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Abstract:  
 

Human activity recognition (HAR) has been hot research issues in recent years. The 

studies have differences in data types, data processing, feature description, etc. HAR 

constitutes a fundamental component of intelligent health monitoring systems, wherein 

the underlying intelligence of the services is derived from and enhanced by sensor data. 

Researchers have proposed multiple HAR systems designed to convert smartphone 

readings into other forms of physical activity. This review synthesizes the current 

methodologies for smartphone-based Human Activity Recognition (HAR) with focusing 

on healthcare application. For this purpose, we systematically searched for peer-reviewed 

articles regarding the utilization of cell phones for Human Activity Recognition (HAR).  

We collect information regarding smartphone body placement, sensors, types of physical 

activities examined, as well as the data transformation methodologies and classification 

frameworks employed for activity recognition.  Thus, we selected these articles and 

delineated the diverse methodologies employed for data gathering, preprocessing, 

extraction of features, and activity classification, highlighting the predominant practices 

and their alternatives.  We determine that cell phones are very appropriate for HAR 

research within the health sciences.  Future studies should prioritize enhancing the quality 

of data gathered, addressing data gaps, incorporating a more diverse array of participants 

and activities, relaxing phone placement requirements, providing comprehensive 

documentation for study participants, and sharing the source code of the employed 

methods and algorithms to achieve population-level impact. 

 

1. Introduction 
 

Human activity recognition is one of the hot spots in 

the research of metaverse applications and digital 

sports training, and different human movements can 

be recorded by some information carriers, such as 

cameras, sensors, radars, Wi-Fi signals, etc. [1]. 

With the fast development of micro-

electromechanical systems, the integration of sensor 

modules has become increasingly high[2] .Highly 

integrated intelligent sensor modules have promoted 

the continuous progress and improvement of human 

activity recognition applications in ubiquitous 

environments. In particular, portable wearable 

sensor devices represented by smartphones are 

becoming increasingly intelligent and popular. 

Sensor-based activity recognition has become a 

better way in many intelligent scenarios [3,4]. 

Recently, this topic has gained attention in the field 

of machine learning studies community; as of the 

present time, several studies have been presented on 

HAR techniques utilizing smartphones.  This is a 

significant escalation from merely a few pieces 

published some years prior.  As smartphone data 

collecting becomes more accessible, the 

interpretation of the gathered data is increasingly 

recognized as the primary impediment in health 

research.  To address the analytical issues of HAR, 

researchers have developed diverse algorithms that 

significantly vary in the types of data utilized, the 

methods of data manipulation, and the statistical 

techniques employed for inference and/or 

classification. [5,6]. Published research utilize 

traditional approaches and introduce new methods 
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for the collection, processing, and categorizing 

activities of daily living.  Authors often study data 

filtering along with feature selection methodologies, 

comparing the accuracy of diverse machine learning 

classifiers on either pre-existing datasets or datasets 

they have assembled specifically for the study.  The 

outcomes are generally encapsulated through 

categorization accuracy across many activity 

categories, including ambulation, locomotion, and 

exercise. [3-7]. To successfully implement 

advancements in HAR into public health and 

medical research, it is necessary to understand the 

traditional techniques and identify their possible 

limitations.  Methods must consider physiological 

(such as weight, height, age) in addition to habitual 

(such as posture, walks) variations among 

smartphone users, along with gaps in architectural 

design (such as structures and green spaces) which 

influence the social and physical context for human 

activities.  Furthermore, the data collecting and 

statistical methodologies commonly employed in 

Human Activity Recognition (HAR). This work 

systematically reviews the developing literature on 

the utilization of smartphones for human activity 

recognition in health research within free-living 

environments.  Recognizing that the primary 

problem in this domain is transitioning from data 

gathering to data analysis, we concentrate our 

examination on the methodologies employed for 

data collecting, data preprocessing, extraction of 

features, and activity classification.  We elucidate 

the complexity and multiple dimensions of Human 

Activity Recognition (HAR) using cellphones, the 

categories of data gathered, and the techniques 

employed to convert digital metrics into human 

actions.  We examine the reproducibility and 

generalizability of methodologies, namely the 

characteristics that are crucial and relevant to 

extensive and varied groups of study participants.  

Finally, we identify obstacles that must be addressed 

to enhance the broader application of smartphone-

based HAR for public health research. In this work, 

we investigated sensor-based HAR models with an 

overview of the new type of machine learning, deep 

learning and hybrid models that overcome the HAR 

shortcomings. Readout training is a simple 

supervised learning linear regression problem, 

which has simplicity and high learning efficiency.  

2. Method 

2.1 Review Planning  

 

This systematic review has been carried out by 

searching for published literature on PubMed, 

Scopus, IEEE, Web of Science, ACM, and Springer 

databases. The databases were screened for titles, 

abstracts, and keywords containing phrases (“HAR” 

OR human activity recognition”) AND “activity” 

AND (“recognition” OR “estimation” OR 

“classification”) AND (“smartphone” OR “cell 

phone” OR “mobile phone” OR “wearable device”) 

AND (“deep learning” OR “machine learning”) The 

search had been limited to discovering all journal 

papers published in English.  Subsequent to the 

elimination of duplicates, we reviewed the abstracts 

and titles of the remained publications.  Studies 

which were not investigating HAR methods have 

been excluded from additional assessment.  We then 

excluded studies that utilized supplemental 

equipment, such as wearable and ambient devices, as 

well as those requiring the transport of several 

smartphones.  Only research utilizing commercially 

accessible consumer-grade smartphones, whether 

personal or borrowed, were thoroughly reviewed.  

We excluded studies utilizing smartphone 

microphones or video cameras for activity 

classification, as they may capture data regarding an 

individual's environment, including details about 

unconsented individuals, thereby impeding the wide 

use of this method due to privacy issues.  To focus 

on research that mimicked free-living environments, 

we neglected those utilizing equipment attached or 

glued to the human body in a fixed way.  

2.2 Review Conducting:  
 

The study selection procedure adhered to the 

PRISMA principles, as illustrated in Figure 1.  A 

collection of 461 articles were first identified 

through searches across seven databases: (Scopus 

112, IEEE 66, ResearchGate 97, Springer 29, Web 

of Science 72, ACM 23, and PubMed 62) initially 

identified 461 records. After the removal of 152 

duplicates, 309 records were screened based on their 

titles and abstracts. After screening titles and 

abstracts, 68 articles were assessed for eligibility 

based on the inclusion criteria, of which 36 records 

were screened based on full-text reading. During the 

entire article review stage of the secondary search, 

more relevant research was identified by examining 

the references for the selected articles., and new 8 

studies met the inclusion criteria and were 

incorporated into the systematic review, resulting in 

71 studies being involved in the final synthesis. All 

of the included studies had their critical data 

extracted using a standardized form.  Items such as 

study ID, published year, authors name, research 

method, and associated limitations were retrieved 

from the database.  The proportion of articles 

sourced from each database is displayed in Figure 2. 

Accordingly, several HAR techniques, datasets, and 

results were reviewed and compared to identify 

noticeable trends and conclusions. 
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Figure 1. PRISMA Flowchart  

This process enabled the determination of various 

HAR algorithms, which include RNN, SVM, CNN, 

DL, and ML, and made possible a comparison of 

their performance measurement in detail regarding 

HAR outcome prediction. 

