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Abstract:  
 

This study aims investigates the calibration and validation of the HEC-RAS model to 

simulate critical water quality parameters in Iraq’s semi-arid environment, focusing on 

its application for sustainable water resource management. Using a robust dataset of 

observed and simulated values, the research examined biochemical oxygen demand 

(BOD₅), total dissolved solids (TDS), dissolved oxygen (DO), electrical conductivity 

(EC), nitrate (NO₃⁻), phosphate (PO₄³⁻), calcium (Ca), and magnesium (Mg). The 

calibration and validation results demonstrated strong alignment between observed and 

simulated data, with high R² values for key parameters such as NO₃⁻ (R² = 0.94 for 

validation) and PO₄³⁻ (R² = 0.96 for calibration), affirming the model’s reliability in 

predicting nutrient dynamics. The study identified variations in model accuracy, with 

TDS exhibiting percentage errors ranging from 1.70% to 8.73% and challenges in 

simulating DO, where negative errors exceeded 12%. These discrepancies reflect the 

complexity of modeling organic matter decomposition and oxygen dynamics under 

fluctuating climatic and flow conditions. Additionally, pollution hotspots characterized 

by elevated EC and TDS levels were detected, underscoring the significant impact of 

anthropogenic activities on water quality. By providing a validated framework for 

simulating critical water quality indicators, this study contributes to water quality 

modeling in arid and semi-arid regions. The findings offer valuable insights for 

policymakers, emphasizing the integration of advanced hydrological models with 

sustainable management practices. This research advocates for adaptive strategies to 

mitigate water quality degradation, addressing challenges posed by climate change and 

increasing population pressures. 

 

1. Introduction 
 

The increasing degradation of water quality due to 

anthropogenic pressures such as industrialization, 

urbanization, and agricultural runoff has become a 

critical environmental concern worldwide. Rivers, 

as dynamic freshwater systems, are particularly 

vulnerable to pollution, which adversely affects 

their ecological balance, compromises aquatic 

biodiversity, and endangers human health. In 

response to these challenges, the development and 

application of advanced hydrodynamic models have 

emerged as indispensable tools for understanding, 

predicting, and managing water quality in river 

systems. Among these, the Hydrologic Engineering 

Center's River Analysis System (HEC-RAS) stands 

out as a sophisticated, one-dimensional modeling 

framework that facilitates the simulation of river 

hydraulics, pollutant transport, and water quality 

dynamics [1]. This study focuses on applying the 

HEC-RAS model to simulate water quality in the 

Al-Diwaniya River, Iraq, a river that serves as a 

vital resource for agriculture, industry, and 

domestic use. Over the years, this river has faced 

escalating challenges due to the discharge of 

untreated wastewater, agricultural runoff enriched 

with fertilizers, and effluents from industrial 

activities [2]. These factors have resulted in the 

http://dergipark.org.tr/en/pub/ijcesen
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accumulation of pollutants, including nutrients such 

as phosphorus, and deteriorated the overall water 

quality, posing serious risks to public health and the 

surrounding ecosystems. Despite its critical 

importance, there is a noticeable lack of 

comprehensive studies utilizing advanced 

hydrodynamic models like HEC-RAS to address 

water quality issues in the Iraqi riverine context. 

This study, therefore, represents a pioneering effort 

to simulate the transport and fate of key pollutants 

in the Al-Diwaniya River, with a focus on 

understanding its flow characteristics and 

longitudinal water quality distribution [3]. Water 

quality models such as HEC-RAS play a pivotal 

role in integrating hydrodynamic and water quality 

data to analyze the spatiotemporal distribution of 

pollutants under diverse flow regimes. These 

models are invaluable for establishing water quality 

standards, formulating pollution control strategies, 

and predicting the environmental impacts of 

different management interventions. The HEC-RAS 

model, developed by the U.S. Army Corps of 

Engineers, is particularly renowned for its 

capability to simulate steady and unsteady flow 

conditions, as well as its detailed representation of 

hydraulic structures such as weirs and sluices. This 

model has been extensively applied worldwide to 

assess flood risks, simulate pollutant dispersion, 

and evaluate water quality under complex 

scenarios. However, its application in simulating 

pollutant transport and evaluating water quality 

parameters in rivers within arid and semi-arid 

regions, such as Iraq, remains underexplored. In 

this research, the HEC-RAS model is utilized to 

simulate the hydraulic and environmental 

characteristics of the Al-Diwaniya River, with a 

focus on key water quality parameters, including 

biochemical oxygen demand (BOD), dissolved 

oxygen (DO), total phosphorus (TP), electrical 

conductivity (EC), and total dissolved solids (TDS). 

