

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 11-No.1 (2025) pp. 1515-1527
http://www.ijcesen.com

ISSN: 2149-9144

 Research Article

A Learning Ontology in Computer Programming Approach

Ahmet Doğukan Sarıyalçınkaya1*, Uğur Ercan2

1Ondokuz Mayis University, Vezirköprü Vocational School, Computer Programming Programme, 55900, Samsun-

Turkiye
* Corresponding Author Email: dogukan.sariyalcinkaya@omu.edu.tr - ORCID: 0000-0002-1388-5114

2Akdeniz University, 07000, Antalya-Turkiye

Email: ugurercan@akdeniz.edu.tr - ORCID: 0000-0002-9977-2718

Article Info:

DOI: 10.22399/ijcesen.1355

Received : 03 January 2025

Accepted : 10 March 2025

Keywords :

Ontology,

Learning ontology,

Computer programming.

Abstract:

Advances in science and technology have made computer programming an inseparable

part of our lives and have raised users' expectations from software. This situation has led

to an increase in the complexity of computer programming and software development

processes. To manage this complexity, models are increasingly adopted as the main

structure of computer programming. On the other hand, developments in the field of

linked data has spurred the use of ontologies—concepts not new to computer science—

in various domains. In computer programming approaches that consider models as

primary structures, it is important to formally represent requirements and ensure

traceability between requirements and lower-level analysis and design models.

Additionally, adapting or extending existing ontologies is one of the methods that can be

employed to reduce the costs of computer programming activities. To achieve this, it is

necessary to examine the differences in computer programming and the fundamentals of

ontologies. These differences can be categorized under the headings of layered

architecture, open-closed world approaches, and interoperability approaches. Taking into

consideration the ease of incorporating ontologies in computer programming process and

the difficulties reported in the scientific literature, this study proposed a model of

knowledge discovery based on computer programming strategy with analogies and

obtained a set of patterns for possible scenarios that can be used with a classification of

the ontology in learning levels by the topics in computer programming paradigm. The

aim of this research is to determine the impact of ontological learning paradigm in

computer programming process by drawing a basic ontological learning map by computer

programming features.

1. Introduction

Education plays a pivotal role in modern society and

is gaining even greater importance in our digital era.

The swift evolution of Information and

Communication Technologies (ICT) has

fundamentally changed the ways we acquire and

disseminate knowledge[1]. Learning ontologies,

which provide structured frameworks for organizing

knowledge and concepts, offer a powerful means of

enhancing educational practices by enabling clearer

communication and shared understanding among

stakeholders [2]. As educational environments

become more interconnected, the need for effective

data interoperability has never been more crucial. By

establishing common vocabularies and relationships

among various educational resources, learning

ontologies facilitate seamless data sharing and

collaboration among educators, thereby enriching

the teaching and learning experience [3].

Furthermore, these ontologies play a pivotal role in

curriculum development, allowing for the creation of

interconnected curricula that reflect the diverse

needs of students. As education moves toward more

personalized approaches, the integration of learning

ontologies supports tailored learning experiences

that cater to individual students' strengths and

preferences.

Collaboration and knowledge sharing among

educators and researchers in the Learning ontology

offer numerous benefits to the academic community

[3]. By working together, professionals can combine

http://www.ijcesen.com/
http://dergipark.ulakbim.gov.tr/ijcesen
mailto:dogukan.sariyalcinkaya@omu.edu.tr
mailto:ugurercan@akdeniz.edu.tr

Ahmet Doğukan Sarıyalçınkaya, Uğur Ercan / IJCESEN 11-1(2025)1515-1527

1516

their expertise and resources to tackle complex re-

search questions and develop innovative solutions.

Improved communication resulting from this

collaboration can significantly enhance the quality

of research and educational outcomes. When

educators and researchers share their knowledge and

insights, they can build on each other's ideas, leading

to a more comprehensive understanding of the

subject matter. Moreover, the learning ontology

provides a platform for interdisciplinary

cooperation, allowing experts from different fields to

come together and contribute their unique

perspectives. This interdisciplinary approach fosters

innovation and creativity, ultimately advancing the

academic field as a whole. Through enhanced

collaboration and knowledge sharing, educators and

researchers in the learning ontology can collectively

drive progress and make significant contributions to

the advancement of knowledge and technology [4].

Learning ontologies provide a structured framework

that aligns curriculum goals with learning outcomes

by offering a clear vocabulary and metadata for

learning objects. Moreover, ontology facilitates the

identification of knowledge gaps and highlights

areas where students may require additional support.

This enables educators to make data-driven

decisions, optimizing curriculum development and

tailoring teaching methods to meet students' specific

needs. While many educational institutions have

successfully implemented informatisation tools to

manage entities like "curriculum" or "course

syllabus," these systems often focus primarily on

formal attributes—such as study duration,

assessment methods, and course placement within

the curriculum. At most, such systems may offer a

list of topics covered in a course; however, this

information is generally not structured in a way that

allows for meaningful computer-based analysis [5].

Ontology in computer programming refers to the

formal representation of knowledge within a

domain, typically using a structured vocabulary of

entities and the relationships between them [6]. It

serves as a foundational framework for organizing

and categorizing information in a way that is

understandable by both humans and machines.

Ontologies define classes, properties, and instances,

offering a shared understanding of a particular

domain that can be used to facilitate knowledge

sharing, data integration, and reasoning across

different applications and systems. By providing a

common semantic structure, ontologies play a

crucial role in enhancing interoperability and

enabling more intelligent and context-aware

software applications [7].