 

2.3 Review Reporting 
 

A selection of primary studies of the literature were 

reviewed using the quality evaluation questions 

during the reporting phase.  Each study's validity was 

determined using the quality evaluation criteria 

mentioned in Phase 1 above. A score of 0 meant poor 

quality or lack methodological detail, while a score 

of 6 represented good quality and solid technique. 

The study evaluation of quality varied from 0 to 6. 

 

2.4 Scope Validation: Ensuring the Accuracy of 

the Selected Articles 

 

Figure 3 illustrates how the bibliometric analysis 

identified a total of 44 keywords from the collected 

papers.  To verify our investigation's scope, we 

evaluated these terms and classified them based on 

their co-occurrences.  Then, we defined a threshold 

indicating all co-occurrences for every key word 

throughout all publications.  Therefore, we found 10 

terms from a total of 44 that satisfied the criteria.  All 

of these ten keywords appeared a minimum of 3. 

Figure 4 shows the connections between these ten 

terms.  The size of every circle represents how 

frequently a particular relevant keyword appeared.  

The larger the circle size, more frequently a keyword 

appears. Hence, the term "Human Activity 

Recognition" shows the largest circle size within the 

diagram, indicating that it appears the most 

frequently in the gathered articles.   The second 

factor involves the color, that indicates how 

frequently a specific keyword appears each year. 

The last aspect is the total link strength, which 

indicates the total connection of a keyword to other 

keywords. The more frequently two terms appear in 

the identical article, the thicker the line between 

them.  As an example, the phrases "deep learning"  
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Figure 2. The proportion of research articles collected 

from all databases 

and "Human Activity Recognition" are connected by 

a thicker line rather than the line that connected the 

phrases "machine learning" and "Human Activity 

Recognition," indicating that "deep learning" and 

"Human Activity Recognition" was seen together in 

the collected articles more than "machine learning" 

and "Human Activity Recognition."  This indicates 

that DL has been used less than other ML techniques 

in Human Activity Recognition.Table 1 lists the ten 

keywords' occurrences together with their overall 

link strength.  The most often appearing keyword is 

Human Activity Recognition, which has specifically 

shown up 32 times in the gathered papers and 40 

times alongside other keywords.   Deep learning 

happened 23 times with 36 links to other keywords; 

keyword machine learning happened 18 times with 

28 links to other keywords.  Finally, these highest 

ratings for the specified keywords statistically 

proved the validity in our search query utilized to 

compile scholarly works.  Moreover, it shows that 

our study focus is on three primary keywords: 

Machine learning, deep learning and Human 

Activity Recognition as among them their circle 

sizes are the highest and their link is strongest. 

 

3. Literature review 

3.1 Human Activity Recognition Methods 

According to the different methods of human 

activity data collection, human activity recognition 

mainly uses contact sensors, non-contact vision and 

wireless signals [8]. Contact sensors are a type of 

sensor that can detect the physical characteristics or 

movement of an object by contacting its surface. Due 

to direct contact with the target object, it can provide 

more direct and accurate measurement results [9]. 

Moreover, because contact sensors can directly 

contact the target object and measure its specific  

 
Table 1. Keywords occurrence 

Keyword Occurrences Total Link 

Strength 

Human activity 

recognition 

32 40 

Deep learning 23 36 

Machine learning 18 28 

Sensors 10 18 

CNN 9 17 

Wearable sensors 8 12 

Action recognition 8 11 

Activity recognition 10 10 

Classification 7 4 

healthcare 6 4 

 
Figure 3. Density bibliometric analysis Flowchart.  
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Figure 4. Diagram of scope validation.  

 
Figure 5. Methods of recognition in HAR based on mobile devices. 

parameters, they usually have high measurement 

accuracy, which makes them effective in 

applications that require high-precision detection 

[10]. In addition, contact sensors directly contact the 

target object and measure parameters in real time, 

providing almost instant feedback and data output. 

However, the contact sensor needs to be in contact 

with the target object during the measurement 

process, which may have a certain impact on the 

target object. At the same time, since the contact 

sensor needs to be in direct contact with the target 

object, it is necessary to consider the wear and 

damage of the sensor during long-term use. Factors 

such as the surface texture, hardness and shape of the 

object may also affect the sensor [11]. With the pre-

processed sensor data, the recognition approaches 

will be adopted to map the sensor data into one type 

of activity. Recognition methodologies are typically 

categorized into three types: data-driven approaches 

that employ training data to derive clusters or 

classifiers for activity recognition; knowledge-

driven approaches that leverage domain knowledge 

to analyze sensor data with activity recognition; and 

hybrid approaches that integrate both data-driven 

and knowledge-driven methods, as illustrated in 

Figure 5. 

Machine Learning Classifier 

Traditional machine learning methods are the most 

commonly used methods in sensor-based HAR 

research. Compared with the emerging deep learning 

classification models, these algorithms are usually 

less computationally intensive and simple to 



Mohammed F Ibrahim Alsarraj, Aliza Binti Abdul Latif, Rohaini Binti Ramli  / IJCESEN 11-2(2025)1943-1964 

 

1948 

 

implement and are more suitable for ubiquitous 

computing environments [12,13].  

Decision tree (DT): Decision tree is a very common 

classification algorithm, which has the advantages of 

simple concepts and easy-to-understand 

classification rules. Intuitively, DT is a set of multi-

branch trees with classification conditions. The 

computational model has low complexity and high 

efficiency. However, the DT model is prone to 

overfitting and is more suitable for classification 

problems with discrete features [12]. The currently 

more commonly used CART (Classification and 

Regression Tree) model optimizes this situation. 

CART uses a Gini index estimation function based 

on the minimum distance, which is very flexible and 

allows for partial misclassification of samples [14].  

Support vector machine (SVM): Vaonik et al. [14] 

of Bell Labs formally published a paper proposing 

the superior performance of the SVM algorithm in 

classification tasks [15]. The improved soft-margin 

nonlinear SVM algorithm can be regarded as a 

landmark achievement in SVM-related research on 

handwritten character recognition [16]. Initially, 

SVM was mainly aimed at binary classification 

problems. The algorithm idea is to find the optimal 

hyperplane that can distinguish the two categories 

and has the largest margin between the two 

categories in the sample space of the data [17-19]. 

Support Vector Machine (SVM) is a highly effective 

classifier that has been utilized or enhanced in 

numerous analogous investigations. 

Naïve Bayes classifier: The naïve Bayes model's 

way of recognizing things varies from most ways of 

classifying things. Its main goal is to find the form 

of the combined distribution P(X, Y). The formula 

of P(X, Y) is as follows [20]:  

𝑃(𝑋, 𝑌)  =  𝑃(𝑌 | 𝑋)  ∗  𝑃(𝑋)         (1)                                           

what X stands for and what Y stands for is the action 

label. The naïve Bayes algorithm works well with 

small amounts of data and is simple to set up [17]. It 

does, however, assume that different traits don't 

depend on each other, so the performance of the 

naïve Bayes classifier on data with high coupling 

characteristics is not very good. 

