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Abstract:  
 

Semantic segmentation is a computer vision task that categorizes each pixel in an image 

into a class or object. Although a number of relevant architectures have been proposed in 

recent years, they incur the problems like computational cost,large amounts of training 

data, class imbalance, edge uncertainty, varying sizes of objects, shadow and lighting 

variations. Such a more number of drawbacks degrades the semantic segmentation 

performance in terms of accuracy, efficiency and generalization capability. In this work, 

comprehensive architecture UMV2 for satellite image semantic segmentation is 

proposed. The UMV2 utilizing a fusion of Unet++ architecture and the lightweight 

MobileNetV2 encoder deep learning model. The Unet++ architecture, an extension of the 

widely adopted Unet, is employed for its ability to capture hierarchical features and 

enhance segmentation performance. Integrating MobileNetV2 as the encoder provides 

computational efficiency, making the model well-suited for resource-constrained 

environments, such as satellite image analysis on edge devices. The proposed model 

leverages the strengths of both architectures, combining the expressive power of Unet++ 

with the efficiency of MobileNetV2. Extensive experiments are conducted on a diverse 

satellite image dataset, evaluating the model's segmentation accuracy of 0.89, mean IOU 

of 0.52, precision of 0.80, recall of 0.83 and F1-score of 0.82 with the state of art methods.  

The results demonstrate the effectiveness of the proposed approach in achieving accurate 

and efficient satellite image segmentation, making it a promising solution for real-world 

applications in remote sensing and geospatial analysis. 

 

1. Introduction 
 

Image segmentation is the computer vision task, it is 

the process of dividing a digital image into multiple 

image segments, also known as objects or regions. 

Image segmentation can be performed with 

conventional segmentation techniques and various 

deep learning models. Conventional image 

segmentation methods like thresholding, edge based, 

region based, clustering and graph based methods 

requires manual intervention and suffers with 

sensitive to light conditions, fragmented edges, 

difficulty with complex boundaries, parameter 

selection and scalability respectively. On the other 

hand, in the last few years image segmentation 

achieved tremendous performance using deep 

learning techniques like semantic segmentation, 

instance segmentation and panoptic segmentation.  

Semantic segmentation is a computer vision task in 

which the goal is to categorize each pixel in an image 

into a class or object. The goal is to produce a dense 

pixel-wise segmentation map of an image, where 

each pixel is assigned to a specific class or object. 

Semantic segmentation of satellite imagery is useful 

in remote sensing[1,2], agriculture[3,4], medical 

field[5], autonomous vehicles[6], robotics[7,8], 

video surveillance[9,10] as well as quality 

control.Even though various approaches have been 

proposed for semantic segmentation, they are still 

facing the problems like high computational cost, 

requirement of large amount of data, class 

imbalance, boundary delineation, dependence on 

annotation quality. Satellite imaging is useful in 

many different fields, including environmental 

http://dergipark.org.tr/en/pub/ijcesen
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monitoring, agriculture, climate change, urban 

planning, national security and surveillance, risk 

management, disaster monitoring, traffic signal 

analysis and environmental studies, to name a few. 

It is very necessary to be able to derive relevant 

information from satellite photos in order to 

effectively make decisions, manage resources, and 

respond to natural disasters [11]. The process of 

segmentation, which includes identifying and 

classifying all of the objects and land cover elements 

included within the picture, is one of the most 

important steps in satellite image processing. 

Significant problems for accurate and effective 

segmentation are presented by the complexity of 

satellite imagery, which is characterized by huge 

geographical extents, varied resolutions, and diverse 

landscapes[12]. Traditional approaches often fail to 

keep up with all of these different obstacles, which 

results in solutions that are not ideal. In addition, the 

human interpretation of training data in supervised 

learning is not only labor-intensive but also time-

consuming, which limits the scalability of these 

approaches[13]. As a consequence of this, there is an 

urgent need for robust and automated segmentation 

algorithms that are capable of adjusting to the varied 

and ever-changing characteristics of satellite data. 

Even though deep learning has made great strides 

and is more successful than previous methods, 

satellite image segmentation using deep learning 

models still has certain limitations.The enormous 

amount of processing power that deep learning 

algorithms frequently demand is one of the most 

prominent disadvantages[14]. These models' 

intricate designs need a large amount of processing 

power and memory, which makes them 

computationally demanding and sometimes 

unsuitable for applications that have restricted 

resources. Another disadvantage is that it requires a 

substantial quantity of labeled training data to 

function properly. To train a deep learning model 

successfully large datasets are required. Obtaining 

and annotating such information may be a process 

that is both time-consuming and resource-intensive. 

This is especially true for satellite images that 

include a variety of different landscapes and 

features[15]. This dependence on large amounts of 

labeled data might provide difficulties in 

circumstances in which acquiring such data is 

difficult from a budgetary or logistical perspective. 