Teaching and learning computer programming is a

complex endeavor, and evidence suggests that

instructors often fail to foster reflective problem-

solving processes in their students [8]. This is

particularly concerning given that many students

lack prior experience or training in programming [9].

While this methodology offers significant potential

for personalizing learning experiences, it also

introduces challenges, including the complexity

involved in developing and maintaining precise

educational ontologies, the necessity for effective

reasoning algorithms, and the critical need to protect

student data privacy and security in the context of

computer programming [10]. Furthermore, this

article provides practical examples demonstrating

the application of ontology-based knowledge

representation in real-world educational

environments.

Taking into consideration the ease of incorporating

ontologies in computer pro-gramming process and

the difficulties reported in the scientific literature

[11], this study proposed a model of knowledge

discovery based on computer programming strategy

with analogies and obtained a set of patterns for

possible scenarios that can be used with a

classification of the ontology in learning levels by

the topics in computer programming paradigm.

In the collection of information, a semi-structured

online questionnaire was con-ducted with 100

individuals who give computer programming

courses to classify com-puter programming. The

proposed knowledge ontology has three stages:

classification of the computer programming, the owl

of the ontology and mind map of the ontology.

2. Related Work

2.1 Ontology

Ontology is the term "for the philosophical field that

tries to answer the query 'what are there?'" [12]. It is

a part of philosophy that studies "diverse kinds and

structures of things, qualities, events, processes, and

links" in every realm of reality. The piece provides

readers with some insights regarding basic ontology,

highlights its meaning, clarification, and relevance.

It is needed to state that this type of philosophy plays

an important role because it helps people grasp the

main queries associated with reality and existence.

In this respect, philosophers worry "to provide a

final and comprehensive classification of entities in

all spheres of being" [13]. Another goal that is

attained is "to give reply to such queries as what

groups of entities are required for a total description

and elucidation of the world". Metaphysics,

epistemology, and logic are other disciplines that are

impacted by ontology because all of them are related

to being-specific features of knowledge. Ontologies,

whose main purpose is information sharing and

Ahmet Doğukan Sarıyalçınkaya, Uğur Ercan / IJCESEN 11-1(2025)1515-1527

1517

reuse, are used in many fields, including knowledge

management, information retrieval, natural language

processing, and artificial intelligence [14]. Ontology

and ontology development concepts, which have

existed for a long time, have garnered more attention

with Tim Berners-Lee's vision of the semantic web,

and the number of studies in this area has rapidly

increased [15].

As the number of ontologies has grown, there has

been a need for resources that facilitate access to

these ontologies, allowing users to search and use

them more easily. Ontology search engines like

Swoogle and Watson have indexed and provided

search capabilities for ontologies on the web [16].

Beyond search engines, web-based systems known

as ontology repositories or ontology libraries have

emerged, housing a collection of ontologies and

enabling users to find and utilize them [17]. These

systems typically contain similar ontologies within a

specific scope and domain. For example, ontology

libraries such as BioPortal, OBO Foundry, and OLS

are important resources for accessing medical

ontologies. In addition to these resources, large

ontologies hosted on their own servers, such as

DBpedia, YAGO, and GeoNames, are also

available. These ontologies offer access through

methods such as SPARQL endpoints and direct

ontology file downloads.

Maedche and Staab addressed ontology as a web

ontology [18]. Each data point has a descriptor, and

the data in the ontology is characterized and finitely

fixed. This includes the meanings of the data, the

relationships between the data, the similarities and

differences among the data, and their sequential and

ordering relationships. For a concept set to have an

ontology in the linked data, it must possess certain

attributes:

• There must be a boundary for the data set,

allowing for the interpretation of data in relation

to one another, progressing from parts to the

whole.

• The logical and mathematical operations between

data sets and meaningful data must be atomic,

meaning they should have a single answer.

• It should use the class structure of OWL (Web

Ontology Language) [18].

According to Maedche and Staab, in addition to

these, for the ontology to be more understandable

and easily usable, it should:

• Contain a simple example that is easily

comprehensible,

• Possess class attributes similar to those in object-

oriented programming,

• Have criteria for comparing mathematical

functions,

• Have criteria for comparing logical functions

[18].

Ontology, the branch of philosophy that deals with

the nature of being and exist-ence, plays a crucial

role in education by shaping student learning and

development. The different ontological perspectives

held by educators can significantly impact how

students perceive knowledge, themselves, and the

world around them. This essay will delve into the

influence of ontological perspectives on student

learning, exploring how varying beliefs about the

nature of reality can impact educational outcomes.

Additionally, we will examine the relationship

between ontology and curriculum design, as

educators' ontological beliefs can influence the

content, structure, and delivery of educational

materials. Furthermore, we will analyze how

ontological beliefs shape educational philosophies

and approaches, impacting teaching methods,

assessment strategies, and overall educational goals.

By understanding the significance of ontology in

education, we can gain insight into how different

perspectives on reality can shape the learning

experiences of students and inform the practices of

educators.

The existential learning method concentrates on

gaining awareness about their learning and existence

in general. In education, applying this notion is

crucial as it ena-bles learners to know more

regarding their beliefs, values, and assumptions.

