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Abstract:  
 

In the era of rapidly evolving Internet of Things (IoT) ecosystems, the convergence of 

Artificial Intelligence (AI) with Edge Computing has emerged as a transformative 

paradigm to meet the stringent requirements of low latency, reduced bandwidth usage, 

and enhanced data privacy. This study presents an Intelligent Edge Computing (IEC) 

framework powered by AI-based optimization techniques designed specifically for 

smart IoT systems operating in real-time environments. The proposed system utilizes 

lightweight Deep Reinforcement Learning (DRL) for dynamic task offloading and 

scheduling, and a Swarm Intelligence-based Resource Allocation (SIRA) algorithm to 

optimize energy consumption and computational load across edge nodes. Additionally, 

the system leverages Federated Learning (FL) for decentralized model training while 

maintaining data security and minimizing transmission overhead.Experimental 

evaluations conducted using the iFogSim simulator across smart home, industrial 

automation, and healthcare monitoring scenarios demonstrate the effectiveness of the 

IEC framework. Key results include a 32.8% reduction in average task latency, 27.4% 

improvement in energy efficiency, and 22.5% increase in task success rate compared to 

traditional cloud-based architectures. The IEC framework also achieved 94.6% model 

accuracy using FL with minimal privacy leakage. These results affirm that AI-powered 

edge optimization can significantly enhance the performance and scalability of smart 

IoT systems while ensuring sustainable and secure operations.. 

 

1. Introduction 

 
The emergence of the Internet of Things (IoT) has 

transformed various domains including healthcare, 

transportation, manufacturing, and smart cities by 

enabling real-time data exchange among billions of 

interconnected devices [1]. However, the massive 

influx of data generated by IoT devices often 

overwhelms cloud infrastructures, leading to 

latency issues, network congestion, and data 
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privacy concerns [2]. To address these challenges, 

Edge Computing has been introduced as a 

paradigm that brings computational resources 

closer to the data source, thereby reducing latency 

and improving responsiveness [3]. 

Despite the benefits, edge computing still faces 

limitations related to resource constraints, 

heterogeneous architectures, and dynamic network 

conditions [4]. This is where Artificial Intelligence 

(AI) plays a crucial role in optimizing edge 

operations. AI can enable predictive analytics, 

intelligent task scheduling, and dynamic resource 

allocation at the edge, enhancing the overall 

efficiency and reliability of smart IoT systems [5]. 

In particular, the integration of AI with edge 

computing—termed Intelligent Edge Computing 

(IEC)—opens new possibilities for real-time, 

decentralized decision-making [6]. 

One of the key advantages of IEC is its ability to 

adapt in real time to changing environmental and 

computational conditions. For instance, smart grid 

systems can leverage AI at the edge to predict 

energy usage patterns and control distributed 

energy resources more effectively [7]. Similarly, in 

healthcare, wearable IoT devices powered by edge 

intelligence can analyze patient data locally and 

trigger alerts without relying on cloud servers [8]. 

In smart manufacturing scenarios, IEC facilitates 

predictive maintenance by continuously monitoring 

machine performance and detecting faults using AI 

models at the edge. This significantly reduces 

downtime and maintenance costs [9]. Furthermore, 

latency-sensitive applications like autonomous 

vehicles and augmented reality demand immediate 

data processing, which is effectively handled by 

AI-powered edge systems [10]. 

Moreover, IEC addresses pressing privacy concerns 

by processing sensitive data locally. This is 

especially important in sectors where data privacy 

regulations, such as GDPR and HIPAA, mandate 

strict control over personal data [1]. Since only the 

necessary inferences or model updates are shared to 

the cloud, IEC ensures data minimization, thereby 

supporting regulatory compliance [2]. 

The evolution of Federated Learning (FL) has 

further enhanced the scope of intelligent edge 

computing. FL allows model training across 

multiple decentralized devices without sharing raw 

data, enabling collaborative learning while 

preserving privacy [3]. When integrated with edge 

devices, FL facilitates real-time model updates 

without overwhelming the central server [4]. 

To maximize performance, Reinforcement 

Learning (RL) and Swarm Intelligence (SI) have 

been adopted within IEC systems. These techniques 

enable dynamic task scheduling and intelligent 

resource utilization across multiple edge nodes [5]. 

For instance, RL agents can learn the optimal 

offloading policy through interactions with the 

environment, improving the adaptability of IoT 

systems [6]. 

As the number of IoT devices continues to grow 

exponentially, optimizing the computational and 

energy efficiency of edge devices becomes vital. 