The most recent investigations into the use of deep 

learning models for image segmentation in satellite 

imagery are at an advanced stage of developments in 

remote sensing and earth observation[16]. The 

complex and ever-changing nature of satellite 

imagery presents a number of issues, which are now 

being actively addressed by researchers by exploring 

creative ways[17]. There is work being carried out to 

improve previously developed deep learning 

architectures and to create new models that are 

specifically suited for the segmentation of satellite 

pictures. The optimization of computational 

efficiency to manage the huge volumes of data 

associated with high-resolution satellite imagery[18] 

is one of the primary focuses of this research. This 

optimization is done to ensure that these models can 

function well in real-time or near-real-time 

applications. In this research, the difficult problem 

of segmenting satellite images is tackled, and a 

unique method based on self-supervised learning 

and semantic segmentation is presented as a 

potential solution. The process of segmenting 

satellite images lends itself especially well to the use 

of self-supervised learning, which is a promising 

method in the area of computer vision. Self-

supervised learning is a method of machine learning 

that enables a model to acquire meaningful 

representations without the need for vast human-

labeled datasets. This method works by exploiting 

the innate patterns and connections that are present 

within satellite images. Because of this modification 

in the approach of learning, the model is now able to 

recognize and differentiate between objects and 

aspects of land cover even when there is no pre-

labeled training data available. Furthermore, the 

method goes beyond standard segmentation methods 

by including semantic segmentation techniques. 

This enables the detection and distinction of 

individual instances of the same object class 

included inside the picture. This is very helpful in 

situations in which accurate and comprehensive 

segmentation is of the utmost importance, such as 

when one is tasked with counting trees in a forest or 

monitoring automobiles in a parking lot. 

In this research, a novel Supervised Learning Based 

Semantic Segmentation Method is presented. It is 

designed to particularly handle the one-of-a-kind 

difficulties that are inherent in the processing of 

satellite images. By using the full potential of 

supervised learning, this approach is able to make 

efficient use of the vast amounts of information that 

are included inside satellite photos. Because of its 

decreased dependence on manually annotated 

training data, this strategy mitigates a constraint that 

is often experienced when using more standard 

supervised approaches, which is one of the 

methodology's significant advantages. 

The contributions of this paper can be summarised 

as: 

An efficient UMV2 model is proposed that 

integrates MobileNetV2 as the encoder in Unet++ 

architecture, to address the accuracy problem, 

computational efficiency and generalization 

capability. 
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The Unet++ architecture and MobileNetV2 

architecture are explored to capture the features    

such as edges, textures, and other relevant 

information that are crucial for distinguishing 

different segments in complex and high resolution 

satellite images. 

To test the performance of proposed model, we 

evaluated our model over the traditional models 

using various performance metrics. The results show 

the strength of the demonstrated model against other 

baseline models. 

The image patching technique is considered to get all 

image patches  of size 256X256 for efficient way of 

training and testing processes of dataset. 

The remainder of this paper is organised as follows. 

Section 2 reviews the related work of various 

authors. Section 3 details our proposed architecture. 

Section 4 illustrates the methodology includes data 

preprocessing, environmental setup, training and 

testing process and also evaluation metrics. Section 

5 details the qualitative and quantitative comparative 

analysis of experimental results with the various 

state of the art techniques. Section 6 provides the 

conclusion of this work. 

 

2. Related Works 
 

Tareque Bashar Ovi et al[19] introduced a novel tri-

level attention-based DeepLabv3+ architecture, 

referred to as DeepTriNet, for the purpose of 

semantic segmentation of satellite images. The 

hybrid technique under consideration integrates 

squeeze-and-excitation networks (SENets) and tri-

level attention units (TAUs) into the existing 

DeepLabv3+ architecture. The TAUs are used to 

address the semantic feature disparity between the 

output of encoders, while the SENets are utilized to 

assign more importance to pertinent features. The 

DeepTriNet model, as presented, determines the 

most significant characteristics in a more generic 

manner via self-supervision, rather than relying on 

manual annotation. 

Yann Fabel et al[20] presented a novel approach of 

self-supervised learning to effectively use a much 

bigger dataset in comparison to traditional 

supervised training methods, resulting in improved 

performance of the model. The first stage of the 

study entails using over 300,000 Atmospheric State 

Indices (ASIs) in two separate pretext assignments 

as part of the pretraining process. One of the 

objectives focuses on the process of reconstructing 

images, while the other job is concentrated on the 

utilization of the DeepCluster model. The 

DeepCluster model is an iterative procedure that 

includes grouping and categorizing the neural 

network's output. Following that, the model is 

subjected to a process of fine-tuning using a rather 

modest labeled dataset consisting of 770 ASIs. Out 

of these, 616 ASIs are allocated for training 

purposes, while the remaining 154 ASIs are reserved 

for validation. Every Artificial Intelligence System 

(ASI) is linked to a ground truth mask that classifies 

individual pixels into several categories, such as 

clear sky, low-layer clouds, mid-layer clouds, or 

high-layer clouds. In order to evaluate the efficacy 

of self-supervised pretraining, a comparison study is 

undertaken, whereby this methodology is contrasted 

with models that are started with random weights 

and those that are pretrained using ImageNet data. 