When individuals undertake existential learning,

they become more self-aware, and they can know

more about themselves. It also permits them to

improve in diverse areas of learning such as critical

thinking. Learning this way requires knowing more

about how rational one is. Meanwhile, people need

to know they are not emotionally harmed when

undergoing existential learning. Potential issues or

criticism that might arise from using this form of

learning within the conventional educational system

are possible. Some modes of teaching and

curriculum may fail to accommodate existential

learning as it deviates from the norm. The regular

educational framework may not allow such an

approach as existential learning because it may be

subjective.

If we examine the layered structure of the Linked

data, as seen in Figure 1, the bot-tom layer contains

XML (Extensible Markup Language). XML,

developed after HTML, is a language used for data

storage and data exchange between web pages and

other software. Following XML is RDF (Resource

Description Framework), which forms the data

model of the Linked data, essentially establishing the

rules of the database. The next layer contains

Ontology, which represents the entity-relationship

system within the database and is written in OWL

(Web Ontology Language). The logic layer consists

of standards used to strengthen the ontology

Ahmet Doğukan Sarıyalçınkaya, Uğur Ercan / IJCESEN 11-1(2025)1515-1527

1518

language, creating a more stable and robust

structure. The proof layer enables the interaction of

the linked data structure with other web languages

and facilitates the transition from the whole to the

particular. The trust layer is the final and most

crucial feature, encompassing the security aspects

[19].

Figure 1. Layered structure of the Linked data

Ontology Creation Tools

Ontology creation tools are software applications

used for managing information and ensuring data

integrity. These tools define the data structure and

relationships within a specific domain or topic, and

are utilized in semantic web technologies,

information management, natural language

processing, and artificial intelligence applications.

Table 1 shows some popular ontology creation tools:

According to Table 1 the basic features of this

applications are shown below.

•Protégé:

Description: An open-source ontology development

tool developed by Stanford University. It offers both

a graphical user interface and support for OWL

(Web Ontology Language).

Features: Supports OWL, RDF, RDFS, extensibility

with plugins, extensive docu-mentation.

•TopBraid Composer:

Description: A tool developed by TopQuadrant for

enterprise-level ontology de-velopment and

management.

Features: User-friendly interface, strong integration

capabilities, supports RDF, SPARQL, SHACL.

•Ontology Editor (OBO-Edit):

Description: An open-source tool specifically

developed for biomedical ontologies. It is commonly

used in the Gene Ontology (GO) projects.

Features: Easy-to-use interface, biomedical data

management, powerful filtering and search

capabilities.

•Web Protege:

Description: The web-based version of Protégé,

providing collaborative ontology development over

the internet.

Features: User-friendly web interface, collaborative

features, version control.

•Apollo:

Description: An open-source bioinformatics

software that facilitates the annotation and

visualization of biological data.

Features: Biological data management, powerful

visualization tools, integrated data analysis.

•VocBench:

Description: A web-based ontology and vocabulary

creation and management tool developed by the

FAO (Food and Agriculture Organization)

Table 1. Some popular ontology creation tools

Tool Description Features

Protégé
Open-source ontology development tool by

Stanford University.

Supports OWL, RDF, RDFS; extensible with

plugins; extensive documentation.

TopBraid

Composer

Enterprise-level ontology development and

management tool by TopQuadrant.

User-friendly interface; strong integration

capabilities; supports RDF, SPARQL,

SHACL.

Ontology Editor

(OBO-Edit)

Open-source tool for biomedical ontologies;

used in Gene Ontology projects.

Easy-to-use interface; biomedical data

management; powerful filtering and search

capabilities.

WebProtege
Web-based version of Protégé for

collaborative ontology development.

User-friendly web interface; collaborative

features; version control.

Apollo

Open-source bioinformatics software for

annotation and visualization of biological

data.

Biological data management; powerful

visualization tools; integrated data analysis.

VocBench
Web-based ontology and vocabulary

management tool by FAO.

User-friendly interface; rich collaboration

features; supports RDF, SKOS.

Ontorion Fluent

Editor

Open-source tool by NeOn Project for

ontology engineering and lifecycle

management.

Modular architecture; extensive plugin

support; integration with

Ahmet Doğukan Sarıyalçınkaya, Uğur Ercan / IJCESEN 11-1(2025)1515-1527

1519

Features: User-friendly interface, rich collaboration

features, supports RDF, SKOS.

•Ontorion Fluent Editor:

Description: An open-source tool developed by the

NeOn Project for ontology en-gineering and

lifecycle management.

Features: Modular architecture, extensive plugin

support, integration with OWL, RDF, SKOS.

These tools simplify the processes of ontology

creation and management, facilitating better

understanding and utilization of data. To select the

most suitable tool for your needs and projects, it is

beneficial to review their features and capabilities in

detail.

The Web Ontology Language(OWL)

The Web Ontology Language (OWL) is a language

used to define ontologies for the linked data [20].

OWL is designed not only for information to be

understood by users but also to enable computers to

perform interpretation and transformation of data.

With OWL, the linked data indexing process is

accomplished by converting web content and web

pages written in XML and RDF into the Linked data.

Linked data indexing refers to the organization of

web pages according to the ontology based structure

using languages like XML, OWL, and RDF. There

are several editor programs for creating OWL, in the

research Ontorion fluent editor was chosen to make

this ontology in computer programming approach.

The Web Ontology Language(OWL)

The creation and implementation of ontologies offer

numerous advantages, such as facilitating a shared

understanding of information structures among

individuals and software agents, and promoting the

reuse of domain-specific knowledge [21]. As a

result, various ontologies have been developed to

improve comprehension and querying within the

programming domain. Many of these ontologies

focus on representing elements of the C language or

object-oriented concepts found in Java and C#. One

such example is PasOnto, an ontology designed to

conceptualize Pascal exercise solutions, aiming to

enhance learners' ability to understand and query

Pascal programs. PasOnto is intended to encompass

exercise descriptions along with all Pascal language

constructs necessary to define a Pascal program [21].