The study provides a detailed analysis of the 

longitudinal distribution of these parameters under 

varying flow conditions, offering insights into the 

interactions between hydrodynamic processes and 

pollutant transport. Such an approach is essential 

for identifying critical pollution hotspots, 

understanding nutrient dynamics, and assessing the 

potential impacts of anthropogenic activities on 

water quality [4]. The motivation for this research 

stems from the critical role of water as a 

cornerstone of life and its indispensable 

contribution to agricultural productivity, industrial 

activities, and domestic consumption. The 

degradation of water quality not only threatens 

public health through the proliferation of 

waterborne diseases but also disrupts ecological 

functions, leading to the loss of aquatic biodiversity 

and productivity. This underscores the urgent need 

for scientifically robust and regionally adapted 

water quality models that can guide policymakers 

and stakeholders in developing sustainable 

management strategies [5]. Through the application 

of the HEC-RAS model, this study aims to bridge 

the knowledge gap regarding the dynamics of water 

quality in the Al-Diwaniya River. By simulating the 

interaction between hydrodynamics and pollutant 

transport, this research not only advances the 

understanding of water quality dynamics but also 

underscores the importance of integrating modeling 

approaches in the sustainable management of 

riverine ecosystems. The outcomes are anticipated 

to serve as a foundation for designing effective 

mitigation strategies to improve water quality, 

thereby contributing to the preservation of water 

resources in Iraq and other regions facing similar 

environmental challenges [6]. 

 

2. Research setting 
 

    The study focuses on the Al-Diwaniya River, 

located within the Al-Diwaniya Governorate in 

Iraq. This river serves as a vital water resource for 

the region, supporting multiple uses such as 

irrigation, domestic consumption, and other 

community needs. Originating in the northern city 

of Sadr Al-Dughra, the river extends approximately 

120 kilometers before reaching the Al-Muthanna 

Governorate, traversing key communities including 

Al-Diwaniya, Al-Sidair, and Al-Hamzah[7]. This 

research specifically examines an 8-kilometer 

segment of the river within the densely populated 

urban area of Al-Diwaniya city. The high 

population density and the river's critical role in 

meeting municipal and agricultural water demands 

underscore the importance of assessing its water 

quality. Monitoring and analysis of this stretch are 

crucial for understanding the impact of 

anthropogenic activities and guiding the 

development of effective water management 

strategies. The geographical scope of the study is 

illustrated in (Figure 1), providing an overview of 

the river's path and the targeted study area. 

 

3. Model description 

 
3.1 Data Collection and Sources 

 

The data pertaining to water quality were gathered 

from multiple credible and authoritative sources, 

including the Ministry of Water Resources and the 

Ministry of Environment in Iraq. Additionally, 

insights were drawn from previous studies and
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Figure 1. Map showing the study area along Al-Diwaniyah. 

 

research focusing on water quality in the Euphrates 

and Al-Diwaniyah Rivers. Hydrological and 

geological data were acquired from relevant 

governmental agencies and esteemed scientific 

institutions to ensure the reliability and 

comprehensiveness of the information [8]. The 

water quality data were specifically sourced from 

monitoring stations located within the Al-

Diwaniyah Marsh area, enabling accurate and 

detailed assessments. This meticulous approach 

ensures that the dataset is robust and suitable for 

drawing valid inferences regarding water quality in 

the study area. The integration of diverse data 

sources strengthens the foundation of the research, 

supporting the precise evaluation and simulation of 

water quality parameters within the Al-Diwaniyah 

River system [9]. 