All models are trained and validated using identical 

datasets. 

Fabien H.Wagner et al[21] presented the k-textures 

technique, which offers a self-supervised approach 

for segmenting a 4-band picture (consisting of RGB 

and NIR bands) into k distinct classes. An example 

of its use using high-resolution Planet satellite 

images is shown. According to the algorithmic 

analysis, it has been determined that the use of 

convolutional neural networks (CNN) in 

conjunction with gradient descent renders discrete 

search a viable approach. The model is capable of 

identifying k distinct clustering classes within the 

data. These classes are represented by k discrete 

binary masks and their corresponding separately 

produced textures. When merged, these masks and 

textures simulate the initial picture. The similarity 

loss refers to the average squared error between the 

features of the actual picture and the simulated 

image. These features are obtained from the 

penultimate convolutional block of two different 

models: The Keras "imagenet" pre-trained VGG-16 

model and a custom feature extractor created using 

Planet data. The primary advancements of the k-

textures model include the acquisition of k discrete 

binary masks inside the model via the use of gradient 

descent. The proposed model facilitates the 

production of discrete binary masks via the use of a 

unique approach including a hard sigmoid activation 

function. Furthermore, the algorithm offers hard 

clustering classes, where each pixel is assigned to a 

single class. In contrast to the k-means algorithm, 

which treats each pixel as an independent entity, the 

approach discussed here incorporates contextual 

information and associates each class not just with 

comparable color channel values, but also with 

texture. The proposed methodology aims to facilitate 

the generation of training samples for satellite image 

segmentation. Additionally, the k-textures 

architecture may be modified to accommodate 

varying numbers of bands and to address more 

intricate self-segmentation problems, such as object 

self-segmentation. 

Wadii Boulila et al[22] introduced a hybrid strategy 

for object categorization in very-high-resolution 
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satellite images, using the PPDL framework. The 

encryption technique under consideration involves 

the integration of Paillier homomorphic encryption 

(PHE) and slightly homomorphic encryption (SHE). 

The objective of this combination is to augment the 

encryption of satellite images while simultaneously 

maintaining optimal runtime and achieving a high 

level of accuracy in object categorization. The 

encryption technique used for pictures is supported 

by the utilization of the public keys associated with 

Partially Homomorphic Encryption (PHE) and 

Somewhat Homomorphic Encryption (SHE). The 

researchers performed experiments utilizing high-

resolution satellite images obtained from the SPOT6 

and SPOT7 satellites in real-world scenarios. This 

study examined four distinct convolutional neural 

network (CNN) architectures, namely ResNet50, 

InceptionV3, DenseNet169, and MobileNetV2. 

Wenyuan Li et al[23] proposed a self-supervised 

multitask methodology for acquiring representations 

in remote sensing images that effectively captures 

visual aspects. The proposed approach entails the 

development of three separate pretext tasks and the 

use of a triplet Siamese network to simultaneously 

capture both high-level and low-level visual 

features. The training process of this network does 

not need the use of labeled data. However, the 

resulting model may be further refined by the use of 

annotated segmentation datasets during the fine-

tuning phase. The efficacy of their methodology is 

validated by empirical investigations carried out on 

several datasets, including Potsdam, Vaihingen, and 

the Levir_CS dataset, which focuses on cloud and 

snow identification. The trial's results demonstrate 

that the suggested approach effectively lowers the 

reliance on labeled datasets and improves the 

performance of remote sensing semantic 

segmentation. When comparing their method to 

recent state-of-the-art self-supervised representation 

learning methods and commonly employed 

initialization methods such as random initialization 

and ImageNet pretraining, it is observed that their 

method consistently outperforms the others in the 

majority of experiments, particularly in situations 

where there is a scarcity of training data. 

Surprisingly, their strategy demonstrates equivalent 

performance to randomly initialized models with a 

little 10 to 50 labeled data. 

Haifeng Li et al [24] presented a new network called 

the Global Style and Local Matching Contrastive 

Learning Network (GLCNet) for the task of 

semantic segmentation in Remote Sensing Images 

(RSIs). The GLCNet has been designed with a 

unique structure to improve the segmentation of 

Remote Sensing Images (RSIs). During the first 

stage, the use of the Global Style Contrastive 

Learning module is implemented to enhance the 

process of acquiring image-level representations. 

This premise is based on the notion that stylistic 

attributes have the capacity to accurately encapsulate 

the holistic qualities of a picture. The subsequent 

module, known as the Local Features Matching 

Contrastive Learning module, has been carefully 

developed to acquire representations of local areas, 

which play a critical role in semantic segmentation 

tasks. The authors of the study conducted a thorough 

evaluation of their technique by using four separate 

datasets for RSI semantic segmentation. The 

experimental findings repeatedly demonstrate that 

their approach significantly outperforms both 

contemporary self-supervised approaches and the 

ImageNet pretraining method in terms of 

performance. 

Wenbo Sun et al [25] proposed a novel approach 

aimed at enhancing the accuracy of picture 

segmentation by including depth estimation 

techniques into the analysis of RGB images. 