K-nearest neighbor: The K-nearest neighbor 

technique is a basic method for regression and 

classification. In its most basic form, it uses majority 

vote as a lazy way to learn. The core is to use a 

distance metric to count the labels with the largest 

number of nodes closest to the target point and 

assign them to the target point [21]. Table 2 shows 

research work using ML classifiers. 

Deep Learning (DL) Models  

In the last few years, traditional pattern recognition 

techniques have advanced remarkably. But these 

techniques can rely mostly on heuristic hand-

crafted extraction of features, which could limit 

their generalizing capability. Recent developments 

in DL 

have made autonomous high-level feature extraction 

feasible, hence enabling interesting performance in 

many domains. With little to no data and no feature 

engineering, DL techniques including RNN and one-

dimensional CNNs have proved to produce state-of-

the-art results on difficult activity detection 

challenges [37,38]. DL is one of the most current and 

novel ways since it allows for extracting features 

from input. CNN is the common type of DL 

algorithm which is highly effective in many different 

applications focused on learning complex behaviors 

and actions. CNN has the property of not being 

affected by scale invariance [39-41]. Furthermore, 

HAR faces challenges related to the ground truth 

annotation, such as identifying a specific activity of 

several users. Other issues include sensors 

containing fault values, sensing unit heterogeneity, 

and activity models being implemented in the form 

of one kind of domain to another. Avilés-Cruz et al., 

(2019) [42], suggests a book CNN method is used to 

track the movements of a single smartphone user. It 

took three CNNs working at the same time to pull 

out local features, which were then combined during 

the classification step. Walking, going up and down 

stairs, reclining, standing, or lying are the six actions 

that have been successfully grouped. A test of the 

suggested CNN's performance shows that it can 

recognize things 100% of the time on average. 

Gjoreski et al., (2020)[33], proposed an approach 

based in DL techniques for the purpose of HAR. 

These activities, involving walking, running, biking, 

driving a car,taking a bus, and using a subway, were 

determined by the analysis of smartphone sensor 

data. An additional model, which relied on the 

Hidden Markov Model (HMM), was introduced. 

Additionally, a baseline DL model was depicted. 

The results show that the use of an end-to-end DL 

structure, the multi-ResNet obtained an accuracy of 

about 89.4%. After hyper-parameter optimization, 

the models significantly improved. By combining 

the ML and DL models a significantly enhanced 

accuracy (from 89.4% to 93.3%). In addition, the 

accuracy was increased by 4% (from 93.8% to 

97.8%) when utilized the HMM smoothing 

algorithm. Huang et al., (2021) [43], Propose a 

shallow CNN that analyzes cross-channel 

communication in a HAR scenario, in which all 

channels in the same layer interact comprehensively 

to capture more distinguishing features of sensor 

input. Extensive experiments on multi benchmark 

HAR datasets, including UCI-HAR, 

OPPORTUNITY, and UniMib-SHAR, demonstrate 
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Table 2. Research Work Using ML Classifiers 

Authors  Classifier 

Model 

dataset Accuracy Limitations\Gaps 

Wang et 

al. [22] 

SVM SC 96.49% Accuracy varies with body posture and external noise, Furthermore, the number 

of recognitions is limited due to difficulty in estimating the directionality of 

gestures. 

Watana

be et al. 

[23] 

RF SC 68.9%-

87.1% 

Lower recognition Accuracy and model still face challenges with complex or 

subtle gestures, and with limited Gestures, the study tested only six gestures with 

four participants. 

Xu et al. 

[24] 

SVM SC 94.80% While the system can recognize several inattentive driving events, it may not 

cover all possible scenarios, the system's accuracy might vary depending on the 

driving environment and external noise levels, as well as sample data Size and 

the data collection period might not capture long-term variations in driving 

behavior. 

Vu et al. 

[25] 

RF SC 92%-95% The dataset may not cover a wide range of modernization scenarios and there is 

a need for better evaluation metrics to assess the effectiveness of modernization 

strategies comprehensively. 

Lu et al. 

[26] 

SVM, 

SVDD 

SC 90.21%, 

93.1% 

The dataset is small sized and limited to one dataset. 

Voigt et 

al. [27] 

RF SC 60.6%-

94.6% 

Limited number of participants, which may affect generalizability, as well as the 

performance influenced by lighting, background clutter, and occlusions which 

not take in consideration.  

Lu et al. 

[28] 

SVM SC 94.6%, 

98.4%, 

96.3% 

Evaluations were conducted only in stationary conditions, not under mobile 

conditions. Further investigations are needed to understand performance in more 

dynamic scenarios. Furthermore, the study did not include user elicitation studies 

to design gestures in particular scenarios. 

Wang et 

al. [29] 

SVC SC 77.89%-

84.38% 

The evaluations are likely conducted under controlled conditions, which may not 

fully represent diverse real-life usage scenarios, and the dataset used for training 

and evaluation may not encompass a wide range of user behaviors and eye 

movement patterns, limiting the model’s generalizability. 

Shiet al. 

[30] 

SVM SC Above 

95% 

The current context awareness module only includes dynamic, semi-static, and 

static contexts, which may not cover all real-world body postures such as lying 

down, walking up and down stairs, and jogging. Additionally, the study's data 

collection primarily involved participants only aged 19-30. 

Caoet 

al. [31] 

RF SC Precision: 

95%, 

Recall: 

94.84% 

The study evaluated a small set of tongue-jaw movements with twenty 

participants. Expanding the dataset to include a broader range of movements and 

more participants would enhance the system's robustness, and variations in ear 

canal shapes among different users can impact the consistency of acoustic 

reflections and recognition accuracy. 

Chenet 

al. [32] 

RF SC Fl: 

96.49% 

Weak accelerometer readings along the three axes can lead to difficulty in 

detecting respiration patterns. Furthermore, the clinical study does not control 

wrist movement during sleep, which can lead to inconsistencies in the data and 

potential misclassifications due to sudden changes in acceleration data. 

Gjoreski 

et al., 

[33] 

HMM UCI-

HAR 

93.3% The model accuracy needs to improve.  

Chang 

et al. 

[34] 

KNN, 

HMM 

SC Above 

80% 

Low accuracy and validation limited to one dataset.  

Hamata

ni et al. 

[35] 

CRF SC Above 

82% 

User Interaction: Reliance on users consistently wearing and interacting with the 

smartwatch may impact data reliability. The generalizability: Results may not be 

broadly applicable due to the study's specific sample and conditions.   

Jiokeng 

et al. 

[36] 

LR SC 92.57% While the study involved over 100 volunteers, expanding the sample size and 

including a more diverse participant pool could help validate the generalizability 

of the system across different demographics. 

 

that the proposed approach enables shallower CNNs 

to gather more useful information than baseline deep 

networks together with competing methods. The 

pace of inference is measured by deploying HAR 

systems in an embedded system. The results show 

that the model achieves 92.4% in average accuracy.  

However, stacked autoencoders are composed of 

many encoders placed on top of one another. 