 

3.2 Pre-processing of Data 

 

Data processing is a pivotal stage that precedes the 

initiation of water quality modeling using the HEC-

RAS model. Sampling and data collection were 

conducted at pre- and post-pollution discharge 

points, as well as at intervals between these 

locations along the river [10]. This approach 

ensured comprehensive coverage of the study area 

and provided essential insights into the spatial 

distribution of pollutants. The collected data 

underwent thorough examination to ensure 

accuracy and reliability, which are critical for the 

efficacy of the modeling process. Specialized 

software tools were utilized to verify and process 

the data, converting it into a format compatible with 

the HEC-RAS model. This conversion facilitated 

seamless input and efficient use of the data in the 

modeling and simulation process [11]. Water 

samples were collected from 14 designated 

locations, carefully selected to provide a 

representative analysis of the river’s water quality. 

These samples were analyzed for various water 

quality parameters, including pH, Electrical 

Conductivity (EC), Dissolved Oxygen (DO), Total 

Suspended Solids (TSS), Biochemical Oxygen 

Demand (BOD), phosphate, temperature, and 

nutrient concentrations. The results from these tests 

formed the basis for simulating water quality within 

the HEC-RAS framework, enabling a detailed 

understanding of the river’s pollution dynamics and 

informing effective management strategies [12]. 

 

4. Water Quality Parameters and 

Monitoring Stations 
 

The critical water quality parameters identified for 

monitoring in the study area include pH, dissolved 

oxygen (DO), biochemical oxygen demand (BOD), 

total suspended solids (TSS), electrical conductivity 

(EC), hardness, chlorides, alkalinity, phosphate, 

calcium, magnesium, and total dissolved solids 
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(TDS). Monitoring stations have been strategically 

established along the Al-Diwaniyah River to 

measure these parameters accurately [13]. The 

selection of these stations was based on key factors, 

such as areas prone to pollution and the river's flow 

dynamics. Data collected from these stations will 

provide precise and reliable insights into the water 

quality, serving as the foundation for analysis and 

simulation using the HEC-RAS model [14]. 

 

4.1 Reaeration Rate and Dispersion Coefficient  

 

The reaeration rate and dispersion coefficient have 

been estimated using equation (1), (2), (3) 

respectively. For the Umhlangane River the average 

velocity is 0.67m/s and depth is 2.942 m. 

According to Bowie et al. (1985), the coefficient 

(Kr) in modeling is extremely sensitive and crucial 

for forecasting other water quality parameters. The 

re-aeration coefficient can be computed using a 

variety of semi-empirical equations. One of these is 

the assumption that the re-aeration coefficient 

depends on temperature and hydraulic parameters, 

specifically depth and velocity [14]. 

In rivers, a number of variables have an effect on 

the estimation of the longitudinal dispersion 

coefficient. The most essential ones are: the 

viscosity, channel width, flow depth, density, shear 

velocity, mean velocity, bed slope, horizontal 

stream curvature, and bed shape factor and bed 

roughness [15]. 

 

𝐸𝑝,𝑖0.011 
𝑈𝑖

2𝐵2

𝑈𝑖
∗𝐻𝑖

                                   (𝟏) 

If 
𝑊

𝐻
≤ 30.6 𝑡ℎ𝑒𝑛 𝐷𝐿= 15.49 

(
𝑊

𝐻
)

0.78 

(
𝑢

𝑈∗
)0.11 𝐻𝑈∗                              (𝟐) 

If 
𝑊

𝐻
≥30.6 𝑡ℎ𝑒𝑛 𝐷𝐿= 14.12 

(
𝑊

𝐻
)

0.61 

(
𝑢

𝑈∗
)0.85 𝐻𝑈∗                              (𝟑) 

𝐸𝑧 = 𝐾. 𝑑. 𝑢∗                                           (4) 

Three equations (1), (3), (4) were used, and the 

results Percentage Errors were calculated for each 

equation 0.7199, 0.086, 0.259 respectively [16]. 

 

4.2 Calibration and Validation of HEC-RAS 

Model 

 

Upon completing the implementation of the HEC-

RAS model and integrating the collected data, the 

calibration and validation processes were 

undertaken to ensure the model's reliability and 

accuracy [17]. Calibration involved adjusting the 

model’s parameters and variables to minimize 

discrepancies between simulated outputs and 

observed field data. This iterative process ensured 

alignment between the theoretical results generated 

by the model and the actual readings obtained from 

the study area. Following calibration, the model 

was validated using an independent dataset that was 

not employed during the calibration phase. This 

step was essential to verify the model’s predictive 

capability for environmental and hydrological 

variables under various conditions [18].  