Subsequently, the obtained depth map is utilized as 

input for a convolutional neural network (CNN) to 

facilitate the process of semantic segmentation. 

Moreover, for the purpose of concurrently parsing 

the depth map and RGB pictures, An encoder-

decoder network with several branches is designed, 

and the RGB and depth characteristics are 

progressively integrated. The results of the extensive 

experimental assessment on four baseline networks 

indicate that the suggested technique significantly 

improves the quality of segmentation and achieves 

superior performance when compared to other 

segmentation networks. 

Jannik Zurn et al [26] proposed a novel framework 

for terrain categorization that leverages an 

unsupervised proprioceptive classifier. The 

classifier in question acquires knowledge from the 

auditory signals generated during the interactions 

between vehicles and the terrain. This allows for the 

autonomous training of a classifier that can perform 

pixel-wise semantic segmentation of pictures, based 

on external sensory information. The methodology 

initiates by creating a discriminative embedding 

space for the sounds produced during vehicle-terrain 

interaction. This is achieved by using triplets of 

audio clips, which are constructed by combining the 

visual attributes of the respective terrain patches. 

The produced embeddings are further subjected to 

clustering, whereby these clusters are used as labels 

for the visual terrain patches. The assignment of 

these labels is accomplished by projecting the 

pathways walked by the robot onto the camera 

pictures. The use of poorly labeled pictures for 

training the semantic segmentation network is 

achieved by the application of weak supervision. 

The study provides a thorough collection of 

quantitative and qualitative results, illustrating the 
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superiority of their proprioceptive terrain classifier 

over current unsupervised approaches. Furthermore, 

the self-supervised exteroceptive semantic 

segmentation model developed by the researchers 

demonstrates performance levels that are equivalent 

to those reached by supervised learning using 

manually annotated data. 

Huihui Dong et al[27] proposed an innovative 

approach to self-supervised representation learning 

for remote sensing picture change detection. This 

technique is centered on temporal prediction. The 

primary objective is to enhance the consistency of 

feature representations in two satellite pictures via a 

self-supervised process, without relying on semantic 

supervision or requiring extra computations. By 

using the modified feature representations, it is 

possible to produce an improved difference image 

(DI) that effectively minimizes the error transmitted 

by the DI in the end result of detection. In the 

framework of self-supervision, the neural network is 

tasked with discerning distinct sample patches 

within a pair of temporal pictures, hence engaging in 

temporal prediction. By using a network architecture 

that emulates the discriminator component of 

generative adversarial networks, the temporal 

prediction task is able to capture distribution$-

$aware feature representations, leading to a resultant 

model that exhibits strong resilience. 

 

3. Proposed Unet++ model 
 

The Unet++ framework is an expansion of the Unet 

design, characterized by the inclusion of an encoder-

decoder structure that incorporates skip connections. 

The process of feature extraction is performed by the 

encoder on the input image, while the decoder 

utilizes these extracted features to build the 

segmentation mask. The Unet++ architecture 

incorporates nested skip connections to enhance the 

transmission of information between the encoder 

and decoder components. This methodology 

facilitates the comprehensive capture of both low-

level and high-level features, hence enhancing the 

quality of segmentation outcomes. Figure 1 shows 

architecture of Unet++ with integration of 

mobileNetV2 back bone. The encoder component of 

the Unet++ design has the potential to be substituted 

with a pre-trained MobileNetV2 backbone. This 

enables the model to use the efficiency of 

MobileNetV2 in terms of its computational speed 

and resource utilization. The MobileNetV2 encoder 

is responsible for extracting hierarchical features 

from the input image, while the Unet++ decoder 

further refines these features in order to generate the 

final segmentation mask. The inclusion of skip links 

between the encoder and decoder components of the 

model facilitates acquisition of both low-level and 

high-level information, hence enhancing the 

performance of segmentation. Figure 2 shows the 

Internal architecture of proposed Unet++ model with 

MobileNetV2. 

MobileNetV2 is used as an encoder for Unet++ in 

the proposed model. MobileNetV2 is a 

convolutional neural network (CNN) architecture 

specifically developed to cater to the computational 

constraints of mobile and edge devices. The 

approach employs depthwise separable convolutions 

and linear bottlenecks to effectively decrease the 

quantity of parameters and computational burden, 

while still achieving satisfactory performance. 

MobileNetV2 is renowned for its efficacy in terms 

of velocity and resource consumption, rendering it 

well-suited for real-time applications on devices 

with constrained processing capabilities. 

The model is trained using a dataset that contains 

segmentation masks that have been labeled. During 

the training process, the model acquires the ability to 

establish a mapping between input images and their 

related segmentation masks. The commonly 

employed loss functions for semantic segmentation 

encompass loss of cross-entropy, which calculates 

the difference between the ground truth and the 

prediction  pixel-wise labels. 

A. MobileNetV2 Encoder 

Convolutional layers, batch normalisation, ReLU 

activation, and other components make up the 

encoder and a series of 17 Inverted Residual (IR) 

blocks, followed by additional convolutional layers. 