Source code plays a dominant role in understanding

software and, in many cases, is the only structural

resource available to programmers for maintenance

activities. In the software industry, the ability to

query source code underpins a wide range of

activities, from obtaining basic information about

the software to automatically generating complex

inferences. In computer programming, the ontology

in use generally offers the researchers with a distinct

vocabulary that enables them to share the data within

a domain. It consists of the machine-understandable

definitions of the core concepts and the connections

that exist between the concepts. By sharing the

ontology, people and software agents can connect.

Ontologies like RDF (Resource Description

Framework) and the DARPA Agent Markup

Language are being built to enhance the encoding of

knowledge on the web pages. The usage of the

ontology in the coding language is part of the

semantic web development. By providing the shared

background for data organized on the web pages,

coding language exploits ontologies in declaring the

ontology-related variables inside the program. By

sharing a common idea of the structures of the

information, providing the knowledge reuse,

separating the domain knowledge, and accounting

the operational knowledge, the ontology of the

coding language in the structure of the coding

language facilitates the effectiveness of the coding

language. Thus, method to show knowledge in a

realm, plays a key job in programming and software

development. Method gives a way to show

knowledge in a standard style— that is clear because

the same method structure is shared among people

or software agents. It provides a vocabulary of

strange concepts and connections in a formal way,

so the high-level declarative logic programming is

possible for automatic knowledge analysis and use.

Program analysis based on method allows using

declarative programming with writing logic

inquiries rather than impedance with the complex

compiler code for knowledge regarding program

properties. The use of method for standardizing the

definitions of concepts and versatile knowledge

representation is the significant strength of method

based program analysis as differentiated to the need

for machine-oriented code programming in the

situations of conventional declarative program

analysis. The search results display the web pages

containing the expression they typed, ranked based

on popularity. However, to distinguish whether these

are indeed the pages the student is looking for,

semantically annotated resources, such as web

pages, will be presented. This will enable students to

access the most accurate information without

wasting time. Consequently, students will utilize the

remaining time to construct the information they

seek. Individuals plan their learning according to

their own needs. One dimension of this classification

evaluates the use of ontologies at runtime or during

software development. The other dimension is based

on whether the ontology models the problem domain

of the software or the infrastructure of the

development environment. In this dimension, the

area modeled by the ontology can be the real-world

problem domain of the software or various

Ahmet Doğukan Sarıyalçınkaya, Uğur Ercan / IJCESEN 11-1(2025)1515-1527

1520

infrastructure areas within the software development

process (such as modeling a software component

library with ontologies). Programming languages are

diverse, with each designed to fulfill specific tasks

and support various paradigms. For developers,

grasping the distinctions between these language

categories is key to improving coding efficiency and

selecting the right tool for a given project. While

there are multiple ways to classify programming

languages, they generally fall into five primary

categories.:

• Functional programming languages, like Haskell

and Lisp, treat computation as the evaluation of

mathematical functions,

• Object-oriented programming (OOP) languages,

including Python, Java, and C#, organize code

around objects, encapsulating data and behavior,

• Procedural Languages, Procedural programming

languages, like Pascal and Fortran, follow a

linear, top-down approach to code organization,

• Scripting languages, such as Python, JavaScript,

and Ruby, are designed for automating the

execution of tasks,

• Adding another layer to our exploration, logic-

based programming lan-guages like Prolog

introduce a different paradigm.

We opted for the knowledge domain of computer

programming, given that the learning of at least one

programming language is the common requisite by

drawing an ontology map to computer programming

to address the basic computer programming

procedure, which can draw an ontological map to

make computer programming approach easier

according to the contents of the programming

language contents.

The Hypoteses

The research problem was defined to draw an

ontology map to computer pro-gramming to address

the basic computer programming procedure, which

can draw an ontological map to make computer

programming approach easier according to the

contents of the programming language contents.

3. Material and Methods

3.1. Research Design

In the research, an online survey was used to

ontologically illustrate learning to classify topics in

computer programming. The use of online

questionnaires has increased in research due to the

spread of internet use and recent COVID-19

pandemic. Online questionnaires provide

advantages in terms of cost, speed, and convenience.

Descriptive research, due to its quantitative nature,

is the most commonly used and most accurate form

of survey research. Unlike exploratory research

methods, descriptive research employs pre-planned,

structured, and closed-ended questions. This

research method is based on the principle of

deduction, meaning the structure and questions of

the survey are predetermined according to existing

theories or areas of study. The collected data is then

used to test hypotheses or assumptions. The purpose

of descriptive research is to measure and categorize

the opinions, attitudes, or beliefs of a specific

population on a particular topic. For instance,

multiple-choice questions that provide predefined

response options can be used for a descriptive

survey. While these standardized questions may not

provide the depth offered by qualitative insights,

they yield data that can be statistically analyzed and

used to draw inferences. By grouping responses into

categories, you can measure how prevalent certain

views or behaviors are within your target audience.

This allows you to identify changes in attitudes and

trends by comparing changes over time.