 

 
Figure 2. Calibration Parameters constants (HEC – RAS 5.0.5) 
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By comparing simulated outcomes with real-world 

measurements, the validation process confirmed the 

model's robustness and its ability to accurately 

simulate water quality dynamics within the Al-

Diwaniyah River system. This comprehensive 

approach ensures the reliability of the HEC-RAS 

model for future water quality assessments and 

management initiatives (Figure 2). 

 

5. Results and evaluation 

 
5.1 Calibration and Validation 

 

Unsteady Flow 

The calibration of the hydraulic model was 

conducted by adjusting Manning’s roughness 

coefficients these coefficients were the primary 

parameters used to achieve an accurate 

representation of flow conditions within the study 

area [19]. The initial values for Manning’s 

roughness coefficients were obtained from the 

Basic River Plan for the Diwaniya River, providing 

reliable baseline data for model adjustment. Using 

HEC-RAS, the average Manning’s coefficient (n) 

was calculated for an 8 km stretch of the Al-

Diwaniya River. The evaluation involved testing 

ten different n values, ranging from 0.016 to 0.024 

(Table 1). Through the calibration process, it was 

determined that a value of n=0.022 provided the 

best balance between the observed and predicted 

water levels, ensuring a reliable representation of 

the river’s hydraulic behavior [19]. The unsteady 

flow simulation was performed using observational 

hydraulic data, including flow rates and water 

levels, which were applied as boundary conditions 

in the HEC-RAS model. Following the calibration 

and validation processes Equations(5)–(6) show R2, 

Percentage Error [20]. 

𝑹𝟐 = [
∑ (𝑶𝒊−𝑶̅)(𝑺𝒊−𝑺̅)𝑵

𝒊=𝟏

√∑ (𝑶𝒊−𝑶̅)𝟐𝑵
𝒊=𝟏  √∑ (𝑺𝒊−𝑺̅)𝟐𝑵

𝒊=𝟏

]

𝟐

                        (𝟓) 

Percentage Error (%) =
∑ (𝑶𝒊−𝑺𝒊)𝑵

𝒊=𝟏

∑ 𝑶𝒊
𝑵
𝒊=𝟏

 × 100             (6) 

We simulated the water quality parameters by 

applying these model parameters. Table2 shows the 

mean values of both the observational data and the 

simulation results for the water quality parameters 

from 2024(calibration) to 2023 (validation). 

Comparing simulated and observed data for 

eight water quality parameters during the 

calibration across 34 and 11 cross sections 

 DO (Dissolved Oxygen) Parameter 

(Figure 3,4a): 

• Observation vs. Simulation: If the 

simulated DO levels align closely with observed 

data, this suggests the model's accuracy in 

predicting oxygen dynamics in the water column. 

Discrepancies might indicate the need for further 

refinement in terms of biological oxygen demand

 

Table 1. Statistical indices for Calibration and Validation Results of Water Quality Parameters Using HEC-RAS for 

cross sections 34 and 11. 

Parameter 

Calibration Validation 

R² Percentage Error (%) R² Percentage Error (%) 

34 11 34 11 34 11 34 11 

BOD₅ 

(mg/L) 
0.542 0.859 0.249 11.243 0.788 0.915 19.164 6.022 

TDS 

(mg/L) 
0.934 0.958 1.695 8.728 0.965 0.901 11.469 9.773 

DO (mg/L) 0.510 0.530 -12.446 -12.587 0.947 0.777 -15.475 -12.269 

EC (µS/cm) 0.810 0.762 1.596 5.320 0.645 0.480 3.798 16.026 

NO₃⁻ 

(mg/L) 
0.935 0.847 -18.919 1.752 0.946 0.855 -2.186 -9.668 

PO₄³⁻ 

(mg/L) 
0.958 0.963 -6.662 3.257 0.991 0.812 0.309 -2.185 

Ca (mg/L) 0.868 0.790 -1.766 3.423 0.813 0.724 -3.525 1.433 

Ma (mg/L) 0.714 0.828 1.747 7.194 0.944 0.930 -4.741 5.574 
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Table 2.Mean values of both the observational data and the simulation results for the parameters from 2024 

(calibration) and 2023 (validation). 