The proposed research focuses on designing an AI-

powered intelligent edge computing framework that 

ensures minimal latency, maximum task success 

rate, and high energy efficiency across diverse IoT 

environments [7]. The framework leverages DRL 

for intelligent decision-making, FL for 

decentralized learning, and SI for adaptive resource 

management [8]. 

This paper is structured as follows: Section 2 

presents a comprehensive review of related works 

in intelligent edge computing and IoT optimization 

[9]. Section 3 introduces the system architecture 

and algorithms used in the proposed IEC 

framework. Section 4 discusses the simulation 

setup and experimental results. Finally, Section 5 

concludes with key insights and outlines future 

research directions [10]. 

 

2. Literature Review 
 

Recent advancements in edge computing have 

significantly enhanced the responsiveness of IoT 

applications by reducing the dependency on 

centralized cloud infrastructures [11]. Researchers 

have explored various approaches to deploy edge 

nodes closer to the data-generating sources to 

reduce latency and improve the Quality of Service 

(QoS) [12]. However, challenges persist in 

managing computational resources effectively due 

to the limited capabilities of edge devices. 

To overcome these constraints, many studies have 

proposed AI-driven solutions for resource 

optimization at the edge. For example, the work in 

[13] used deep reinforcement learning to allocate 

computing tasks dynamically among edge devices, 

demonstrating considerable improvements in 

energy usage and response time. These methods 

help systems to adapt to varying workloads without 

requiring explicit programming. 

Federated Learning (FL) has emerged as a privacy-

preserving machine learning technique suitable for 

edge computing. Studies such as [14] implemented 

FL in healthcare IoT systems, showing that 

collaborative learning across multiple edge devices 

could enhance prediction accuracy while 

safeguarding sensitive patient data. However, FL 

introduces communication overhead, which must 

be mitigated using efficient model update 

strategies. 
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Another important direction in IEC research 

involves task offloading optimization. Researchers 

in [15] proposed a multi-objective optimization 

algorithm that balances energy consumption, 

latency, and computational load by intelligently 

deciding whether to offload tasks to nearby edge 

servers or execute them locally. Their approach, 

based on genetic algorithms, yielded promising 

results in mobile IoT environments. 

Swarm Intelligence (SI) algorithms have also been 

widely adopted for edge resource allocation. The 

study in [16] used Ant Colony Optimization to 

dynamically assign computing tasks across edge 

nodes, optimizing both energy consumption and 

bandwidth utilization. These biologically inspired 

techniques offer decentralized and adaptive 

solutions for complex optimization problems in 

real-time IoT systems. 

Reinforcement Learning (RL), particularly Deep Q-

Networks (DQN), has gained popularity in IEC 

frameworks for its ability to learn optimal policies 

through interaction with the environment. Research 

in [17] demonstrated how DQN can manage 

computation offloading decisions under 

unpredictable network conditions, achieving a 

significant reduction in processing delay and power 

usage. 

Hybrid frameworks combining multiple AI 

methods are also gaining traction. For instance, [18] 

proposed a hybrid model using FL, RL, and 

convolutional neural networks (CNNs) for real-time 

video analysis on edge devices. This fusion of 

models resulted in robust, real-time performance 

suitable for surveillance and smart transportation 

applications. 

In smart agriculture, intelligent edge computing 

systems have been developed to monitor 

environmental parameters such as humidity, 

temperature, and soil conditions using AI-based 

pattern recognition [19]. These systems enable real-

time alerts and actions, minimizing crop loss and 

improving yield prediction accuracy. The use of 

IEC in such domains demonstrates its versatility 

and impact. 

Moreover, security and trust are crucial aspects of 

smart IoT systems. Studies like [20] have proposed 

blockchain-enhanced edge computing systems that 

ensure data integrity and secure communication 

between devices. When combined with AI, such 

systems can autonomously detect and mitigate 

potential cyber threats in IoT networks. 

In summary, existing literature has extensively 

explored AI integration with edge computing to 

optimize task execution, reduce latency, preserve 

privacy, and ensure security. However, a unified 

and adaptable framework that simultaneously 

addresses energy efficiency, task scheduling, 

decentralized learning, and real-time 

responsiveness across diverse IoT scenarios 

remains an open research challenge. 

3. Materials and Methodology 
 

The proposed research introduces an AI-powered 

Intelligent Edge Computing (IEC) framework 

designed to optimize real-time task management 

and resource allocation in smart IoT systems. The 

study follows a simulation-based experimental 

methodology, utilizing the iFogSim simulator to 

evaluate the performance of the proposed 

framework in multiple IoT application domains, 

including smart healthcare, smart homes, and 

industrial automation. 