Therefore, in this application scenario, utilizing 

stacked autoencoders is optimal [44]. The stacked 

autoencoder is employed to pretrain every single 

layer in an unsupervised manner in order to achieve 

improved weight initialization when performing 

subsequent supervised training. This improved 

weight initialization typically mitigates the 

possibility of disappearing gradients for feed 

forward neural networks [45-47]. An advantage of 

utilizing these strategies lies in their capacity to 

automatically develop features. In addition, the 

stacked autoencoders method demonstrates superior 
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classification outcomes compared to the current 

leading methods, assuming that the parameters 

associated with the deep neural network are 

appropriately adjusted [44,48]. Prabono, Yahya and 

Lee, (2021) [49], presents a new approach for 

domain adaptation within the framework of Human 

Activity Recognition (HAR). The suggested 

technique employs a two-phase autoencoder 

framework, achieving a model performance of 

67.9%. Moreover, Garcia et al. (2021) [69] presented 

a highly effective multi-class methodology that 

consists of a group of autoencoders, each 

autoencoder being distinctly associated with a 

specific class. This procedure exclusively 

necessitates the integration of new autoencoders, 

obviating the requirement for retraining the 

complete model. The findings indicate that the 

model attains an average accuracy of 71%. Challa, 

Kumar and Semwal, (2022) [50], With the help of 

ubiquitous sensor data, Challa suggested a robust 

classification framework for HAR. Additionally, she 

proposed a hybrid deep learning model that 

integrated CNN and BiLSTM. The model is able to 

learn both short-term and long-term relationships at 

sequential data thanks to the model's capabilities. 

For the purpose of determining whether or not the 

model is effective, the benchmark datasets WISDM, 

UCI-HAR, along with PAMAP2 are utilized. There 

was a 96.05% accuracy on the WISDM dataset, a 

96.37% accuracy on the UCI-HAR dataset, and a 

94.29% accuracy on the PAMAP2 dataset. Table 3 

presents a comparison of those works that are 

relevant to HAR. 

 

Table 3. Research Work Using DL Classifiers 

Authors Classifier 

Model 

dataset Accuracy Limitations\Gaps 

Lu et al. [51] RNN SC Above 90% Small Size of Data and limited training data can impact 

the robustness and generalization of the authentication 

framework, and the dataset might not capture the full 

range of user behaviours, which could affect the system's 

ability to recognize genuine and impostor inputs 

accurately. 

Lu et al. [52] RNN SC 92.7%, 

91.4% 

More complex or less predictable password patterns can 

reduce the accuracy of the system. 

Hassan  et al 

[53] 

DBN HAPT 95.85% A limited number of participants might restrict the 

generalizability of the results. Furthermore, the dataset 

may not cover a wide range of activities, impacting the 

model's ability to generalize, and using single dataset. 

Du et al. [54] CNN SC, HHAR 79.80% The system may struggle with real-time processing and 

recognition due to the computational demands of DL 

models. Furthermore, the dataset may not encompass a 

wide variety of writing styles, surfaces, and tools, 

limiting the generalizability of the results. 

Gong et al. 

[55] 

CNN SC Above 65% The few-shot learning approach may still struggle with 

extremely limited data, impacting its effectiveness. 

Becker et al. 

[56] 

CNN SC 97.20% Validation limited to one dataset.  

Brunner et 

al. [57] 

CNN SC Fl: 97.4% The study may have a limited number of participants, 

which can affect the generalizability of the results, and 

limited to single dataset with small size.  

Liu et al. 

[58] 

RNN SC 92.7%, 

91.4% 

Compared to camera-based and other advanced tracking 

methods, ArmTroi's accuracy is lower, highlighting an 

area for improvement, and it needs pre-knowledge of 

user-specific metrics (e.g., torso length, shoulder 

breadth, upper-arm length) to generate point clouds. 

Hou et al. 

[59] 

LSTM SC Above 99% The performance of the system can be affected by 

practical issues, such as how the smartwatch is worn on 

the user's wrist. Ensuring the system performs well under 

various practical conditions remains a challenge, as well 

as collecting a large amount of training data from 

individuals is time-consuming and not user-friendly. 

Training a user-specific model requires significant data, 

but a more practical solution would be to fine-tune a 

generic model for each user through user adaptation. 

Giallanza et 

al. [60] 

CNN, RNN SC 27%-41.8% Both the real-time analysis and the primary data 

collection included few users, and limited Training Data. 

Liu et al. 

[61] 

CNN SC Above 80% Handling both uppercase and lowercase letters in the 

same word requires additional steps to ensure accurate 

recognition, such as coordinate transformation and 

scaling. 



Mohammed F Ibrahim Alsarraj, Aliza Binti Abdul Latif, Rohaini Binti Ramli  / IJCESEN 11-2(2025)1943-1964 

 

1951 

 

Yin et al. 

[62] 

LSTM SC 64.96%-

94.86% 

The word selection method based on the multi-class bi-

gram language model may not be sufficient to handle all 

possible letter combinations and word formations, 

affecting recognition accuracy in practical use. 

Gao et al. 

[63] 

DNN SC WER: 8.33% The study used a limited number of training samples, 

which may result in skewed phoneme-level samples. 

Expanding the dataset to include more diverse examples 

could improve the system’s accuracy and robustness. 

Liu et al. 

[64] 

DNN RealWorld 86.11% While the global attention module is designed to be 

lightweight, the added complexity of integrating 

attention mechanisms can still introduce some 

computational overhead, especially in more resource-

constrained environments. 

Wang et al. 

[65] 

CNN, 

LSTM 

SC 98.40% The system assumes that the user’s torso and device are 

relatively static. In practice, dynamic conditions (e.g., 

walking with a mobile phone in the pocket) can lead to 

inconsistent hand movements and affect performance. 

Park et al. 

[66] 

CNN SC 91% With nearly 5,000 commonly used words in most sign 

languages, further research is required to validate 

SUGO's scalability. Although 50 words with diverse 

motion characteristics were chosen, expanding and 

testing the system with a larger vocabulary is essential 

for real-world deployment. 

Zhai et al. 

[67] 

Res Deep 

CNN 

AWSS 78.20% The study uses two publicly available datasets, which 

may not fully represent the diversity of sleep patterns 

across different populations and environments. 

Expanding the dataset to include more diverse samples 

could improve the model's generalizability. 

Chen et al. 

[68] 

GRU SC 90%, 91% Extensive data collection is necessary to train the model 

effectively. Gathering a large, diverse dataset can be 

time-consuming and resource-intensive, but it is crucial 

for improving the system's accuracy and generalizability. 

While five training-free gestures achieve 100% 

accuracy, the study needs to expand the range of gestures 

and validate their accuracy in different real-world 

scenarios. 

Ouyang et al. 

[69] 

DNN, CNN SC Above 80% Although raw user data is not exposed during the 

learning process, model updates transmitted in 

ClusterFL may still reveal certain information about user 

activities. Future work should integrate privacy-

preserving techniques and investigate the trade-off 

between privacy and utility. 

Khaertdinov 

et al. [70] 

CNN, 

Transformer 

MobiAct, HAR Fl: 81.13%, 

91.14% 

The study uses three widely used public datasets. To 

fully validate the robustness of the method, it is essential 

to test it across a more diverse range of datasets, 

representing different environments and user behaviors. 

