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Abstract:  
 

The early detection of brain tumors is crucial for timely medical intervention and 

improved patient survival rates. Magnetic Resonance Imaging (MRI) is the gold standard 

for brain tumor diagnosis due to its superior soft-tissue contrast and non-invasive nature. 

However, variations in MRI quality, including noise, artifacts, and scanner 

inconsistencies, can impact diagnostic accuracy. This study aims to de-velop a Python-

based deep-learning model for the early detection of brain tumors in MRI scans while 

integrating an automated quality control system using MRQy. MRQy, an open-source 

tool, facilitates quality assessment by evaluating signal-to-noise ratios (SNR), contrast-

to-noise ratios (CNR), and motion-related artifacts. The deep learning model will be 

trained on a meticulously curated dataset, ensur-ing high-quality and artifact-free MRI 

images. By combining MRQy’s quality control capabilities with deep learning 

techniques, the model is expected to en-hance tumor detection accuracy and reduce false-

positive and false-negative rates. Furthermore, this research underscores the significance 

of standardized imaging protocols to minimize variability across scanners and 

institutions, ensuring repro-ducibility in clinical AI applications. The proposed approach 

leverages modern convolutional neural networks (CNNs) and transfer learning 

techniques, incorpo-rating pre-trained architectures such as Res Net and Efficient Net to 

enhance fea-ture extraction. By integrating MRQy-based quality assessment with AI-

driven tumor classification, this study aims to optimize MRI-based diagnostics, reduce 

human error, and improve clinical outcomes. The findings contribute to the ad-vancement 

of AI-powered medical imaging and highlight the importance of MRI quality control in 

deep-learning applications. 

 

1. Introduction 

 
To mitigate variability in MRI quality, establishing 

standardized imaging protocols across different 

manufacturers is essential to ensure scan 

consistency. Implementing uniform acquisition 

settings can help minimize discrepancies in key 

quality metrics such as signal-to-noise ratio (SNR), 

contrast-to-noise ratio (CNR), and motion artifacts. 

Standardization efforts should focus on harmonizing 

scanner calibration, voxel resolution, and acquisition 

parameters to create reproducible and high-quality 

imaging datasets. Motion artifacts, as reflected in 

metrics such as the Entropy Focus Criterion (EFC) 

and Foreground-Background Energy Ratio (FBER), 

significantly degrade MRI quality and compromise 

the accuracy of computational imaging models. 

Incorporating real-time motion correction 

techniques into MRI acquisition workflows can 

substantially improve image fidelity [1-3]. 

Advanced motion tracking software and patient 

monitoring mechanisms should be integrated to 

detect and compensate for movement during scans, 

reducing errors in clinical imaging and ensuring 

high-quality data for AI-based analysis. To enhance 

the efficiency of MRI quality assessments, the 

MRQy framework should be seamlessly 

incorporated into routine imaging pipelines. 

http://dergipark.org.tr/en/pub/ijcesen
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Automating quality screening prior to analysis can 

streamline the curation of high-quality MRI datasets. 

Future iterations of MRQy could introduce real-time 

feedback mechanisms that alert operators to 

potential quality issues during scans, enabling 

immediate corrective actions and reducing the 

likelihood of acquiring suboptimal data. 

Expanding the dataset and employing deep learning 

models, such as Convolutional Neural Networks 

(CNNs) and Vision Transformers, can further refine 

MRI scan classification accuracy. Leveraging 

transfer learning from larger medical imaging 

datasets could enhance model generalizability, 

enabling improved quality assessment across diverse 

MRI protocols and clinical settings. Training AI 

models on high-quality scans validated through 

MRQy will ensure robust predictions and minimize 

errors in tumor detection and segmentation. A 

deeper investigation into the relationship between 

Image Quality Metrics (IQMs) and diagnostic 

accuracy is essential to understanding the clinical 

impact of MRI quality. Future studies should assess 

how low-quality scans influence radiological 

interpretations and AI-based tumor classification. 

Evaluating the role of quality control in reducing 

false positives and false negatives in deep learning 

models will provide valuable insights into the 

importance of maintaining high imaging standards in 

medical research and clinical applications [4,5]. 

This study underscores the critical role of MRI 

quality assessment in ensuring reliable imaging for 

both clinical and research applications. The findings 

highlight the effectiveness of MRQy as an 

automated quality control tool, the potential of deep 

learning in MRI scan classification, and the 

necessity for standardization in imaging protocols. 