Figure 3 shows the MobileNetV2 architecture.The 

encoder begins with a convolutional layer, then 

came  batch normalization and Rectified Linear Unit 

(ReLU) activation. The initial module is accountable 

for the processing of the raw input image and 

producing a collection of feature maps. 

The core component of the MobileNetV2 

architecture is the Inverted Residual block. In the 

proposed model, there are a total of 17 blocks that 

have been arranged in a sequential manner. The 

Inverted Residual block effectively retains and 

enhances the features extracted from the preceding 

layer. The architecture is comprised of depth-wise 

separable convolutions, linear bottlenecks, and skip 

connections.  

After the series of Inverted Residual blocks, a final 

set of convolutional layers batch normalization and 

ReLU activation layers are employed. The approach 

employs depthwise separable convolutions and 

linear bottlenecks to effectively decrease the 

quantity of parameters and computational burden, 

while still achieving satisfactory performance. 

MobileNetV2 is renowned for its efficacy in terms 

of velocity and resource consumption, rendering it 

well-suited for real-time applications on devices 

with constrained processing capabilities. The last 
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stage of this block involves enhancing the acquired 

features by the network and readying the output for 

subsequent processing. 

The initial layers and the first Inverted Residual 

block capture low-level features from the input 

image. The subsequent Inverted Residual blocks 

progressively capture more abstract and high-level 

features through their skip connections and 

hierarchical processing. The final layers refine these 

features and prepare them for the transition to the 

decoder part of the Unet++ architecture. 

The convolutional layer is an essential component in 

convolutional neural networks (CNNs), specifically 

intended for the purpose of analyzing 2D structures, 

such as images. The input undergoes a convolution 

operation, wherein learnable filters or kernels are 

employed to extract features from the input data. 

Filters:  Filters are small matrices that may be moved 

horizontally to cover the input data. Every filter 

acquires the ability to identify particular patterns or 

characteristics within the given input. 

Parameters: The learnable parameters of the filters in 

a convolutional layer are subject to adjustment 

throughout the training process via back 

propagation. These settings facilitate the network in 

autonomously acquiring hierarchical properties from 

the input. 

Stride: Stride is responsible for determining the 

magnitude of the step taken by the filter as it 

traverses the input data. Increasing the stride size 

leads to a decrease in the spatial dimensions of the 

resulting feature map. 

Padding: Padding is a technique that entails the 

addition of additional border pixels to the input in 

order to mitigate the risk of information loss 

occurring at the edges. 

Batch Normalization 

Batch Normalization serves to enhance the stability 

of training and expedite the process of convergence. 

The process of normalizing involves the adjustment 

and scaling of activations during the training phase. 

The fundamental components of the Batch 

Normalization layer are outlined as follows: 

Normalization: During the training process, 

Normalization is applied to each mini-batch by 

normalizing the input through the subtraction of the 

mean and division by the standard deviation. This 

procedure effectively mitigates the issue of internal 

covariate shift by maintaining a relatively consistent 

distribution of inputs to a layer throughout 

successive batches. 

Parameters: Batch Normalization incorporates a pair 

of trainable parameters for each feature (or channel) 

within the layer, namely scale (gamma) and shift 

(beta). The utilization of these parameters enables 

the network to dynamically adjust the normalized 

output, hence offering adaptability and maintaining 

the layer's ability to effectively represent 

information. 

The Rectified Linear Unit (ReLU) is an activation 

function that is frequently employed in artificial 

neural networks, specifically in deep learning 

architectures. The incorporation of the function 

within the network introduces a non-linear element, 

hence facilitating The capacity of the network to 

acquire knowledge of complex patterns, additionally 

correlations inherent within the  data. 

The Inverted Residual block is a fundamental 

component used in lightweight convolutional neural 

network structures, notably in topologies like 

MobileNetV2. Figure 4 shows the inverted residual 

block.The present block comprises a series of 

convolutional layers enclosed within a Sequential 

container. The initial ConvBNReLU sub module 

consists of convolutional layer that modifies the 

input channels, succeeded by batch normalization 

and ReLU6 activation. The second sub module of 

ConvBNReLU consists of depth-wise separable 

convolutional layer with a stride, which enhances the 

efficiency of the block. The concluding component 

comprises convolutional layer and batch 

normalization. 

Skip connections are utilized in order to include the 

initial input into the final output, hence facilitating 

the acquisition of residual mappings. In general, the 

Inverted Residual block has been specifically 

devised to effectively capture and process features, 

all the while preserving a lightweight architecture 

that is well-suited for deployment on mobile and 

edge devices. 

B. UNet++ Decoder 

The decoder block is designed to up-sample and 

refine feature maps in the decoding part of a neural 

network. Figure 5 shows the Unet++ decoder 

architecture. The block consists of two convolutional 

layers (conv1 and conv2) each followed by batch 

normalization and ReLU activation, aiming to 

capture and enhance spatial features. The attention 

mechanisms (attention1 and attention2) within the 

block are implemented using an identity function, 

which effectively serves as a placeholder for an 

attention mechanism.  