Zhang et al. 

[71] 

CNN, ED SC 91.2% in 

Accuracy; 

7.1% in 

WER:  

The current system achieves high accuracy with specific 

datasets. Expanding the dataset to include more diverse 

user scenarios and conditions is necessary to validate its 

generalizability and robustness. 

Zhang et al. 

[72] 

CNN, ED SC CER: 9.3%, 

3.8% 

While WriteAS demonstrates promising accuracy for 

recognizing continuous handwriting, it may still face 

challenges in adapting to various individual writing 

styles, especially for new users. 

Lu et al. [73] CNN SHAR. HAR Above 60% Collecting sufficient labelled data for building human 

activity recognition (HAR) models is expensive and time-

consuming. Training on existing data can lead to models 

being biased towards the training data distribution, which 

may not generalize well to test data with different 

distributions. 

Xu et al. [74] CNN SC 55.3%-

87.2% 

The user study involved a relatively small number of 

participants (N=20), which may not fully capture the 

diversity of user behaviours and preferences. Expanding 

the study to include more participants and diverse 

scenarios is necessary for broader validation. 

Xie et al. 

[75] 

CNN SC 93.44% The system relies on detecting hand movements and 

chest fluctuations, which can be influenced by other 

activities or movements, potentially leading to false 

positives or negatives. 



Mohammed F Ibrahim Alsarraj, Aliza Binti Abdul Latif, Rohaini Binti Ramli  / IJCESEN 11-2(2025)1943-1964 

 

1952 

 

Ling et al. 

[76] 

CNN SC 99% Although the system demonstrates high accuracy for 12 

gestures, expanding the dataset to include a wider range 

of gestures and more complex movements is necessary 

to ensure broader applicability and robustness. 

Mollyn et al. 

[77] 

CNN, VGG SC 92.20% While the system achieves a recognition accuracy of 

92.2% across 26 daily activities, there is still room for 

improvement, especially in more complex or noisy 

environments 

Wang et al. 

[78] 

ResNet 18 SC 96% The study needs to include a wider range of gestures and 

more complex hand movements to ensure the system's 

robustness and generalizability across different scenarios 

Tanigaki et 

al. [79] 

AIP-Net RealWorld Added by 

20% 

The system's ability to generalize across different 

datasets and activities is essential. Further validation is 

needed to assess how well AIP-Net performs on a wide 

range of HAR tasks beyond those included in the study. 

Raza et al. 

[80] 

Transformer WISDM 98.89%  The dataset used in the study was constructed with only 

five human participants in a simulated home care scenario. 

This limited and artificial setting may not fully represent 

real-world conditions. More realistic home healthcare 

settings and larger, diverse participant pools are necessary 

to validate the findings. 

 The current dataset was created under controlled 

conditions. Expanding data collection to include real-

world environments and diverse user groups will be crucial 

for validating the proposed HAR classification method. 

EK et al. 

[81] 

Transformer HAR, SHL, 
MotionSense, 

RealWorld, HHAR 

92.6%-

98.72% 
 Although MobileHART shows robustness in handling 

domain shifts, further research is needed to understand 

its limitations in completely unseen situations and 

diverse real-world conditions. 

 The datasets used in the study may not cover all 

possible activities and scenarios. Expanding the dataset 

to include a wider variety of activities, environments, 

and user behaviours is crucial for ensuring the model's 
generalizability. 

Miao et al. 

[82] 

DNN RealWorld over 75% The framework shown promising results in controlled 

experiments, its ability to generalize across different 

real-world scenarios needs further validation. 

You et al. 

[83] 

SAN SC, SHL, SHO over 83% The study may need to include a wider range of activities 

and scenarios to validate the model's robustness and 

generalizability. 

Yoshimura 

et al. [84] 

LOSNet, ED SC over 50% While the Lightweight Orderedwork Segmentation 

Network (LOSNet) shows promising results in 

recognizing repetitive works, its performance may vary 

across different industrial settings and activities.  

Li et al. [85] RiskNet SC 80.10% The study recruited 988 healthy individuals and 417 

patients with various conditions (PD, TBI, stroke). 

Expanding the dataset to include a wider range of 

activities, environments, and user behaviours would help 

improve the system's robustness and generalizability, 

and lower accuracy achieved need to improving.  

Augustinov 

et al. [86] 

DNN, 

Transformer 

CogAge 73.36% Complex Activity Variability: The study focuses on 

seven ADLs, but the results may vary with a broader 

range of complex activities. Further validation is 

required to ensure consistent performance across diverse 

activities. 

Sharma et al. 

[87] 

CNN, 

Transformer 

harAGE Recall: 

75.9% 

The study may need to include a wider range of activities 

and scenarios to validate the model's robustness and 

generalizability.  

Zhang et al. 

[88] 

CNN, 

Transformer 

SHL2018, HEAR, 

HAPT, MobiAct  

MotionSense, ,  

Fl-score: 

78.55% and 

95.66% 

Although the study used eight benchmark datasets, 

expanding the dataset to include a wider variety of 

activities, environments, and user behaviours is essential 

for validating the model's robustness and 

generalizability. 

Lee et al. 

[89] 

CNN SC 97.44%  The system's reliance on sound characteristics means it 

is susceptible to external noise, which can affect the 

accuracy of transportation mode recognition. 

 The study used seven different Android phone models 

for data collection. However, the performance across a 
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broader range of smartphone models with varying 

hardware specifications needs to be assessed to ensure 
robustness and generalizability. 

Ding et al. 

[90]  

TSNN SC 75.3%, 

86.4%, 79% 

The study may need to include a wider range of 

handwriting samples, including different languages, 

scripts, and writing styles, to validate the model's 

robustness and generalizability. 

Mishra et al. 

[91] 

DNN TMD, SHL, SC 59.41 % and 

94.21% 

The study may need to include a more diverse range of 

locomotion modes, user behaviours, and environmental 

conditions to validate the model's robustness and 

generalizability. 

Xiao et al. 

[92] 

CNN, ED SC 83.8% 

and92.2% 

Single dataset for validation and the accuracy needs to 

improve.  

Avilés-Cruz 

et al., [93] 

CNN UCI-HAR and 

WISDM 

Average 

recognition 

of 100%. 

The validation is limited to one class (walk).  

Huang et al., 

[43] 

shallow 

CNN 

UCI-HAR, 

OPPORTUNITY, 

UniMib-SHAR UCI-

HAR WISDM 

92.4%. Accuracy needs to be improved, Model used based 

shallow CNN while it needs to design a new model.  