By integrating AI-driven quality assessments with 

automated QC frameworks, future MRI workflows 

can achieve superior image consistency, enhanced 

diagnostic accuracy, and optimized clinical 

decision-making processes.  

 

2. MRQy: An Open-Source Solution for 

Automated Quality Control in MRI Data 

Analysis 
 

The availability of publicly accessible imaging 

repositories, such as The Cancer Imaging Archive 

(TCIA), has significantly facilitated advancements 

in machine learning and deep learning applications 

for radiographic imaging in oncological research. 

With more than 2,500 MRI scans covering 26 

anatomical sites collected from multiple institutions 

and diverse imaging equipment, ensuring 

consistency and reliability in these datasets is crucial 

for developing accurate computational imaging 

models. A significant challenge in utilizing these 

datasets for artificial intelligence (AI) model training 

lies in curating MRI scans with minimal artifacts to 

ensure dataset homogeneity. This standardization 

enhances model reproducibility and generalizability 

across unseen data. An essential aspect of this 

process is the quantitative assessment of variations 

and artifacts in MRI datasets, which serves as a key 

determinant in evaluating the transferability of deep 

learning models [1,2]. 

The following factors play a critical role in MRI 

dataset variability and its impact on computational 

imaging: 

 

1. Site- and Scanner-Specific Variations 

a. Differences in acquisition parameters, such 

as echo time (TE), repetition time (TR), and 

voxel resolution, can introduce batch 

effects, leading to inconsistencies across 

different imaging sites. 

b. For instance, The Cancer Genome Atlas 

Glioblastoma Multiforme (TCGA-GBM) 

dataset exemplifies variations in image 

dimensions and voxel sizes across multiple 

acquisition centers. 

2. Imaging Artifacts Impacting Model 

Performance 

a. Magnetic field inhomogeneity, aliasing, 

motion blur, ringing artifacts, and noise 

significantly degrade MRI quality, causing 

variations that can impair the performance 

of computational models. 

b. Addressing and correcting such artifacts 

before integrating MRI scans into deep 

learning pipelines is necessary to prevent 

bias and inconsistencies in AI-based 

predictions. 

Ensuring consistency and quality in MRI datasets is 

crucial for validating radiomics and deep learning 

models. A major limitation of manual MRI quality 

assessments is their lack of scalability, as well as 

inter-rater variability, which makes subjective 

quality ratings unreliable. Given the increasing 

volume of imaging data in repositories like TCIA, 

relying solely on human inspection for MRI quality 

assessment is neither practical nor effective in 

identifying subtle variations. These challenges 

underscore the urgent need for automated quality 

control (QC) tools that efficiently curate MRI 

datasets, ensuring they are free from artifacts and 

standardized for computational analysis. 

 

2.1 Automated MRI Quality Control Approaches 

 

Efforts to develop automated MRI QC solutions 

have led to the emergence of Image Quality Metrics 

(IQMs) and standardized Quality Assessment 

Protocols (QAPs). These protocols include: 
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Signal-to-Noise Ratio (SNR) 

SNR is a fundamental metric used to quantify the 

clarity of an MRI image by measuring the ratio of 

the mean signal intensity in a region of interest to the 

standard deviation of the background noise. A higher 

SNR indicates a clearer image with minimal noise, 

whereas a lower SNR suggests degraded image 

quality due to excessive noise. It is given as eq (1) 

[6-8]. 

 

SNR= 
𝜇𝐹

𝜎𝛣
            (1) 

 

Where: 

𝜇𝐹 = Mean intensity of the foreground (e.g., tumor 

region in MRI) 

𝜎Β = Standard deviation of background intensity 

(noise levels) 

 High SNR (>20 dB): High-quality image with 

low noise, ensuring accurate interpretation. 

 Moderate SNR (10–20 dB): Acceptable image 

quality with some noise but still usable for 

analysis. 

 Low SNR (<10 dB): Poor-quality image, with 

significant noise, affecting clinical reliability. 

 Factors Affecting SNR: 

- Scanner Strength: Higher Tesla (T) MRI 

scanners (e.g., 3T vs. 1.5T) improve SNR. 

- Voxel Size: Smaller voxels reduce noise but 

may lower SNR. 

- Patient Motion: Movement increases noise, 

reducing SNR. 