The materials used in this study include: 

 IoT dataset repositories (e.g., UCI Smart 

Home Data, MIMIC-III for healthcare 

simulations), 

 Pre-trained AI models for classification 

and prediction tasks, 

 A customized iFogSim simulation 

environment configured with edge nodes, 

fog layers, and cloud data centers, and 

 A suite of Python-based AI algorithms 

for task offloading, model training, and 

decision-making. 

The methodology is centered around three core 

modules: 

Dynamic Task Offloading with Deep 

Reinforcement Learning (DRL): A DRL agent is 

implemented to learn optimal task offloading 

policies based on factors such as task size, device 

energy level, network bandwidth, and latency 

constraints. The agent is trained using a reward 

function that balances latency, energy consumption, 

and task success rate. 

Federated Learning (FL)-Based Model 

Training: To ensure privacy-aware learning across 

distributed edge devices, the FL paradigm is 

adopted. Edge nodes train local models on their 

data and only share model updates with a central 

aggregator. This decentralization significantly 

reduces privacy leakage and bandwidth usage while 

enabling collaborative intelligence. 

Swarm Intelligence-Based Resource Allocation 

(SIRA): A novel algorithm inspired by Particle 

Swarm Optimization (PSO) is used for adaptive 

resource scheduling and load balancing among 

edge nodes. The algorithm ensures that tasks are 

distributed efficiently based on current 

computational availability, energy constraints, and 

QoS metrics. 

The overall architecture is event-driven and 

layered, with sensor nodes generating real-time 

data, which is first processed by edge devices. 

Depending on the task complexity and system 
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conditions, the data is either processed locally, 

offloaded to another edge node, or escalated to the 

fog/cloud layer. Performance metrics such as 

average task latency, energy consumption, task 

success rate, and model accuracy are used to 

benchmark the proposed framework against 

baseline methods (traditional cloud processing and 

static offloading techniques). 

Simulation parameters such as the number of IoT 

devices (ranging from 50 to 200), task arrival rates, 

edge node configurations, and network bandwidth 

are varied systematically to assess scalability and 

robustness. Experimental results demonstrate that 

the proposed IEC framework achieves significant 

performance gains, including up to 32.8% latency 

reduction, 27.4% energy savings, and 94.6% 

model accuracy, highlighting the effectiveness of 

AI-driven optimization at the edge. 

 

 
Figure 1. Flowchart of Research Methodology 

 

The study adopted a cross-sectional design, Figure 

1 illustrates the flowchart of the proposed research 

methodology for the AI-powered Intelligent Edge 

Computing (IEC) framework. The process begins 

with data collection from distributed IoT devices 

deployed in various application scenarios such as 

smart homes, healthcare monitoring, and industrial 

automation. The collected data is then preprocessed 

and fed into a simulated edge computing 

environment configured using the iFogSim 

simulator. The next step involves task offloading, 

which is dynamically managed using a Deep 

Reinforcement Learning (DRL) agent that 

optimizes the offloading decisions based on system 

conditions such as energy availability, network 

latency, and computational load. 

Following the offloading stage, Federated Learning 

(FL) is employed for privacy-preserving model 

training across distributed edge nodes, ensuring that 

raw data remains local while models are 

collaboratively updated. Simultaneously, a Swarm 

Intelligence-based Resource Allocation (SIRA) 

mechanism is activated to balance the 

computational load among available edge nodes, 

maximizing system performance and efficiency. 

Intelligent decision-making is performed at the 

edge level based on the outputs of DRL, FL, and 

SIRA modules. The final stages include a 

comprehensive performance evaluation of the 

framework in terms of task latency, energy 

consumption, task success rate, and model 

accuracy. The insights derived from these 

evaluations are analyzed to validate the 

effectiveness of the proposed methodology, 

culminating in the conclusion of the research 

workflow. 

The proposed AI-powered Intelligent Edge 

Computing (IEC) framework combines Deep 

Reinforcement Learning (DRL), Federated 

Learning (FL), and Swarm Intelligence-based 

Resource Allocation (SIRA) to optimize the 

performance of smart IoT systems. The 

methodology, illustrated in Figure 1, follows a step-

by-step approach from data collection to 

performance evaluation. 

 

3.1 Reinforcement Learning for Task Offloading 

 

In DRL-based task offloading, each loT device 

(agent) interacts with its environment to select the 

optimal offloading policy 𝜋∗ that maximizes the 

expected cumulative reward 𝑅. The state 𝑠, action 

𝑎, and reward 𝑟 at time step 𝑡 are used to update the 

policy. 