 

Hybrid Deep Learning Models  

A hybrid deep learning model involves the 

integration of several methods for modeling with DL 

to create a more proficient model for accurate 

streamflow forecasting, moving away from using 

solo DL models. Hybrid DL methods have a primary 

benefit over solo models in that they can amalgamate 

the advantages of many methods of modeling for 

streamflow forecasting. Hybrid algorithms can 

expedite convergence and boost performance by 

amalgamating diverse methods. In addition, hybrid 

algorithms are often more efficient than pure 

optimization algorithms in tackling engineering 

challenges [94-96]. A hybrid model combines the 

characteristics of LSTM networks in sequence 

learning with the spatial feature detection 

capabilities of CNN. Before extracting important 

spatial features from input data, like video frames 

and images, the CNN processes this configuration. It 

is then followed by LSTM, which is capable of 

identifying temporal patterns across time [97,98], 

[99]. For tasks requiring awareness of both time and 

space, such as identifying actions within videos or 

comprehending the sequence of events within a 

series of images, this combination is especially 

effective. In order to train this model, data is 

typically fed through CNN, which provides the 

LSTM with detailed feature maps that are utilized as 

input. Subsequently, the combined system is fine-

tuned to improve its ability to predict or classify 

complex, sequence-dependent data [43], [100]. 

Mukherjee et al., (2020) [101], shows a new group 

of three classification models, CNN-Net, Encoded-

Net, and CNN-LSTM. The name for this group is 

Ensem-ConvNet. All of the above classification 

models are built on top of a simple 1D CNN. But 

these models are not all the same when it comes to 

the number from dense layers, the size of the kernel, 

and other important design differences. Each model 

looks at time series data within the form of a 2D grid. 

At any given time, a window of data is looked at to 

find useful information and make guesses about 

what people are doing. Three standard datasets are 

used to test their suggested model: MobiAct, 

WISDM activity forecasting, and UniMiB SHAR. 

They compared their EnsemConvNet model to a 

number of well-known deep learning models, such 

as Multi Headed CNN, which is a mix of CNN and 

LSTM models. When compared with the other 

models talked about in this study, the Ensem-

ConvNet system is more accurate, reaching up to 

97.7%. Ihianle et al., (2020) [45], proposed a 

methodology for detecting the existence of Human 

Activity Recognition via Deep Learning techniques. 

The suggested algorithms are based on CNN and Bi-

LSTM. Bi-LSTM exhibited its superiority by 

traversing both backwards and forwards through a 

specified sequence to augment the extracted 

characteristics. The final model was proposed based 

on multi-channel convolutional Bi-LSTM 

(MCBLSTM). Two principal datasets, MHEALTH 

along with WISDM, were utilized to assess the 

efficacy of the proposed methodologies. Utilizing 

each data set, the accuracy achieved by MCBLSTM 

exhibited the maximum performance at 97.7%. In 

regard to the research work using these classifiers, 

they can be found in Table 4.  

4. Application of human activity recognition 

The data provided by contact sensors are also 

becoming increasingly popular due to their 

widespread availability, ease of installation and non-

intrusive nature. Many smart products, including 

watches and smartphones, integrate inertial sensors 

such as accelerometers and gyroscopes [111,112] 

that can continuously record various human activity 

data to identify human movements and detect human 
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Table 4. Research Work Using Hybrid Classifiers 

Authors Classifier 

Model 

dataset Accuracy Limitations\Gaps 

Shen et al. 

[102] 

HMM, CRF, 

RF, DT, SVM 

SC Over 90% Accuracy needs to improve, use one dataset.  

Ahuja et 

al. [103] 

SVM, CNN SC Between 81.4% 

and 100% 

Accurate eye tracking may require precise calibration, which can be 

challenging with off-the-shelf virtual reality headsets, and the 

system may experience latency issues, affecting real-time interaction 

quality. 

Yang et 

al. [104] 

DenseNet, 

SVM, C4.5 

DT 

SC over 93% The ability of the model to generalize to different geographical areas 

or conditions not covered in the training data might be limited. 

Furthermore, the model was tested on specific benchmark datasets, 

which may not fully represent the variety of real-world scenarios, 

limiting the applicability of the results to other contexts. 

Luo et al. 

[105] 

LSTM, KNN, 

DT, SVM, 

AT- 

SC Over 90% Distinguishing between different brushing actions remains 

challenging due to the subtle differences in the movements, which 

may impact the system's precision, as well as the dataset may not 

include a diverse range of users, potentially limiting the 

generalizability of the system across different demographics.  

Yin et al. 

[106] 

RF, CNN SC 91.6%, 94.3% During the writing process, if a user is walking, the sensor data gets 

mixed between body and arm movements. The system needs to filter 

out body movements to accurately recognize arm gestures. 

Zhang et 

al. [107] 

MT-KNN, 

OCSVM 

SC Achieve EER 

about 4.9% 

TouchID focuses on graphic pattern-based touch gestures, which 

have layout constraints. In some scenarios, touch gestures may not 

follow these constraints, affecting recognition accuracy. 

Additionally, the current system primarily supports single-touch 

gestures. The system's ability to handle multi-touch gestures.  

Song et al. 

[108] 

ResNet-50, 

BiLSTM, 

KNN 

TFST EER: below 2% While the Feature Regularization Net (FRN) approach helps 

mitigate behavioural variability, it may still face challenges in 

handling extreme variations in user behaviour over time. 

Bhattacha

rya et al. 

[109] 

RF, NB, Deep 

Conv-LSTM, 

CNN, and 

Discriminate 

SC Fl: 89.7%- 

94.3%; 30%-

55.8% 

The semi-naturalistic dataset focused on one activity at a time and 

did not account for overlapping activities. In contrast, real-world 

settings often involve multitasking with multiple activities occurring 

simultaneously, which the model struggled to recognize accurately. 

Challa, 

Kumar 

and 

Semwal, 

[110] 

Hybrid DL 

model 

CNN-

BiLSTM. 

UCI-HAR 

and 

WISDM 

96.05%, 

96.37%, and 

94.29%, 

respectively. 

Complex model and high compositional requirements, and despite 

automatic feature extraction capabilities, handling the complexities 

of time-series data remains challenging. The model's ability to 

effectively extract relevant features from noisy and raw data needs 

continual improvement. 

Ihianle et 

al., [45] 

Hybrid CNN 

and Bi-LSTM 

MHEALTH 

and 

WISDM 

97.7%. Complex model and missing automatically tune and adjust 

parameters. 

Mukherje

e et al., 

[101] 

CNN-Net, 

Encoded-Net, 

CNN-LSTM. 

WISDM, 

UniMiB 

SHAR and 

MobiAct 

higher accuracy 

reach up to 

97.7%. 

Complex model and missing processing of time-series data before 

being fitted into a model. 

Prabono, 

[30] 

domain 

adaptation 

UCI-HAR, 

OPPORTU

NITY, 

PAMAP2 

67.9%. Complex model and low accuracy. 

 

health.With the development of wearable human 

body sensing technology, human activity 

recognition can be used in the clothing industry. In 

recent years, textile-based sensors have been used 

for activity recognition. Using the latest electronic 

textiletechnology, sensors can be integrated into 

clothing, allowing users to wear them comfortably 

and enjoy long-term human movement recording. 

The recent development of electronic textiles has 

made it possible to integrate sensors into clothing 

[113-115]. This has significant advantages, such as 

the ability to capture natural behavior and ensure 

wearer comfort through unobtrusive sensing, and the 

sensors can be attached anywhere on the garment. 