3.2. Participants

The research was conducted with 100 individuals

who give computer programming courses. The

sample of the research was selected through

purposive sampling, which is one of the probability

sampling methods. Probability sampling involves

selecting units from the population with equal

probability each time, and its distinguishing feature

is the random selection of elements from the

population. In such selections, the investigated

groups are divided into homogeneous groups as long

as they have similar characteristics Table 2 shows

the demographic characteristics of the survey

participants.

Table 2. The demographic characteristics of the survey

participants.

 Female Male Total

Prof. 5 20 25

Assoc.Prof. 5 20 25

Lecturer 10 15 25

Programmer 5 20 25

 25 75 100

Based on Table 2, 100 experts participated in the

survey, of which 25 were female and 75 were male

who hold the titles of Professor, Assoc. Prof.,

Lecturer and Programmer.

3.3. The Digital Questionnare

Programming experience provides the technical

foundation, problem-solving mindset, and toolset

Ahmet Doğukan Sarıyalçınkaya, Uğur Ercan / IJCESEN 11-1(2025)1515-1527

1521

required to efficiently construct, debug, and

integrate ontologies within various systems.

Improving programming skills requires practicing

rules, basics, and core concepts of computer

programming (how to declare variable, to use

selective or loop structure, to define functions and

procedures, …). We are conducting a survey to

understand how programming levels are determined

based on different topics. The participants fill out the

following information by GoogleForms for follow-

up purposes:

• Name:

• Email Address:

Profession: Please select one from the options below

or specify another profession if not listed:

• Software Developer

• Data Scientist

• Teacher/Instructor

• Student

• Other (please specify):

Programming Experience: Please indicate your

experience in years by selecting one of the following

options:

• 1-3 years

• 3-5 years

• 5+ years

Beginner Level Topics: In your opinion, which

topics should be included to define the beginner

level in programming? Possible topics include:

• Variables and Data Types

• Control Structures (if, else)

• Loops (for, while)

• Functions/Methods

• Other (please specify any additional topics):

Intermediate Level Topics: When defining the

intermediate level, which topics do you consider

essential? Possible topics include:

• Advanced Control Structures (switch, case)

• Object-Oriented Programming (OOP)

• File Operations

• Database Connections

• Other (please specify any additional topics):

Advanced Level Topics: For the advanced level,

which topics do you believe are important? Possible

topics include:

• Algorithms and Data Structures

• Parallel Programming

• API Integration

• Security

• Other (please specify any additional topics):

3.4. The Ontology

The ontology of the study was created by using

Ontorion fluent editor ontology creation software.

Accordingly, two objects were created: "thing" and

“level”. In Figure 2, under the "user" object, the

user's name and their level obtained from the on line

questionnaire are entered as sub-values. Under the

"site" object, the addresses of formal sites

predetermined by expert instructors and their

difficulty levels are entered as sub-values as it is

shown on the taxonomy tree on the right drop down

menu as it is categorized. As a result of these linked

data operations, sites corresponding to the user's

name and level will automatically appear. In other

words, under the user, there are sub-classes of the

name and level. Under the level class, there are sub-

classes such as beginner, intermediate, and

advanced. Under the "site" object, there are sub-

classes of site address and level. Under the level

class, there are common values such as beginner,

intermediate, and advanced, similar to the sub-

classes in the user object's level. The user object and

the site object are mathematically processed through

intersection sets based on the level. Thus, if the user's

level is beginner, they are directed to sites with

beginner-level content.

4. Results and Discussion

In the research, the data obtained from on line

questionnaire after the implementation of materials

prepared in accordance with the ontological learning

process in computer programming were analyzed.

The reliability of the online scale was tested by using

Cronbach's alpha analysis. The Cronbach's alpha

analysis was conducted by using the SPSS 21

program, which is shown in Table 3.

Table 3. Reliability Statistics

Cronbach’s

Alpha

Number of

Questions

,78 6

According to Table 3, the scale's Cronbach's alpha

reliability was found to be 78%, indicating that this

reliability value is quite sufficient. Cronbach's alpha

values range from 0 to 1. A value above 0.7 is

generally considered acceptable for research

purposes, indicating good internal consistency.

The contents of the computer programming

paradigm is divided into three levels, which is shown

in Table 4.

According to Table 4, the ontology for programming

levels is divided into three main categories:

Beginner, Intermediate, and Advanced. At the

Beginner Level, learners are introduced to basic

programming concepts such as variables, control

structures, loops, and functions. Topics under this

level include Variables, which cover the basic

concepts of variables and data types; Control

Structures, focusing on basic control structures like

if statements and loops; Loops, which include basic

Ahmet Doğukan Sarıyalçınkaya, Uğur Ercan / IJCESEN 11-1(2025)1515-1527

1522

loops such as for and while loops; and Functions,

which discuss basic concepts of functions and

methods.

At the Intermediate Level, learners delve into more

complex topics such as ad-vanced control structures,

object-oriented programming, file operations, and

database connections. This level includes Advanced

Control Structures, covering advanced control

structures such as switch statements and recursion;

Object-Oriented Programming, which explores

concepts of object-oriented programming including

classes and objects; File Operations, focusing on file

handling and operations such as reading and writing

files; and Database Connections, which involve

connecting to and interacting with databases.

At the Advanced Level, learners examine topics

such as algorithms and data structures, parallel

programming, API integration, and security in depth.

Topics under this level include Algorithms, focusing

on the in-depth study of algorithms and their

complexities; Data Structures, which cover

advanced data structures such as trees and graphs;

Parallel Programming, which discusses techniques

and concepts for parallel and concurrent

programming; API Integration, focusing on

integrating and using APIs in software development;

and Security, which covers security concepts and

practices in programming.