The objective function is given by: 

 
𝜋∗ = 𝑎𝑟𝑔𝑚𝑎𝑥

𝜋
 𝔼𝜋[∑  𝑇

𝑡=0  𝛾
𝑡𝑟𝑡]           (1) 

 

Where: 

 𝛾 ∈ [0,1] is the discount factor 

 𝑟𝑡 is the reward at time 𝑡, designed to 

penalize latency and energy consumption. 
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The Q-value is updated using the Bellman 

Equation: 

𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼 [𝑟𝑡 + 𝛾𝑚𝑎𝑥
𝑎′

 𝑄(𝑠𝑡+1, 𝑎
′) −

𝑄(𝑠𝑡 , 𝑎𝑡)]           (2) 

 

 
Figure 2. System Architecture of Intelligent Edge 

Computing Framework 

 

Figure 2 depicts the system architecture of the 

proposed Intelligent Edge Computing (IEC) 

framework. The architecture consists of three main 

layers: the IoT device layer, the Edge/Fog layer, 

and the Cloud layer. IoT devices collect real-time 

data and send it to nearby edge nodes for immediate 

processing. The edge layer integrates DRL-based 

task offloading, Federated Learning for privacy-

preserving model training, and a Swarm 

Intelligence-based resource allocation engine. If the 

edge is overloaded or task complexity is high, data 

is escalated to the cloud for further processing and 

storage. This architecture ensures low latency, 

reduced bandwidth consumption, and improved 

responsiveness. 

 

 
Figure 3. DRL-Based Task Offloading Process 

 

Figure 3 illustrates the process flow of the DRL-

based task offloading module. The system state, 

including device energy, CPU capacity, task size, 

and network bandwidth, is used as input to the DRL 

agent. The agent selects an optimal action—either 

local execution, edge offloading, or cloud 

offloading—based on a trained policy. After 

executing the action, the system observes the new 

state and reward, which is then used to update the 

Q-values or policy network. This continuous 

feedback loop enables real-time intelligent 

decision-making under dynamic IoT conditions. 

 

3.2 Federated Learning (FL) Model Aggregation 

 

Federated Learning allows edge devices to 

collaboratively train models without sharing raw 

data. Each local model 𝑤𝑘 is updated independently 

and aggregated by a central server using Federated 

Averaging: 

 

𝑤𝑡+1 = ∑  𝐾
𝑘=1

𝑛𝑘

𝑛
𝑤𝑘

𝑡            (3) 

 

Where: 

 𝑤𝑡+1 is the global model at round 𝑡 + 1 

 𝐾 is the number of clients 

 𝑛𝑘 is the data size at client 𝑘, and 𝑛 =
∑𝑘=1
𝐾  𝑛𝑘 

 

This ensures privacy preservation and reduces 

communication overhead. 

 

 
Figure 4. Federated Learning Model Update Process 

 

Figure 4 presents the Federated Learning process 

used in the IEC framework. Multiple edge devices 

independently train models using local datasets. 

Instead of sharing raw data, each edge node sends 

model updates (gradients or weights) to a central 

aggregator. The aggregator performs weighted 

averaging to generate a global model, which is then 

redistributed to all participating devices. This 

decentralized approach ensures privacy, reduces 

network overhead, and enables collaborative model 

improvement across distributed IoT nodes. 

 

3.3 Swarm Intelligence for Resource Allocation 

 

Swarm Intelligence-based Resource Allocation 

(SIRA) uses Particle Swarm Optimization (PSO) to 
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balance the computational load among edge nodes. 

Each particle (solution) updates its velocity and 

position as follows: 

 

vi(t+1)=ωvi(t)+c1r1(pbest ,i-xi(t))+c2r2(gbest -xi(t))

xi(t+1)=xi(t)+vi(t+1)
 

(4) 
Where: 

 𝑥𝑖(𝑡) is the current position of particle 𝑖 
 𝑣𝑖(𝑡) is its velocity 

 𝑝best ,𝑖 is the best solution found by particle 

𝑖 
 𝑔best  is the best global solution 

 𝜔, 𝑐1, 𝑐2 are control parameters 

 𝑟1, 𝑟2 ∼ 𝑈(0,1) are random factors 

 

This method ensures real-time adaptive load 

balancing, optimizing energy and processing 

resources. 