Human activity recognition based on contact sensors 

can also be used to monitor athletes' posture, 

movements and strength to provide personalized 

fitness guidance and feedback. For example, by 

measuring the data of the pressure sensor, the 

correctness of the posture in weight training can be 

identified and the user can be reminded to adjust the 

posture [115-118]. In addition, human activity 

recognition based on contact sensors can also be 

used to monitor the range of motion, posture and 

activity level of rehabilitation patients to help 

evaluate rehabilitation progress and guide treatment 

plans. For example, by measuring the data of joint 

sensors, the range of motion of the joints can be 
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monitored to help monitor and adjust rehabilitation 

training [119] Overall, the application of human 

activity recognition based on contact sensors has 

broad prospects and will play an important role in 

health, rehabilitation, smart products and other 

fields. As technology and algorithms continue to 

advance, we can look forward to the development of 

more accurate, intelligent and personalized human 

activity recognition applications. Human action 

recognition has attracted great attention in the field 

of computer vision due to its applications in the real 

world. Vision-based systems have a solid theoretical 

foundation and perform well in identifying human 

activities. Action recognition in computer vision is 

generally divided into action recognition in videos 

and action recognition in still images. Action 

recognition in still images aims to recognize human 

activities in static images without any temporal 

information. Since human activities such as running 

and smoking can be recognized through a single 

input image without additional motion cues, action 

recognition based on non-contact sensors has 

received great attention. Previously, due to the 

emergence of the COVID-19 pandemic, which 

caused people to avoid close contact with devices, 

the demand for accurate and efficient vision-based 

communication increased significantly [120]. 

Unlike traditional wireless mice and keyboards, 

vision-based interaction, in addition to providing 

effective remote control, can also control electronic 

devices without touching any part of the electronic 

device. With the popularity of electronic health in 

various smart home application fields in recent 

years, human motion recognition technology is 

increasingly used in rehabilitation systems, chronic 

disease management and personal health monitoring 

of the elderly. For example, by monitoring the daily 

behaviour of an elderly person, the assistant service 

can track how completely and consistently his daily 

behaviour is performed, and on this basis determine 

whether and when intervention or assistance is 

needed [122], for example, whether the person Falls 

in the bathroom, etc. Research can also be carried out 

around the activity sensing technology of 

unstructured intelligent space home care robots, and 

the integrated development and application 

verification of the monitoring robot prototype 

system can be carried out to provide a basis for the 

discovery of the elderly’s activity intentions, 

medical diagnosis, behavioural intervention and 

active robot services. , laying a theoretical and 

technical foundation for the research and 

development of robot-based intelligent elderly care 

products. In addition, the development of 

autonomous driving also brings requirements for 

intelligence, safety and stability. Therefore, human 

action recognition technology also has important 

applications in this regard. In dynamic, complex and 

uncertain environments, it is necessary to establish 

an effective form of interactive cognition between 

pedestrians and vehicles. Vehicles need to make 

appropriate decisions before Detect pedestrians 

through video sensors, identify their body 

movements, and understand the meaning of their 

movements [123]. In the future, with the continuous 

development of deep learning and computer vision 

technology, human motion recognition will be 

applied in more fields, such as medicine, agriculture, 

textile industry, manufacturing [124], etc. 

4.1 Applications and Challenges of HAR in 

Healthcare  

HAR focuses on two main types of methods: those 

that use video and those that use sensors. Video-

based methods give us a lot of features that let us do 

fine-grained investigation in HAR. However, it has 

a very complicated background of images because 

the data collection process needs a very strict 

environment with well-positioned cameras and 

people, which costs a lot in terms of price, computer 

power, and energy use. So, video-based methods are 

still not very useful in epidemiological studies that 

need a reliable, accurate, and inexpensive way to 

measure daily physical exercise. Sensor-based 

methods are commonly used in scientific studies of 

physical exercise because they are more flexible in 

changing environments, are more accurate at 

recognizing people, and use less power. Also, 

accelerometers are the most commonly used sensor 

for research because they are easy to acquire and 

come with most smart gear. Also, accelerometers are 

thought to be a pretty good tool for detecting a wide 

range of activities, since most of them involve 

simple body movements [120]. 

4.2 Developing an Intelligent Healthcare System 

based HAR 

Activity recognition for the SHCS enhances 

healthcare for patient treatment and care, alleviates 

the workload of healthcare professionals, reduces 

expenses, and improves the quality of life for the 

aged. Medical professionals assert that automatic 

activity detection is an optimal method for 

identifying and uncovering new medical disorders to 

track daily activities [120,125,126]. HAR comprises 

six primary components: data gathering, 

preprocessing, extraction of features, feature 

selection, learning, and recognition. Figure 6 

illustrates that preprocessing is an essential phase in 

data processing, encompassing discrimination, 

windowing, and filtering. Initially, the signals have 

been discretized, and their temporal and frequency 

properties are analyzed, which are extensively.
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Figure 6. Senior based HAR for Senior Healthcare Services 

utilized for feature calculation. The median, or the 

mean and variance are attributes of the temporal 

domain. Windowing techniques are employed to 

partition the sensor signals into segments 

[6,15,121,127]The most effective window-based 

strategies are based on activities, time-based, sensor-

based, latest sensor-based, and sensor-dependent 

approaches. In activity-based frames, data are 

partitioned at the moment of activity transition. 

Activity streams of data are segmented into fixed 

time-based periods. In the sensing-based window 

series (𝑠1,  𝑠2, . . . , 𝑠𝑁), the sequence is divided into 

windows containing an equal amount of sensor 

inputs 𝑤1, 𝑤2, . . . , 𝑤𝑀, with the 𝑤1 window denoted 

as [(𝑠𝑖  −  𝛥𝑠), 𝑠𝑖]. The outcomes of the window's 

length differ from one window towards another. In 

temporal dependence, 2 sensor events transmitted 

independently may belong to the same interval 

[122]. The filtering method assists in substituting 

missing values and eliminating outlier values. The e 

HAR component encompasses feature extraction 

and selection, followed by learning and recognition. 

Data mining represents the practice of analyzing data 

to uncover concealed knowledge. Feature extraction 

from raw data is executed with split and 

classification methods for each window, 

respectively. Feature extraction is performed both 

linearly and in a non- to diminish dimensionality, 

such as LDA and PCA techniques. Value-based 

criteria have been chosen to enhance the precision of 

activity identification. Feature selection methods 

encompass filtering (canonical analysis of 

correlation (CCA) ), wrapper techniques (such as 

support vector machines (SVM) and neural networks 

(NN)) and embedding methods [123,128]. The 

gathered data must be transmitted to the HAR 

element for analysis utilizing technologies including 

Wi-Fi. Identified activity can be disseminated 

through [101], [123] upon the new hardware 

architecture. All components depicted in this design 

(Figure 6) are explained in the subsequent sections. 

However, as proved in real healthcare situations, 

several significant challenges emerge about the lack 

of available labeled data necessary for constructing 

a classification model in relation to the overall 

velocity and volume of sensor-generated data. 

Moreover, the discriminatory capacity of features is 

frequently challenging to ascertain across various 

classes, as the range of motion patterns in specific 

patient groups, such as those with obesity or even 

geriatric patients, is constrained and preserved 

throughout time. Another concern is the typical class 

imbalance present in data recorded from these sensor 

data streams. Samples reflecting various consistent 

postures, including sleeping, sitting, active, and 

inactive, are perceptually more abundant compared 
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to others like jogging or climbing stairs. 