According to the, the ontology for programming

levels, which is divided into three main categories,

the owl of this ontological learning process is shown

in Figure 3.

Figure 2. The Ontology Map

Figure 3. The owl of the computer programming ontology

Ahmet Doğukan Sarıyalçınkaya, Uğur Ercan / IJCESEN 11-1(2025)1515-1527

1523

Table 4. The classification of the computer programming paradigm according to the questionnaire

Level
Number of

Classification
Label Comment

Beginner Beginner Level

Learning level for basic programming concepts such as

variables, basic control structures, loops, and

functions.

- Variables 90 Variables Basic concepts of variables and data types.

- Control

Structures
95 Control Structures

Basic control structures such as if statements and

loops.

- Loops 85 Loops Basic loops such as for and while loops.

- Functions 80 Functions Basic concepts of functions and methods.

Intermediate
Intermediate

Level

Level where advanced control structures, object-

oriented programming, file operations, and database

connections are understood.

- Advanced

Control Structures
80

Advanced Control

Structures

Advanced control structures such as switch statements

and recursion.

- Object-Oriented

Programming
75

Object-Oriented

Programming

Concepts of object-oriented programming including

classes and objects.

- File Operations 90 File Operations
File handling and operations such as reading and

writing files.

- Database

Connections
80

Database

Connections
Connecting to and interacting with databases.

Advanced Advanced Level

Level where algorithms and data structures, parallel

programming, API integration, and security topics are

deeply examined.

- Algorithms 65 Algorithms In-depth study of algorithms and their complexities.

- Data Structures 75 Data Structures Advanced data structures such as trees and graphs.

- Parallel

Programming
80

Parallel

Programming

Techniques and concepts for parallel and concurrent

programming.

- API Integration 55 API Integration Integrating and using APIs in software development.

- Security 60 Security Security concepts and practices in programming.

Beginner Beginner Level

Learning level for basic programming concepts such as

variables, basic control structures, loops, and

functions.

- Variables 90 Variables Basic concepts of variables and data types.

- Control

Structures
95 Control Structures

Basic control structures such as if statements and

loops.

- Loops 85 Loops Basic loops such as for and while loops.

- Functions 80 Functions Basic concepts of functions and methods.

Intermediate
Intermediate

Level

Level where advanced control structures, object-

oriented programming, file operations, and database

connections are understood.

- Advanced

Control Structures
80

Advanced Control

Structures

Advanced control structures such as switch statements

and recursion.

- Object-Oriented

Programming
75

Object-Oriented

Programming

Concepts of object-oriented programming including

classes and objects.

- File Operations 90 File Operations
File handling and operations such as reading and

writing files.

- Database

Connections
80

Database

Connections
Connecting to and interacting with databases.

Advanced Advanced Level

Level where algorithms and data structures, parallel

programming, API integration, and security topics are

deeply examined.

- Algorithms 65 Algorithms In-depth study of algorithms and their complexities.

- Data Structures 75 Data Structures Advanced data structures such as trees and graphs.

- Parallel

Programming
80

Parallel

Programming

Techniques and concepts for parallel and concurrent

programming.

- API Integration 55 API Integration Integrating and using APIs in software development.

- Security 60 Security Security concepts and practices in programming.

Ahmet Doğukan Sarıyalçınkaya, Uğur Ercan / IJCESEN 11-1(2025)1515-1527

1524

Figure 4. The terminology of the computer programming

Figure 5. The mind map of computer programming ontology

The ontology is structured into three levels of

programming expertise: beginner, intermediate, and

advanced. Each level encompasses specific topics

pertinent to that level of proficiency. At the beginner

level, learners focus on fundamental programming

concepts such as variables, basic control structures

(like if statements and loops), loops (for and while),

and basic functions. Intermediate level topics delve

into more complex areas such as advanced control

structures (including switch statements and

recursion), object-oriented programming (OOP)

principles, file operations (handling reading and

writing of files), and database connections. The

advanced level includes in-depth studies of

algorithms and their complexities, advanced data

structures (like trees and graphs), parallel

programming techniques, API integration, and

security practices in programming. This structured

approach helps in systematically advancing the

learner's knowledge and skills in programming. The

terminology of this ontology is shown on Figure 4.

According to Figure 4, the given owl notation

defines an ontology with a base namespace

http://www.semanticweb.org/owl/owlapi/turtle,

which serves as the default URI for the ontology.

Within this ontology, it specifies hierarchical

relationships among three classes: Beginner,

Intermediate, and Advanced, all prefixed with

http://example.org/ontology#. Specifically, it states

that every instance of the Beginner class is also an

instance of the Intermediate class (Beginner is a

subclass of Intermediate), and every instance of the

Intermediate class is also an instance of the

Advanced class (Intermediate is a subclass of

Advanced). Additionally, the notation references the

XML namespace

Ahmet Doğukan Sarıyalçınkaya, Uğur Ercan / IJCESEN 11-1(2025)1515-1527

1525

http://www.w3.org/XML/1998/namespace, often

used in XML standards, indicating that the ontology

may incorporate or align with XML-related

elements. The ontology map structured into three

levels of programming expertise: beginner,

intermediate, and advanced as it is shown on Figure

5. This ontology illustrates a mind map for

programming skills, divided into three key levels:

Beginner, Intermediate, and Advanced. The

structure is hierarchical, and each level has its own

branches detailing relevant subtopics. The core

concept is labeled as Skill, from which all other

nodes branch out. This map serves as an educational

tool or roadmap for learning programming, showing

how concepts build on each other as you progress

from beginner to advanced level.