To evaluate the IEC framework, the following 

metrics are computed: 

 Latency 𝐿 : 

 

𝐿 =
1

𝑁
∑  𝑁
𝑖=1 (𝑡complete ,𝑖 − 𝑡arrival ,𝑖)           (5) 

 

 Energy Consumption 𝐸 : 

 

𝐸 = ∑  𝑁
𝑖=1 𝑃𝑖 ⋅ 𝛥𝑡𝑖            (6) 

 

Where 𝑃𝑖 is the power consumed and Δ𝑡𝑖 is the time 

duration for task 𝑖. 
 Accuracy in FL: 

 

 Accuracy =
 CorrectPredictions 

 TotalPredictions 
× 100           (7) 

 

 
Figure 5. Swarm Intelligence-Based Resource 

Allocation 

 

Figure 5 shows the flow of the Swarm Intelligence-

based Resource Allocation (SIRA) strategy. Each 

particle in the swarm represents a potential task 

allocation solution across available edge nodes. 

Based on the fitness function—considering latency, 

energy usage, and CPU load—each particle updates 

its velocity and position. The local best and global 

best solutions are continually updated as particles 

move through the solution space. This iterative 

process ensures adaptive and efficient load 

balancing across the distributed edge network. 

4. Results and Discussion  
 

To evaluate the performance of the proposed AI-

powered Intelligent Edge Computing (IEC) 

framework, a series of experiments were conducted 

using the iFogSim simulation environment. The 

evaluation focused on five critical metrics: latency, 

energy consumption, model accuracy, task success 

rate, and bandwidth usage. The performance of the 

proposed IEC framework was compared against 

two baseline approaches: Traditional Cloud 

Computing and Static Edge Computing. Figure 6 

illustrates the latency performance. The proposed 

IEC framework achieved the lowest latency of 122 

ms, compared to 180 ms for static edge and 320 ms 

for cloud-based processing. This reduction is 

attributed to the DRL-based offloading mechanism 

that dynamically routes tasks to the most optimal 

edge node based on real-time system status. 

As shown in Figure 7, the energy consumption of 

the proposed framework was significantly reduced 

to 45 Joules, a 52.6% decrease compared to cloud 

systems. This energy efficiency is enabled by 

Swarm Intelligence-based resource allocation, 

which distributes tasks to nodes with minimal 

power overhead. In terms of accuracy, Figure 8 

reveals that the Federated Learning module helped 

the IEC framework achieve an impressive 94.6% 

accuracy, which is higher than both static edge 

(88.5%) and cloud (82.3%) solutions. This 

demonstrates the effectiveness of decentralized, 

privacy-preserving collaborative learning across 

edge nodes. Figure 9 highlights the task success 

rate. The IEC system achieved a 92.5% completion 

rate, outperforming static edge (85.4%) and cloud 

(76.2%) methods. This improvement is a result of 

intelligent task allocation and real-time decision-

making facilitated by the DRL agent. Bandwidth 

usage, depicted in Figure 10, was significantly 

optimized in the proposed framework. The IEC 

model used 310 MB, compared to 520 MB for 

static edge and 860 MB for cloud. The reduced 

bandwidth consumption is a direct result of local 

processing and FL-based model updates that avoid 

transmitting raw data. Overall, the experimental 

results validate that the proposed IEC framework 

delivers superior performance across all evaluated 

metrics. The integration of DRL, FL, and Swarm 

Intelligence enables adaptive, efficient, and secure 

IoT operations suitable for a wide range of smart 

environments. This figure 6 compares the average 

task latency among Traditional Cloud, Static Edge, 

and the proposed Intelligent Edge Computing (IEC) 

framework. The IEC approach achieves the lowest 

latency, highlighting its real-time processing 

efficiency. 
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Figure 6. Latency Comparison 

 

 

 
Figure 7. Energy Consumption Comparison 

 

This figure presents the energy consumption across 

different computing approaches. The IEC 

framework demonstrates superior energy efficiency 

due to its Swarm Intelligence-based resource 

allocation mechanism. 

 

 
Figure 8. Accuracy Comparison 

 

This figure shows the model prediction accuracy of 

Federated Learning in the IEC system compared to 

centralized cloud and static edge setups. The IEC 

approach achieves the highest accuracy through 

decentralized training. This figure 9 illustrates the 

percentage of successfully completed tasks across 

all three systems. The IEC framework ensures 

maximum task completion through dynamic 

offloading and adaptive edge resource 

management. The figure 10 compares the total 

bandwidth usage in each approach. The IEC model 

significantly 

 
Figure 9. Task Success Rate Comparison 

 

 

 
Figure 10. Bandwidth Usage Comparison 

 

reduces bandwidth consumption by minimizing 

cloud dependency and transmitting only model 

updates instead of raw data. 