The attention mechanisms can be later replaced or 

modified to incorporate attention mechanisms that 

dynamically adjust the importance of different parts 

of the feature maps.  
The attention layer is a component commonly used 

in neural network architectures, especially in natural 

language processing and computer vision tasks, to 

selectively focus on specific parts of the input or 

feature maps. The goal of attention mechanisms is to 

assign varying degrees of importance to different 

elements in the input, allowing the network to weigh 

and consider certain information more prominently. 
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4. Methodology 
 

The dataset called "Semantic segmentation of aerial 

imagery" is downloaded from kaggle. This Dataset 

consists of aerial imagery of Dubai obtained by 

Mohammad Bin Rashid Space Centre(MBRSC) 

satellites. This dataset is annotated with pixel-wise 

semantic segmentation into 6 classes. The total 72 

images in the dataset are  grouped into 8 larger tiles. 

The classes of dataset are building, land, road, 

vegetation, water and unlabeled. Each tile consists of 

2 sub-folders i.e., images and masks. Image sub-

folder consists of 9 images and masks sub-folder 

consists of corresponding masks for those images. 

The images which are present in dataset are of many 

different sizes like 797x644, 509x544, 682x658, 

1099x846, 1126x1058, 859x838, 1817x2061, 

2149x1479 in each tile respectively. To process the 

pictures for testing and training, 

 the dimensions of all pictures should be of equal 

size. To achieve this, dataset need to be  

preprocessed.  The preprocessing is carried out by 

cropping each image and masks into size divisible 

by 256. Further these images and masks are 

patchified to the size of 256x256. The sample images 

and their patchifying images are shown in figure 6.  

  For example, tile1 consists of 797x644 size of 

images and masks. So choose the nearest size with 

divisible by 256, we can get 768x512 size, from this 

total 6 patches are appearing. Similarly tile 2, 3, 4, 5, 

6,7 and 8 has 2,4,12,16,9,56 and 40 patches 

respectively. Each tile consists of 9 images. So, a 

total of 1305 patches are available for both images 

and masks  after patchifying. Masks are in RGB 

form and information is in the form of hexadecimal 

color code. So we need to convert hexadecimal to 

RGB values and then convert  RGB labels to integer 

values and then to one hot encoding. Segmented 

images need to convert back into original RGB 

colors, otherwise the colors of image and its mask 

will be different and we could not identify the 

corresponding mask of each image. Predicted tiles 

need to be merged into a large image by  minimizing 

blending artifacts or edge effects. 

A. Environmental Setup 

This section is a description of the results obtained 

from the simulations conducted using the proposed 

methodology. 

 The programming language used is python. The 

execution is performed in Google Colab work 

environment with Python 3 Google Compute Engine 

backend, T4 GPU, 12.7GB RAM and 78 GB Disk 

space. A training : testing ratio of 70 : 30 is used for 

all experiments.  

B. Training and Testing 

Figure 7 shows loss of training and validation loss of 

proposed method. The ideas of training loss and 

validation loss have significant importance within 

the field of machine learning, specifically in the 

context of training and evaluating models such as 

neural networks. The training loss is a statistic used 

to assess the discrepancy between the anticipated 

output and the actual target values for the training 

dataset during the training phase. In essence, it 

measures the extent of the model's deviation from 

the data it is undergoing training on. During the 

training phase, the model iteratively modifies its 

internal parameters, such as weights and biases in the 

context of neural networks, in order to minimize the 

training loss. The primary objective is to educate the 

model in a manner that enables it to exhibit strong 

generalization capabilities when presented with new, 

unfamiliar data. However, the concept of validation 

loss is significant since it serves as an autonomous 

metric for evaluating the effectiveness of a model . 

The measure is obtained by the assessment of the 

model's performance on a distinct dataset, known as 

the validation dataset, which has not been previously 

encountered by the model during the training 

process. In contrast to the training data, the 

validation dataset does not have any impact on the 

updates of the model's parameters. On the other 

hand, the validation loss offers valuable information 

about the model's potential performance on entirely 

novel and unknown data.  The use of this technique 

is crucial in the identification of over-fitting, which 

refers to a situation where a model demonstrates 

exceptional performance on the training dataset but 

fails to properly generalize to new, unseen data.The 

training loss and validation loss are recorded for 

every epoch, acting as crucial metrics for evaluating 

the model's performance.  The training loss, which 

measures the discrepancy between predicted and 

actual values on the training data, shows a 

progressive decline from 0.83 in the tenth epoch to 

0.65 in the hundred epoch. In contrast, the validation 

loss, which evaluates the model's efficacy on a 

distinct dataset that was not used throughout the 

training process, exhibits an early decline from 0.83 

to 0.72. However, it then undergoes a marginal rise 

during the hundred epoch.  Figure 8 shows accuracy 

of training and validation of proposed method. The 

evaluation of machine learning models, particularly 

in supervised learning settings, relies heavily on the 

basic statistic of training accuracy. The performance 

of the model on the training dataset is assessed by 

quantifying it via the calculation of the ratio between 

the number of properly predicted occurrences and 

the total number of examples in the training dataset.  