Ontology in computer programming refers to the

structured framework that defines the entities,

concepts, and relationships within a domain.

Originating from philosophical ontology—the study

of the nature of being—its application in computer

programming serves as a foundation for organizing

knowledge in a way that both humans and machines

can process effectively. This discussion explores the

significance, challenges, and applications of

ontology in programming.

Ontologies enable programmers to formalize and

communicate complex systems. By providing a

shared vocabulary and a structured schema, they

ensure consistency across different systems and

stakeholders. For instance, in domains like e-

commerce, healthcare, and artificial intelligence,

ontology facilitates interoperability by defining a

standard representation of concepts such as

"product," "patient," or "algorithm."

Moreover, ontologies play a critical role in semantic

computing. Technologies like the Semantic Web

rely on ontologies to make the web's content

machine-readable and understandable. Through the

use of languages such as OWL (Web Ontology

Language) and RDF (Resource Description

Framework), programmers can create knowledge

graphs and enable intelligent search, data

integration, and reasoning systems. Ontology

development involves defining classes, properties,

and relationships to create a structured vocabulary

that enhances knowledge representation and

interoperability. This guide aims to empower novice

developers with essential methodologies and tools

for creating and managing ontologies tailored to

specific domains. On the other hand, in The Role of

Ontologies and Linked Data," ontologies are seen as

pivotal in the AI, facilitating the integration and

expression of data across diverse sources. It

emphasizes the role of ontologies in enhancing

semantic search, automated reasoning, and

interoperability with technologies like RDF and

SPARQL [14]. Together, these perspectives

illustrate how ontologies not only organize

information but also enhance the intelligence and

interoperability of software applications within and

beyond traditional programming contexts.

Fundamental is the exercise of ontological

exploration in programming, settling coding matters

to be deciphered. Coders sense such deeds and

employ commonplace language processes to fortify

their capability in structuring data, which is an

ontological process of producing facts within a given

extent. Investigating ontology is a tactic

contemplated for augmenting puzzle-solving

potentialities [15]. The capacity of coders to resolve

puzzles ameliorates, and their actions for unraveling

intricate problem-solving challenges are partially

facilitated. The study of producing facts on a given

focus point assists in this process. The evolution of

comprehension can benefit future code scribes,

enabling them to share data about data layouts. This

might even permit for the reuse of data from certain

fields as part of the learning process, or for

deliberating operational specifics apart from field-

based data. The study of producing facts on a given

focus point could be employed in programming

pedagogy to address the style of code scripts

performed by coders in a more structured fashion.

Programming languages are diverse, with each

designed to fulfill specific tasks and support various

paradigms. For developers, grasping the distinctions

between these language categories is key to

improving coding efficiency and selecting the right

tool for a given project. While there are multiple

ways to classify programming languages, they

generally fall into five primary categories. In that

regard, our programming ontology proposes the

curriculum ranging from basic to more complex

exercises. So, student have the possibility to practice

programming by visualizing solutions and

comparing them with their work. Nevertheless,

proposed solutions are not semantically structured to

be queried efficiently.

5. Conclusion

There is an approach of being kept in mind in the

world of coding so-called ontological learning,

which promises notable code analysis and

development boost. In the sphere of code analysis,

where the ontology standardizes trusty field rules,

links, and ideas, coders may unite the code builds

and related knowledge into a single depiction.

Knowledge-map directs the way we represent and

grasp wisdom. It exists as a philosophical idea or

used in the field of wisdom representation. It allows

computers to "think" correctly and make good

choices in the domain of artificial intelligence. Its

Ahmet Doğukan Sarıyalçınkaya, Uğur Ercan / IJCESEN 11-1(2025)1515-1527

1526

sig-nificance can be found in areas from computer

science to ontology philosophy. Fur-thermore,

knowledge-map arranges the structure of wisdom. In

other words, it precisely describes what we call

wisdom and the reasons for calling it wisdom.

Generally, what we refer to as knowledge-map is a

formal knowledge-map. Other wide classifications

include metaphysical knowledge-map and

descriptive knowledge-map. It is hard to imagine

science devoid of classifications or proper

information structuring. If taken to a wider setting, it

is hard to imagine philosophy devoid of proper code

to represent concepts. That code is provided by

knowledge-map.

The benefits of spreading the method in computer

coding into ontological stages are clearly evident.

Below these situations, it is possible to enhance the

overall quality of software development. In

particular, separating the usefulness from the user

view contributes to the creation of more long-lasting

and handy software. The ontological stage system

gives a good framework for handling difficulty. One

layer performs its job, interacting with the other

layer as per the appointed scheme. Many people are

convinced that it is vital to introduce the method to

using the ontological stage system in computer

programming. This tactic will allow enhancing the

quality of software and devote more time to mindful

work on the program. Since the need for appropriate

and high-quality software will only increase in the

future, the ontological stage system will be the right

fix.

An ontology map like this one is primarily helpful

for planning and learning rather than direct coding.

Here’s how it can be beneficial:

Learning Path: The map helps beginners,

intermediate coders, and advanced programmers see

the sequence and scope of topics they should cover

as they progress, which is valuable for self-study or

course design.

Curriculum Planning: In educational settings, the

map aids instructors in struc-turing lessons, creating

a syllabus, or organizing course materials by skill

level. Skills Assessment: For developers, it provides

a reference to evaluate their knowledge and identify

areas for improvement. Project Planning: For

complex projects, knowing which level of

knowledge each team member should have can help

in assigning tasks that match their expertise.