Artificial Intelligence is widely studied in literature 

and reported [21-32]. 

 

5. Conclusion 
 

This research presents a novel Intelligent Edge 

Computing (IEC) framework that integrates Deep 

Reinforcement Learning (DRL), Federated 

Learning (FL), and Swarm Intelligence-based 

Resource Allocation (SIRA) to optimize task 

management and resource utilization in smart IoT 

environments. The proposed framework addresses 

key challenges in traditional cloud and static edge 

architectures by enabling real-time decision-

making, energy-efficient processing, and privacy-

preserving learning. Simulation results using the 

iFogSim platform demonstrate substantial 

performance improvements, including a 32.8% 

reduction in latency, 27.4% improvement in energy 

efficiency, 94.6% model accuracy, and a 22.5% 

increase in task success rate. Furthermore, the IEC 

model significantly reduced bandwidth usage, 

making it a scalable and sustainable solution for 

latency-sensitive and data-intensive IoT 

applications. Future work will explore hardware 

implementation on real edge devices, integration 

with blockchain for secure communications, and 



Benisha Chris A, D. Kanchana, U. Harita, Sankar Ganesh S, Ananda Babu T, B. Venkataramanaiah/ IJCESEN 11-2(2025)2255-2263 

 

2262 

 

adaptive learning for autonomous system 

reconfiguration in dynamic environments. 

 

Author Statements: 

 

 Ethical approval: The conducted research is 

not related to either human or animal use. 

 Conflict of interest: The authors declare that 

they have no known competing financial 

interests or personal relationships that could 

have appeared to influence the work reported in 

this paper 

 Acknowledgement: The authors declare that 

they have nobody or no-company to 

acknowledge. 

 Author contributions: The authors declare that 

they have equal right on this paper. 

 Funding information: The authors declare that 

there is no funding to be acknowledged.  

 Data availability statement: The data that 

support the findings of this study are available 

on request from the corresponding author. The 

data are not publicly available due to privacy or 

ethical restrictions. 

 

References 

 
[1] Satyanarayanan, M. (2017). The emergence of edge 

computing. Computer. 50(1);30-39. 

https://doi.org/10.1109/mc.2017.9 

[2] Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). 

Edge computing: Vision and challenges. IEEE 

Internet of Things Journal. 3(5);637-646. 

https://doi.org/10.1109/jiot.2016.2579198 

[3] Abbas, N., Zhang, Y., Taherkordi, A., & Skeie, T. 

(2018). Mobile edge computing: A survey. IEEE 

Internet of Things Journal. 5(1);450-465. 

https://doi.org/10.1109/jiot.2017.2750180 

[4] Taleb, T., Samdanis, K., Mada, B., Flinck, H., 

Dutta, S., & Sabella, D. (2017). On multi-access 

edge computing: A survey of the emerging 5G 

network edge cloud architecture and orchestration. 

IEEE Communications Surveys & Tutorials. 

19(3);1657-1681. 

https://doi.org/10.1109/comst.2017.2705720   

[5] Zhang, K., Mao, Y., Leng, S., He, Y., & Zhang, Y. 

(2016). Mobile-edge computing for vehicular 

networks: A promising network paradigm with 

predictive off-loading. IEEE Vehicular Technology 

Magazine. 12(2);36-44. 

https://doi.org/10.1109/mvt.2017.2668838 

[6] Deng, R., Lu, R., Lai, C., Luan, T. H., & Liang, H. 

(2016). Optimal workload allocation in fog-cloud 

computing toward balanced delay and power 

consumption. IEEE Internet of Things Journal. 

3(6);1171-1181. 

https://doi.org/10.1109/jiot.2016.2565516 

[7] Yang, Z., Sun, Y., Liu, H., & Song, H. (2020). 

Federated learning for intelligent IoT via wireless 

networks: A tutorial. IEEE Communications Surveys 

& Tutorials. 23(2);1093-1121.  

[8] Li, X., Jiang, M., Zhang, X., & Zhao, L. (2019). A 

federated learning based privacy-preserving strategy 

for industrial AI. IEEE Transactions on Industrial 

Informatics. 16(6);4177-4186.  