The main objective of training accuracy is to assess 

the model's proficiency in acquiring the underlying 

patterns and connections present within the training 

data. A high training accuracy is indicative of the 

model's ability to effectively remember the training 
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examples and generate precise predictions on the 

data it was trained on. Nevertheless, it is essential to 

acknowledge that achieving a high training accuracy 

does not automatically ensure favorable 

performance when applied to novel, unobserved 

data. Overfitting is a potential concern, since the 

model may inadvertently include irrelevant noise or 

idiosyncratic features that hinder its ability to 

effectively generalize to other datasets. The 

validation accuracy serves as a complementary 

metric to the training accuracy, since it evaluates the 

performance of the model on an independent dataset 

referred to as the validation dataset. The dataset in 

question has unique characteristics that distinguish it 

apart from the training data, rendering it unsuitable 

for use during the model training phase. The 

accuracy of validation functions as an indicator of 

the model's generalizability well to novel, unseen 

data. Throughout the training phase, models undergo 

evaluation on both the training and validation 

datasets. When a model possesses 

 a elevated level of accuracy during training but a 

low level of accuracy during validation, it is possible 

that the model is over-fitting. Overfitting occurs 

when the model becomes too specialized to the 

training data and encounters difficulties in 

generalizing its predictions to new instances. The 

incorporation of a validation dataset is crucial in the 

process of model selection, which aims to identify a 

model that exhibits satisfactory performance not just 

on the training dataset but also on unobserved data. 

During the tenth epoch, the validation accuracy was 

recorded as 0.54, whereas the training accuracy 

exhibited a higher value of 0.83. In the subsequent 

epochs, the validation accuracy demonstrates an 

improvement, reaching a value of 0.62. Conversely, 

the training accuracy experiences a tiny reduction, 

reaching a value of 0.77. As the training process 

advances, the validation accuracy demonstrates a 

consistent upward trend, ultimately attaining a value 

of 0.77 during the sixty epoch. However, it is 

noteworthy that the training accuracy experiences a 

decline, reaching a value of 0.69. During the ninety 

epoch, there is a significant rise in the validation 

accuracy, reaching a value of 0.80. The maximum 

validation accuracy attained is 0.83, observed on the 

ninety epoch. This section describes the evaluation 

metrics used and gives the extensive description 

about the results.The most extensively utilised 

metric for segmentation performance is the 

accuracy(A). Recall (R) and precision (P) are often 

used metrics for evaluating how well image 

classification systems work. Accuracy(Ac): is 

described as the total number of accurately located 

and separated instances (images) in the dataset under 

investigation[28]. The mathematical expression for 

accuracy is 

 
where the terms true positives (tp), true negatives 

(tn), false positives (fp), and false negatives (fn) are 

used. 

Precision(P):The equivalency of the proportion of 

accurately classified photos to all classified images 

is known as precision. 

 

Here, tp denotes the appropriately categorised image 

and fp denotes false positives, or inaccurately 

classified photos. 

Recall:The percentage of correctly classified 

photographs to all linked images in the database is 

known as recall. The recall as mathematically 

represented as 

R=  

false negatives (fn) are photos that belonged to the 

right class but were incorrectly labelled by the 

classifier. 

 

Figure 1. Architecture of Unet++ with MobileNetV2 as 

encoder 

F1 score: An increased F1-score, which is the result 

of multiplying the harmonic mean of recall and 

precision, indicates that the system has more 

predictive power. Evaluation of a system's 

performance requires more than just precision or 

recall. Mathematically speaking, the F1-score is 

expressed as  

) 
In this case, P and R stand for recall and precision, 

respectively. 

Mean IoU: determines the ratio of area overlapped 

by the two bounding boxes to the area of their union.  
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Figure 2. Internal architecture of Unet++ model with MobileNetV2
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The 2 bounding boxes are the real observation and 

prediction. The mathematical formula is: 

J(A,B)=  

Where,the total area covered by both the bounding 

boxes (union). The area common between the 

bounding boxes (intersection).Table 1 shows the 

evaluation metrics of proposed method Unet++ with 

MobileNetV2. The metrics such as accuracy, 

precision, mean IOU, F1 score, and recall are 

determined for four different images of 

corresponding data set. 

5. Comparative analysis of Experimental 

Results 
 

Table 2 shows a comparative examination of several 

methodologies, with a focus on their respective 

levels of accuracy, mean IOU, precision,  recall and  

F1-score.The performance of state of the art methods 

such as  Unet,   RUnet(Residual Unet),  SE-

UNet(Squeeze and Excitation-Unet), SE-

RUNet(Squeeze and Excitation-Residual Unet),  

Unet++ with Efficientnet-b0,  Unet++ with VGG19,  

Unet++ with ResNet50 are comparedwith UMV2 

model. The proposed method achieved 1.01% 

accuracy, 3.12% Mean IoU,  0.21% precision, 1% 

recall, 0.58% F1-score  high compared to the 

respective metrics of state of the art methods.  The 

table presents a concise overview of the performance 

of the various approaches, revealing that 

MobileNetV2 attained the greatest level of 

performance compared to the other methods under 

consideration. This finding demonstrates a 

significant degree of proficiency in handling 

unfamiliar data, implying that the model has strong 

applicability capabilities. 