Consequently, these issues need the creation and 

implementation of hybrid data-driven 

methodologies, wherein semi-supervised models 

serve as the foundation of data processing processes, 

typically including contemporary Big Data 

technology [124,128,129]. 

5. Results and Discussions 
 

Tables 2, 3, and 4 describe the characteristics of 

popular classifiers, specifically the common 

classifiers KNN, SVM, HMM, and RF, alongside 

contemporary neural networks, from various 

perspectives.  In terms of input, classical classifiers 

often utilized feature vectors, whereas neural 

networks commonly employed preprocessed sensor 

data.  Traditional classifiers typically utilized 

handmade features, whereas neural networks 

generally extracted features autonomously.  

Occasionally, traditional classifiers may use 

automated features derived from other neural 

networks.  Traditional classifiers such as SVM, RF, 

KNN, and HMM mostly concentrated on obtaining 

efficient features, whereas neural networks 

emphasized the building of effective models and 

architectures.  Regarding training size, the data 

utilized in SVM, RF, and KNN is often minimal, 

while the learning size for HMM is moderate, but 

neural networks generally require substantial 

training data.  Neural networks frequently 

necessitate an appropriate number of samples for 

training the models.  Typically, sensor data acquired 

for classical classifiers or artificial neural networks 

was transmitted to a server via Bluetooth, WiFi, or 

mobile data networks for model training, as the 

computationally intensive model training was 

generally conducted on a server rather than on 

mobile devices.  The trained classifier/model can be 

installed on either a mobile device or a server.  

Considering model size along with computational 

overhead, classical classifiers such as SVM, RF, and 

KNN can be implemented on mobile devices for 

Human Activity Recognition, whereas neural 

network models are often deployed on servers.  

Consequently, while implementing neural networks 

for Human Activity Recognition (HAR), sensor data 

was typically relayed to a server to be processed and 

categorization. Regarding recognition performance, 

given effective features or well-crafted models, both 

the conventional classifiers and deep artificial neural 

networks can show a decent performance in activity 

recognition.  Deep neural networks typically 

outperformed others, nevertheless, when there were 

enough training data.  Regarding scalability, the 

conventional classifiers had low scalability since 

they rely on extracted characteristics, which could 

differ between one dataset to another.  Using the 

same classifier in another scenario (or dataset), it 

needed to extract new features again. Differently, 

neural networks have higher scalability, because 

they can automatically extract features from sensor 

data, thus can be more easily applied to another 

activity recognition challenge (datasets).  Table 1 

shows that the DL based methods performed very 

differently on various datasets.  With regard to 

computation overhead, SVM, KNN and RF 

generally have a low overhead; HMM has a medium 

cost, while neural networks typically have a high 

overhead.  Regarding implementation complexity, 

the conventional classifiers—especially the SVM, 

RF, and KNN—which were usually used for 

lightweight devices are simpler.  Regarding neural 

networks, they are difficult to apply on mobile vices 

and frequently run on a server.  If an artificial neural 

network was supposed to work with mobile devices, 

the algorithms for compression and improvement are 

usually applied to reduce the complexity the 

network.  Regarding frequency of use, the SVM and 

also artificial neural networks were most often used; 

the RF was likewise a little widely used; KNN and 

HMM had been less often utilized.  These features 

of popular classifiers are supposed to be taken into 

account while choosing or building classifiers for 

activity recognition. In Figure 7, we provide the 

statistics of recognition approaches, including ML, 

DL and hybrid approaches. It can be found that a lot 

of research work preferred to adopt data-driven 

approaches, especially supervised learning-based 

approaches, which often have the common 

workflow. Neural networks with strong feature 

extraction capabilities were most commonly 

employed in supervised learning.   

 

Figure 7. Distribution of HAR approaches 

Another well-liked classifier with a lower processing 

overhead was the SVM classifier.  Additionally, 

combining several classifiers was also commonly 

used for different recognition tasks and performance 
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comparisons. Different from the most popular 

supervised learning-based methods, the semi-

supervised learning based and unsupervised learning 

based methods occurred sporadically and were not 

often adopted.  The hybrid and knowledge-driven 

approaches were less widely used and were typically 

created for particular needs.  We also offer the 

statistics of current approaches for each year in order 

to better examine the research developments in 

recognition approaches. As shown in Figure 8, the 

data-driven approaches become more and more 

popular. The knowledge-driven approaches is less 

used than other approaches in period between 2018 

to 2021 while it rised in year 2021 then it become 

close to hybrid approaches from 2022 to date. When 

considering the popularity of supervised learning 

based methods in data-driven approaches, we also 

provide the statistics of supervised learning based 

approaches in each year.  

 
Figure 8. HAR approaches through years 

As shown in Figure 9, the DL classifiers are more 

used than other techniques from 2018 to 2024 and it 

has been rise every year. Hybrid approaches is the 

second commonly used method especially in period 

between 2018 to 2020. Knowledge-driven 

approaches were less used than other approaches. 

However, it become preferred or close to hybrid 

models from 2020. Hence, it clear that the DL 

method is more likely to used in most approaches 

this due its higher performance compared to other 

techniques. 

 
Figure 9. HAR approaches-based ML/DL techniques  

In regard to other approaches using different or 

multiple classifiers, they were adopted as needed, 

and received good attention during these years. 

Designing approaches to mobile device-based HAR 

can be guided by the following uniqueness, qualities, 

similarities and research developments of 

recognition methodologies.  Open issues are:  First 

of all, particularly with deep learning-

based approaches, it is usually required to give 

adequate training data if one is training a classifier 

for HAR.  Still, gathering and labeling sensor data 

on human activities calls for a lot of work.  For HAR, 

how to lower the cost for data annotation is fairly 

important and should be investigated more.  Second, 

the current HAR systems cannot identify new-class 

events; they only acknowledge actions in designated 

classes.  In a real-life situation, nevertheless, there 

are many different kinds of activities, therefore 

appreciating new-class events is significant and 

relevant.  It is a difficult work and has not received 

enough research.  Thirdly, a HAR solution should 

operate under several conditions considering the 

variations of people, surroundings, and tools.  Still, 

the current methods were sometimes judged against 

a small number of possibilities.  One should pay 

greater attention to the generalization in HAR 

methods.  Fourthly, considering the restricted 

resources of mobile devices, many current 

methods—especially deep learning based 

approaches—process data offline and can rarely 

operate on mobile device.  Encouragement of the 

mobile device as well as a server running HAR 

method helps to ensure a timely HAR feedback by 

means of data transfer.  Furthermore envisaged is the 

invention of lightweight variants, which can fit 

mobile devices for HAR.  

6. Conclusions 
 

This paper takes the human activity recognition 

process as the main line and sorts of various key 

technologies and related work. Although the current 

research on human activity recognition technology 

based on sensors can achieve good results, it still 

faces many new problems brought by more complex 

scenarios in actual scenarios. For example, the 

system is not robust enough to the offset of sensor 

equipment, the amount of data for training deep 

learning classification models is too small, and the 

contradiction between balancing equipment energy 

consumption and service quality.  
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