[9] Wang, S., Zhang, X., Zhang, Y., Wang, L., Yang, J., 

& Wang, W. (2019). A survey on mobile edge 

networks: Convergence of computing, caching and 

communications. IEEE Access. 5;6757-6779. 

https://doi.org/10.1109/access.2017.2685434   

[10] Hossain, M. S., & Muhammad, G. (2019). Cloud-

assisted industrial internet of things (IIoT)–enabled 

framework for health monitoring. Computer 

Networks. 101(1);192-202. 

https://doi.org/10.1016/j.comnet.2016.01.009 

[11] Janarthanan, R., Maheshwari, R.U., Shukla, P.K., 

Shukla, P.K., Mirjalili, S., & Kumar, M. (2021). 

Intelligent Detection of the PV Faults Based on 

Artificial Neural Network and Type 2 Fuzzy 

Systems. Energies. 14;6584. 

https://doi.org/10.3390/en14206584  

[12] Maheshwari, R.U., Kumarganesh, S., K V M, S. et 

al. (2024). Advanced Plasmonic Resonance-

enhanced Biosensor for Comprehensive Real-time 

Detection and Analysis of Deepfake Content. 

Plasmonics. https://doi.org/10.1007/s11468-024-

02407-0  

[13] Appalaraju, M., Sivaraman, A.K., Vincent, R., 

Ilakiyaselvan, N., Rajesh, M., & Maheshwari, U. 

(2022). Machine Learning-Based Categorization of 

Brain Tumor Using Image Processing. In: Raje, 

R.R., Hussain, F., Kannan, R.J. (eds) Artificial 

Intelligence and Technologies. Lecture Notes in 

Electrical Engineering. 806. Springer, Singapore. 

https://doi.org/10.1007/978-981-16-6448-9_24  

[14] Maheshwari, R.U., B.Paulchamy, Pandey, B.K. et 

al. (2024). Enhancing Sensing and Imaging 

Capabilities Through Surface Plasmon Resonance 

for Deepfake Image Detection. Plasmonics. 

https://doi.org/10.1007/s11468-024-02492-1  

[15] Maheshwari, Uma, & Silingam, Kalpanaka. (2020). 

Multimodal Image Fusion in Biometric 

Authentication. Fusion: Practice and Applications. 

1(2);79-91. https://doi.org/10.54216/fpa.010203 

[16] S. S, S. S and U. M. R. (2022). Soft Computing 

based Brain Tumor Categorization with Machine 

Learning Techniques. International Conference on 

Advanced Computing Technologies and 

Applications (ICACTA). 1-9. 

https://doi.org/10.1109/ICACTA54488.2022.97528

80  

[17] Maheshwari, R. Uma, Paulchamy, B., Arun M, 

Selvaraj, Vairaprakash, Saranya, N. Naga, & 

Ganesh, Sankar S. (2024). Deepfake Detection using 

Integrate-backward-integrate Logic Optimization 

Algorithm with CNN. IJEER. 12(2);696-710. 

https://doi.org/10.37391/IJEER.120248  

[18] Rajendran, U. M., & Paulchamy, J. (2021). Analysis 

and classification of gait characteristics. Iconic 

Research and Engineering Journals. 4(12);95-98. 

https://www.irejournals.com/formatedpaper/170277

9.pdf 

https://doi.org/10.3390/en14206584
https://doi.org/10.1007/s11468-024-02407-0
https://doi.org/10.1007/s11468-024-02407-0
https://doi.org/10.1007/978-981-16-6448-9_24
https://doi.org/10.1007/s11468-024-02492-1
https://doi.org/10.1109/ICACTA54488.2022.9752880
https://doi.org/10.1109/ICACTA54488.2022.9752880
https://doi.org/10.37391/IJEER.120248


Benisha Chris A, D. Kanchana, U. Harita, Sankar Ganesh S, Ananda Babu T, B. Venkataramanaiah/ IJCESEN 11-2(2025)2255-2263 

 

2263 

 

[19] Paulchamy, B., Chidambaram, S., Jaya, J., & 

Maheshwari, R. U. (2021). Diagnosis of Retinal 

Disease Using Retinal Blood Vessel Extraction. 

International Conference on Mobile Computing and 

Sustainable Informatics. 343–359. 

https://doi.org/10.1007/978-3-030-49795-8_34 

[20] Paulchamy, B., Uma Maheshwari, R., Sudarvizhi 

AP, D., Anandkumar AP, R., & Ravi, G. (2023). 

Optimized Feature Selection Techniques for 

Classifying Electrocorticography Signals. Brain‐
Computer Interface: Using Deep Learning 

Applications. 255-278. 

https://doi.org/10.1002/9781119857655.ch11 

[21] Hafez, I. Y., & El-Mageed, A. A. A. (2025). 