However, when it comes to actual coding tasks, the

map is a high-level reference rather than a coding

aid. Practical coding requires detailed syntax

knowledge, hands-on experience, and familiarity

with specific tools, libraries, and development

environments. For future work, we will design a

recommendation system that will guide the professor

in the approach of an analogy to address a

fundamental concept of a CS1 and develop a

visualization tool that supports the process of

abstraction in computing environments.

Author Statements:

 Ethical approval: The conducted research is not

related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial interests

or personal relationships that could have

appeared to influence the work reported in this

paper

 Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are available on

request from the corresponding author. The data

are not publicly available due to privacy or

ethical restrictions.

References

[1] Villegas-Ch, W., & García-Ortiz, J. (2023). Enhancing

learning personalization in educational

environments through ontolo-gy-based knowledge

representation. Computers, 12(10), 1994.

[2] Dou, D., Wang, H., & Liu, H. (2015, February).

Semantic data mining: A survey of ontology-based

approaches. In Proceedings of the 2015 IEEE 9th

international conference on semantic computing

(IEEE ICSC 2015) (pp. 244-251

[3] Stancin, K., Poscic, P., & Jaksic, D. (2020).

Ontologies in education–state of the art. Education

and Information Technologies, 25(6), 5301-5320.

[4] Tapia-Leon, M., Rivera, A. C., Chicaiza, J., &

Luján-Mora, S. (2018, April). Application of

ontologies in higher education: A systematic

mapping study. In 2018 IEEE Global Engineering

Education Conference (EDUCON) (pp. 1344-1353).

[5] Husáková, M., & Bureš, V. (2020). Formal

ontologies in information systems development: a

systematic review. Information, 11(2), 66.

[6] Wawrzik, F., Rafique, K. A., Rahman, F., & Grimm,

C. (2023). Ontology learning applications of

knowledge base con-struction for microelectronic

systems information. Information, 14(3), 176.

[7] Somodevilla García, M., Vilariño Ayala, D., &

Pineda, I. (2018). An overview of ontology learning

tasks. Computación y Sistemas, 22(1), 137-146.

[8] Nazyrova, A., Milosz, M., Bekmanova, G.,

Omarbekova, A., Mukanova, A., & Aimicheva, G.

(2023). Analysis of the Con-sistency of Prerequisites

and Learning Outcomes of Educational Programme

Ahmet Doğukan Sarıyalçınkaya, Uğur Ercan / IJCESEN 11-1(2025)1515-1527

1527

Courses by Using the Ontological Approach.

Applied Sciences, 13(4), 2661.

[9] Qaswar, F., Rahmah, M., Raza, M. A., Noraziah, A.,

Alkazemi, B., Fauziah, Z., ... & Sharaf, A. (2022).

Applications of ontology in the internet of things: A

systematic analysis. Electronics, 12(1), 111.

[10] Guizzardi, R., Carneiro, B. G., Porello, D., &

Guizzardi, G. (2020, November). A core ontology

on decision making. In Pro-ceedings of the XIII

Seminar on Ontology Research in Brazil and IV

Doctoral and Masters Consortium on Ontologies

(ON-TOBRAS 2020) (Vol. 2728, pp. 9-21). CEUR-

WS.

[11] Effingham, N. (2013). An introduction to ontology.

John Wiley & Sons.

[12] Smith, B. (2012). Ontology. In The furniture of the

world (pp. 47-68). Brill.

[13] Staab, S., & Maedche, A. (2001). Knowledge

portals: Ontologies at work. AI magazine, 22(2), 63-

63.

[14] Demirli, C., & Kütük, Ö. F. (2010). Semantic Web

(Web 3.0) and an overview of its ontologies.

İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi,

(9/18), 95-105.

[15] Sevinc, O., Huang, L., Loughzang, L., & Kilic, E.

(2015). Geospatial information retrieval base on

query expansion and semantic indexing. Journal of

Engineering and Fundamentals, 2(2), 51-68.

[16] Diatta, B., Basse, A., & Ouya, S. (2019, April).

PasOnto: Ontology for learning Pascal programming

language. In 2019 IEEE Global Engineering

Education Conference (EDUCON) (pp. 749-754).

IEEE.

[17] Hussain, F. (2012). E-Learning 3.0= E-Learning

2.0+ Web 3.0?. International Association for

Development of the Information Society.

[18] Brickley, D. and Guha, RV (1999). Resource

Description Framework (RDF) Schema

Specification. Proposed Recommendation, World

Wide Web Consortium: http://www.w3.org/TR/PR-

rdf-schema.

[19] Zhao, Y., Chen, G., Liao, C., & Shen, X. (2016).

Towards ontology-based program analysis. In 30th

European Conference on Object-Oriented

Programming (ECOOP 2016). Schloss Dagstuhl-

Leibniz-Zentrum fuer Informatik.

[20] Băjenaru, L.; Smeureanu, I. Learning Style in

Ontology-Based E-Learning System. In

Proceedings of the International Confer-ence on

Informatics in Economy, Cluj-Napoca, Romania, 2–

3 June 2018; Volume 273.

[21] García-García, J., Gil, M. Á., & Lubiano, M. A.

(2024). On some properties of Cronbach’s α

coefficient for interval-valued data in

questionnaires. Advances in Data Analysis and

Classification, 1-24.