 Importance in Deep Learning: High SNR 

ensures deep learning models learn from clear, 

high-quality images, reducing mis classification 

risks in brain tumor detection [7,8] . 

 

Contrast-to-Noise Ratio (CNR) 

CNR measures the ability to differentiate tumors or 

abnormalities from surrounding healthy tissue by 

evaluating the difference in signal intensity relative 

to noise. A higher CNR improves visibility of the 

structure of interest. Deep learning models rely on 

high CNR images for accurate tumor classification. 

MRQy helps detect low-CNR scans, ensuring that 

only high-contrast images are used for training. It is 

given as eq (2). 

𝐶𝑁𝑅 =  
𝜇𝐹−𝜇𝛣

𝜎𝛣
            (2) 

Where: 

𝜇𝐹 = Mean intensity of the tumor region 

𝜇Β= Mean intensity of the background region 

𝜎Β= Background noise standard deviation 

 High CNR (>10): Tumor is well-differentiated 

from background, aiding AI-based seg] 

 Moderate CNR (5–10): Tumor is partially 

visible but may require contrast enhancement. 

 Low CNR (<5): Poor contrast, making tumor 

detection difficult. 

 Factors Affecting CNR: Magnetic Field 

Strength: Higher field MRI (e.g., 3T) improves. 

 Contrast Agents: Gadolinium-enhanced MRI 

improves tumor visibility. 

 Tissue Properties: Edema and necrosis affect 

CNR values. 

 

Coefficient of Joint Variation (CJV) 

CJV assesses intensity uniformity across an MRI 

scan, helping detect variations caused by scanner 

artifacts, field inhomogeneity, or bias in signal 

distribution. It is given as eq (3). 

 

𝐶𝐽𝑉 =  
𝜎𝐹+𝜎𝛣

|𝜇𝐹−𝜇𝛣|
           (3) 

Where: 

𝜎𝐹 = Standard deviation of the foreground intensity 

(tumor or anatomical structure) 

𝜎Β = Standard deviation of the background intensity 

(non-tissue regions) 

𝜇𝐹 = Mean intensity of the foreground 

𝜇Β= Mean intensity of the background 

 High CJV (> threshold): Significant intensity 

variations, making segmentation difficult. 

 Moderate CJV: Some variations, requiring 

normalization. 

 Low CJV: Consistent intensity distribution and 

ideal for based analysis. 

 Factors Affecting CJV: Field inhomogeneity 

uneven field strength across the scan affects 

intensity.  

 Scanner variability: Different MRI 

manufacturers may introduce intensity 

differences.  

 Multi-Site Studies: Variability in imaging 

protocols can impact CJV. 

 Importance in AI-Based Imaging: Deep learning 

models require uniform intensity distribution for 

accurate feature extraction. 

  MRQy identifies scans with high CJV flagging 

them for correction before AI training. 

 

Entropy Focus Criterion (EFC)  

EFC measures the degree of randomness in intensity 

variations in an MRI scan. High entropy suggests 

motion artifacts, blurring, or image distortion that 

can affect segmentation and diagnosis. It is given as 

eq (4). 

 

𝐸𝐹𝐶 =  
𝑁𝑀

√𝑁𝑀
𝑙𝑜𝑔 (

𝐸

√𝑁𝑀
)           (4) 

 

Where: 

𝑁 and 𝑀 are image dimensions (number of pixels) 

𝐸 is the Shannon entropy of intensity distributions. 
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 High EFC (> threshold): Indicates motion 

artifacts, requiring correction. 

 Moderate EFC: Some distortions, but acceptable 

for analysis. 

 Low EFC: Minimal artifacts, ensuring optimal 

clarity. 

 Factors Affecting EFC: Patient Motion: Motion 

during scanning increases entropy values. Long 

Scan Durations: Extended acquisition time leads 

to motion artifacts. Scanner Hardware: Coil 

sensitivity and field strength impact EFC. 

 Impact on AI Models: Motion artifacts severely 

impact tumor segmentation accuracy. MRQy 

integrates EFC-based quality control to detect 

and filter motion-affected scans before AI 

analysis. 

