizing latency, 

energy consumption, and communication overhead. 

Experimental evaluations demonstrate that HATO 

significantly outperforms traditional heuristic-based 

and static scheduling approaches, achieving: 

92.4% task offloading accuracy, 

27.3% reduction in energy consumption, 



Anwar Ahamed Shaikh, I. Carol, Meenakshi, Helina Rajini Suresh, M. Thillai Rani, J. Rejina Parvin / IJCESEN 11-2(2025)1794-1802 

 

1801 

 

19.6% improvement in task execution time, 

31.2% increase in edge server utilization, 

40% reduction in communication overhead and 

latency. 

These improvements highlight the effectiveness of 

reinforcement learning in adapting to dynamic 

workload conditions, ensuring efficient 

computational resource distribution across edge 

networks. The model not only enhances real-time 

processing capabilities but also optimizes IoT 

device operations by reducing power consumption 

and network congestion. 

Moreover, HATO demonstrates resilience to 

adversarial network conditions, such as fluctuating 

bandwidth, varying task loads, and network 

interference, making it a scalable and adaptable 

solution for next-generation edge computing 

frameworks. Unlike conventional rule-based or 

heuristic optimization techniques, HATO 

continuously learns and adapts, ensuring high 

efficiency, real-time responsiveness, and energy 

efficiency. 
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