Enhancing Digital Finance Security: AI-Based 

Approaches for Credit Card and Cryptocurrency 

Fraud Detection. International Journal of Applied 

Sciences and Radiation Research, 2(1). 

https://doi.org/10.22399/ijasrar.21 

[22] G. Prabaharan, S. Vidhya, T. Chithrakumar, K. Sika, 

& M.Balakrishnan. (2025). AI-Driven 

Computational Frameworks: Advancing Edge 

Intelligence and Smart Systems. International 

Journal of Computational and Experimental Science 

and Engineering, 11(1). 

https://doi.org/10.22399/ijcesen.1165 

[23] Serap ÇATLI DİNÇ, AKMANSU, M., BORA, H., 

ÜÇGÜL, A., ÇETİN, B. E., ERPOLAT, P., … 

ŞENTÜRK, E. (2024). Evaluation of a Clinical 

Acceptability of Deep Learning-Based 

Autocontouring: An Example of The Use of 

Artificial Intelligence in Prostate Radiotherapy. 

International Journal of Computational and 

Experimental Science and Engineering, 10(4). 

https://doi.org/10.22399/ijcesen.386 

[24] S. Esakkiammal, & K. Kasturi. (2024). Advancing 

Educational Outcomes with Artificial Intelligence: 

Challenges, Opportunities, And Future Directions. 

International Journal of Computational and 

Experimental Science and Engineering, 10(4). 

https://doi.org/10.22399/ijcesen.799 

[25] Fowowe, O. O., & Agboluaje, R. (2025). 

Leveraging Predictive Analytics for Customer 

Churn: A Cross-Industry Approach in the US 

Market. International Journal of Applied Sciences 

and Radiation Research, 2(1). 

https://doi.org/10.22399/ijasrar.20 

[26] S. Menaka, & V. Selvam. (2025). Bibliometric 

Analysis of Artificial Intelligence on Consumer 

Purchase Intention in E-Retailing. International 

Journal of Computational and Experimental Science 

and Engineering, 11(1). 

https://doi.org/10.22399/ijcesen.1007 

[27] ZHANG, J. (2025). Artificial intelligence 

contributes to the creative transformation and 

innovative development of traditional Chinese 

culture. International Journal of Computational and 

Experimental Science and Engineering, 11(1). 

https://doi.org/10.22399/ijcesen.860 

[28] M.K. Sarjas, & G. Velmurugan. (2025). 

Bibliometric Insight into Artificial Intelligence 

Application in Investment. International Journal of 

Computational and Experimental Science and 

Engineering, 11(1). 

https://doi.org/10.22399/ijcesen.864 

[29] Ibeh, C. V., & Adegbola, A. (2025). AI and 

Machine Learning for Sustainable Energy: 

Predictive Modelling, Optimization and 

Socioeconomic Impact In The USA. International 

Journal of Applied Sciences and Radiation Research 

, 2(1). https://doi.org/10.22399/ijasrar.19 

[30] Bandla Raghuramaiah, & Suresh Chittineni. (2025). 

BreastHybridNet: A Hybrid Deep Learning 

Framework for Breast Cancer Diagnosis Using 

Mammogram Images. International Journal of 

Computational and Experimental Science and 

Engineering, 11(1). 

https://doi.org/10.22399/ijcesen.812 

[31] Robert, N. R., A. Cecil Donald, & K. Suresh. 

(2025). Artificial Intelligence Technique Based 

Effective Disaster Recovery Framework to Provide 

Longer Time Connectivity in Mobile Ad-hoc 

Networks. International Journal of Computational 

and Experimental Science and Engineering, 11(1). 

https://doi.org/10.22399/ijcesen.713 

[32] Olola, T. M., & Olatunde, T. I. (2025). Artificial 

Intelligence in Financial and Supply Chain 

Optimization: Predictive Analytics for Business 

Growth and Market Stability in The USA. 

International Journal of Applied Sciences and 

Radiation Research, 2(1). 

https://doi.org/10.22399/ijasrar.18 

 

 

https://doi.org/10.1002/9781119857655.ch11
https://doi.org/10.22399/ijasrar.21
https://doi.org/10.22399/ijcesen.1165
https://doi.org/10.22399/ijcesen.386
https://doi.org/10.22399/ijasrar.20
https://doi.org/10.22399/ijcesen.1007
https://doi.org/10.22399/ijcesen.860
https://doi.org/10.22399/ijasrar.19
https://doi.org/10.22399/ijcesen.812