 

2.2 Supervised MRI Quality Control Tools 

 

One of the widely adopted QC tools, MRIQC, is a 

supervised method that classifies MRI scans based 

on expert-defined quality annotations. MRIQC 

utilizes web-based interfaces, enabling expert 

reviewers to seamlessly interact with the system and 

conduct large-scale MRI quality assessments, 

several MRI QC tools have been designed for brain 

imaging, such as [8-11]: 

a. Qoala-T (FreeSurfer-Specific MRI Quality 

Control Tool): is a machine-learning-based tool 

designed for automated quality control of 

FreeSurfer-processed MRI data. It automates the 

validation of structural MRI scans, reducing 

reliance on manual inspections and improving 

efficiency in large-scale neuroimaging studies. 

b. LABQA2GO: A Generalized MRI Quality 

Assessment Tool: is a fully automated tool 

capable of performing unsupervised MRI 

quality assessments across various imaging 

modalities. Unlike Qoala-T, which is specific to 

FreeSurfer-processed MRI scans, LABQA2GO 

evaluates raw MRI images and generates 

detailed quality reports, making it suitable for 

multi-site imaging studies. 

However, most existing MRI QC tools are limited to 

brain imaging and may lack generalizability for 

analyzing MRI datasets from different anatomical 

sites. This highlights the need for a scalable, 

unsupervised quality control framework that can 

ensure MRI dataset integrity across a wide range of 

imaging applications. 

 

2.3 MRQy: An Open-Source Framework for 

MRI Quality Control 

 

MRQy was developed as an open-source quality 

control tool tailored for analyzing large-scale MRI 

datasets. Built upon the histo QC python framework, 

MRQy integrates multiple quality assessment 

modules to handle diverse MRI datasets efficiently. 

Key Features of MRQy [9-11]: 

a. Automatic Foreground Detection 

MRQy automatically detects the foreground 

region in an MRI scan, regardless of the 

anatomical site. This step is crucial for isolating 

the region of interest (ROI) and ensuring 

accurate quality assessments. 

b. Extraction of Imaging-Specific Metadata and 

Quality Metrics 
MRQy extracts a wide range of imaging-specific 

metadata and quality measures applicable to any 

MRI sequence. These extracted metrics provide 

valuable insights into image quality, helping 

detect inconsistencies and batch effects. 

c. Computation of Quality Trends 
MRQy computes statistical representations that 

capture MRI quality trends within a dataset. 

These trends enable the identification of 

scanner-related artifacts and site-specific 

imaging variations. 

d. Interactive HTML5-Based Visualization 
MRQy features an interactive front-end 

interface that allows users to analyze computed 

MRI quality trends intuitively. The web-based 

dashboard enables researchers to quickly 

identify batch effects, artifacts, and low-quality 

scans. 

 

3. Genomic Data Commons (GDC): A 

Centralized Cancer Genomics Platform 
 

The Genomic Data Commons (GDC), established by 

the National Cancer Institute (NCI), is a centralized 

platform for harmonized genomic and clinical 

cancer data. It integrates molecular data from major 

cancer research projects, facilitating precision 

medicine, biomarker discovery, and AI-driven 

research [12-17]. Figure 1 illustrates a web platform 

that facilitates interactive data exploration, 

visualization, and downloading of datasets. Figure 2 

illustrates an enhanced command-line tool for 

downloading large datasets quickly and efficiently. 

 

3.1 Key Features 

 

a. Centralized Data Repository 

Provides access to multi-omic datasets, including 

whole-genome sequencing (WGS), RNA-Seq, DNA 

methylation, and clinical metadata. Consolidates 

data from TCGA, TARGET, and CGCI, covering 

various cancer types. 

b. Data Standardization 

Ensure consistency across studies by harmonizing 

sequencing data to standard reference genomes. 

Applies quality control measures for reliable. 
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Figure 1. A web-based platform that facilitates 

interactive data exploration, visualization and dataset 

downloads 

 

research outcomes 

c. Data Accessibility 

Open-access data: Includes a summary of clinical 

information and metadata. Controlled-access data: 

Raw sequencing files requiring authorization via dB 

Gap. 

 

3.2 Tools & Access Methods 

 

GDC Data Portal 

A web-based interface for exploring and 

downloading datasets. GDC API – Enables 

automated data retrieval using Python, R, and other 

programming languages. 