The qualitative analysis of proposed model is 

performed by considering four different sample 

images from the Semantic segmentation of aerial 

imagery' data set. The sample images, ground truth 

mask of these images, prediction masks obtained 

from Unet++ with EfficientNetb0, Unet++ 

withVGG19, Unet++ with ResNet50 and Unet++ 

with mobileNetV2 are depicted in table 3. The 

Unet++ with Efficientnetbo able to predict most of 

the classes, but couldn't able to detect the object 

boundaries and assigning class labels at a pixel level 

due to reduction in spatial dimensions of the feature 

maps as the network deepens.The Unet++ with 

VGG19 predict most of the classes, but it struggle 

with segmenting objects with complex structures or 

in cluttered scenes due to lack of mechanisms to 

aggregate contextual information from larger 

receptive fields effectively, which are crucial for 

understanding scene layout and object relationships 

in segmentation.The Unet++ with ResNet50 predict 

most of the classes, but struggle with segmenting 

objects that vary widely in size or capturing 

contextual relationships in complex scenes as 

objects to be segmented can vary significantly in 

size. On the other hand, our proposed Unet++ with 

mobileNetV2 able to detect all the classes including 

very minure details efficiently and semantic 

segmentation results for all sample images are 

achieved efficiently. In this way our proposed model 

outperforms compared with other models. 

 

4. Conclusions 

 
The proposed satellite image segmentation model 

UMV2, which combines the Unet++ architecture 

with the lightweight MobileNetV2 encoder, has 

demonstrated noteworthy performance in accurately 

delineating features within satellite images. Through 

extensive experiments conducted on a diverse 

satellite image dataset, the model achieved an 

 

 
Figure 3. MobileNetV2 Architecture 

 
Figure 4. Inverted Residual Block 
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Figure 5. Unet++ Decoder Architecture 

 
(a):Image 1 before patchify              (b): Image 1 after patchify 

 
(c):Image 1 before patchify                    (d): Image 1 after patchify 

Figure 6. Image 1 and 2 before and after patchify 

 
Figure 7. Training and Validation loss of Proposed method 
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Figure 8. Training and Validation accuracy of Proposed method 

Table 1. The evaluation metrics of proposed method Unet++ with MobileNetV2.  

Images Image 1 Image 2 Image 3 Image 4 

Original 

input image 

    

Ground 

truth mask 

    

Unet++ 

with 

Efficientnet

- b0 

    

Unet++ 

with 

VGG19 

    

Unet++ 

with 

Resnet50 

   
 

Unet++ 

with Mo- 

bilenetv2 
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Table 2. Evaluation Metrics of Proposed UMV2 model 

UMV2 

Model 

Accuracy Precision Recall F1 Score Mean IOU 

Image 1 0.8904 0.807041 0.807023 0.806393 0.482 

Image 2 0.8912 0.819062 0.796282 0.807511 0.417 

Image 3 0.8911 0.790811 0.783484 0.772145 0.411 

Image 4 0.8917 0.828221 0.821937  0.825067 0.508 

 

Table 3. The sample images, ground truth mask of these images, prediction masks. 
 

Method Accuracy Mean IoU Precision Recall F1 score 

Unet[29] 0.8806 0.4559 0.8854 0.8769 0.8812 

RUnet[29] 0.8668 0.4842 0.8705 0.8642 0.8673 

SE-Unet[29] 0.8849 0.4900 0.8891 0.8819 0.8855 

SE-RUnet[29] 0.8706 0.4781 0.8736 0.8685 0.8711 

Unet++ with Efficientnet-

b0 

0.8706 0.4788 0.8619 0.8782 0.8712 

Unet++ with Efficientnet-

b1 

0.77 0.378 0.7807 0.689 0000 

Unet++ with VGG19 0.8816 0.4813 0.8414 0.8412 0.8714 

Unet++ with REsNet50 0.8512 0.4617 0.8515 0.8617 0.8618 

UMV2 Model 0.8917 0.5212 0.8912 0.8919 0.8913 

 

impressive accuracy of 0.8917, Mean IoU as 0.5212, 

precision of 0.8912,  recall of 0.8919 and F1 score of 

0.8913. This level of accuracy is particularly 

promising for real-world applications, like disaster 

management,land cover classification,  

environmental monitoring. The integration of 

Unet++ for its hierarchical feature capturing 

capabilities and MobileNetV2  for computaional 

efficiency has proven to be successful fusion, 

striking balance between accuracy and resource 

efficiency. The achieved accuracy of 89 percent 

underscores the model's effectiveness in extracting 

valuable information from satellite imagery, making 

it a compelling solution for remote sensing tasks in 

resource-constrained environments. 
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