GDC Data Transfer Tool (DTT)  

The GDC accelerates discoveries in oncology, 

leading to better diagnostics and improved patient 

care. From by a command-line utility for large-scale 

data downloads in applications for cancer research 

supports tumor biology studies, machine learning 

models, personalized treatment strategies, enhances 

genomic guided clinical trials and driven cancer 

diagnostics. By providing standardized, high-quality 

genomic data. 

 

4. Results 

 
4.1 Evaluation of MRI Quality Control Using 

MRQy 

 

This section evaluates the deep learning driven by 

the MRI quality control framework, assessing its 

accuracy and effectiveness in identifying quality 

discrepancies across MRI scans. We analyze 

MRQy’s performance as an automated quality 

control tool, where show figure 3 interface, the 

results obtained, compare it with existing methods 

and high lighting its strengths and limitations. The 

analysis, performed using MRQy, took 54.22 

minutes to process all 21 datasets within the TCGA-

GBM collection. As shown in figure 4. 

 

 
Figure 2. A command-line utility optimized for fast and 

efficient downloading of large datasets. 

 

Since these MRI scans were acquired under diverse 

environmental conditions, employing different 

scanner equipment and imaging protocols, this 

cohort captures typical data variations and imaging 

artifacts. All 21 studies were obtained as DICOM 

files from TCIA. Analysis, datasets within the 

TCGA-GBM collection. The table 1 presents the 

results obtained. 

 

 
Figure 3. MRQy interface, the results obtained. 
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Figure 4. the processing time for analyzing the TCGA-

GBM dataset. 

 

As explain an MRI Quality Clustering (Based on 

SNR and CNR) in figure 5 

 

 
Figure 5.MRI Quality Clustering (Based on SNR & 

CNR) 

 

 
(a) 

 

(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 6. Evaluation of critical MRI quality control 

(MRQy) metrics across multiple participants (MSB-

08583) with the highest values. 
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To ensure a comprehensive assessment, MRI scans 

from 21 participants across SIEMENS, GE, and 

PHILIPS scanners were analyzed. This dataset 

allowed us to examine variability in image quality, 

manufacturer differences, and scan consistency. The 

findings contribute to advancing automated MRI 

quality control, promoting standardized, high-

fidelity imaging across different MRI systems. 

Where in figure 6 shown an MRI quality clustering 

results (a-b-c-d-e-f) Evaluation of critical MRI 

quality control (MRQy) metrics across multiple 

participants (MSB-08583) with the highest values. 
 

Table 1. Summary of the Integrated Quality Index for 

each participant. 

 
 

The MRI quality was shown in (a) images before 

processing with the MRQy software, while (b) 

images after processing with the software showed a 

significant difference in image resolution. As show 

in figure 7. Similar works using deep learning 

method has been done and reported [18-29]. 

 

5. Conclusions 
 

The evaluation of MRI quality across different 

manufacturers highlighted substantial variations in 

Signal-to-Noise Ratio (SNR), Contrast-to-Noise 

Ratio (CNR), and motion-related artifacts, with 

FBER and EFC metrics indicating distinct levels of 

motion degradation across SIEMENS, GE, and 

PHILIPS scanners. Participant-level assessments 

further revealed disparities in image quality, where a 

subset of scans demonstrated lower IQM scores, 

signifying increased noise levels and reduced 

diagnostic reliability. The integration of MRQy as an 

automated MRI quality control tool enabled the 

analysis of 21 MRI datasets within 54.22 minutes, 

proving its efficiency in assessing and 

categorizations based on quality. Utilizing machine 

learning models, particularly Random Forest 

classification,  

the system successfully predicted MRI scan quality 

with an 80% accuracy rate, reinforcing the 

significance of SNR, CNR, and FBER as key quality 

determinants. The implementation of clustering 

techniques (K-Means, DBSCAN) facilitated the 

identification of high- and low-quality scans, 

offering a structured approach to MRI quality 

classification. These findings emphasize the 

importance of standardized imaging protocols, 

ensuring reproducibility across multi-site datasets 

and fostering reliability in AI-driven diagnostic 

applications. By integrating automated quality 

control mechanisms and AI-based quality 

assessments, future MRI workflows can enhance 

image consistency, minimize diagnostic errors, and 

improve patient outcomes, ultimately advancing the 

field of AI-assisted medical imaging and precision 

diagnostics. 

 

 
(a) 

 
(b) 

Figure 7. (a) images before processing with the MRQy 

software, while (b) images after processing with the 

software showed a significant difference in image 

resolution. 
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