  

Parameter 

Calibration  Validation  

Cross Section 

34 11 34 11 

BOD₅ 

(mg/L) 

Observational 2.197 2.127 1.965 2.671 

Simulation 1.846 1.893 1.577 2.490 

TDS 

(mg/L) 

observational 820.143 892.000 1038.786 1111.786 

Simulation 804.671 799.513 914.509 987.960 

DO  

(mg/L) 

Observational 6.716 6.447 6.313 7.002 

Simulation 8.030 8.255 7.112 5.679 

EC 

(µS/cm) 

Observational 1220.429 1259.200 1161.657 1346.729 

Simulation 1192.525 1191.930 1108.968 1109.016 

NO₃⁻ 

(mg/L) 
Observational 5.027 6.269 2.451 2.421 

Simulation 6.490 6.290 2.459 2.461 

PO₄³⁻  Observational 0.013 0.019 0.007 0.002 

(mg/L) Simulation 0.013 0.017 0.007 0.002 

Ca 

(mg/L) 

Observational 114.586 120.814 100.201 105.737 

Simulation 115.950 116.003 103.546 104.374 

Mg 

(mg/L) 

Observational 40.446 42.900 39.785 38.251 

Simulation 39.785 39.424 40.446 39.943 

 

 (BOD) inputs or oxygen production rates in the 

system [20]. 

• Interpretation: A high difference could be 

linked to model assumptions that do not fully 

capture local conditions affecting DO levels, such 

as temperature or microbial activity [21]. 

 DS (Total Dissolved Solids) Parameter 

(Figure 3,4b): 

• Observation vs. Simulation: Variations 

between observed and simulated TDS could 

indicate errors in the model’s representation of 

solute transport or water flow dynamics. For 

instance, [22] if TDS is consistently higher or lower 

in the observations, it may suggest issues with 

water quality inputs or the model's handling of 

particulate versus dissolved matter [23]. 

• Interpretation: The deviation could also 

arise from misrepresented interactions between 

water chemistry and solid material accumulation 

[24]. 

 EC (Electrical Conductivity) Parameter 

(Figure 3,4c): 

• Observation vs. Simulation: EC levels 

directly relate to ion concentrations in the water. 

Any deviation could highlight discrepancies in ion-

specific dynamics or errors in the model’s 

conductivity equation, which may not fully capture 

ionic strength variations [25]. 

• Interpretation: Persistent differences 

between simulated and observed EC may suggest 

that certain solute species or environmental factors 

(such as temperature) were not properly accounted 

for in the simulation [26]. 

 NO3 (Nitrate) Parameter (Figure 3,4d): 

• Observation vs. Simulation: Nitrate 

concentrations often fluctuate based on both 

biological processes (e.g., nitrification) and 

physical processes (e.g., dilution). A large gap 

between the observed and simulated NO3 could 

indicate either a lack of accurate input data (such as 

nitrogen loading) or errors in representing the 

cycling processes [27]. 

• Interpretation: The model's handling of 

nutrient uptake by plants or the role of microbial 

processes (e.g., denitrification) may require further 

adjustments [28]. 

 PO4 (Phosphate) Parameter (Figure 

3,4e): 

• Observation vs. Simulation: The 

simulation of phosphate might show either an 

underestimation or overestimation, which could be 

a result of incorrect assumptions about 

adsorption/desorption rates or sediment interactions 

[29]. 

• Interpretation: If the discrepancy is 

significant, revisiting the calibration of phosphate 



Saraa M. Ali, Zaid Abed Al-Ridah, Mohammed S. Shamkhi/ IJCESEN 11-2(2025)2423-2435 

 

2429 

 

removal mechanisms, such as plant uptake or 

microbial processes, may be necessary [30]. 

 Ca (Calcium) Parameter (Figure 3,4f): 

• Observation vs. Simulation: Calcium 

concentrations are important in the precipitation 

and interaction of other ions in the water. 

Discrepancies between observed and simulated data 

might point to issues with the model’s ability to 

simulate ion exchange or mineral precipitation 

accurately [31]. 

• Interpretation: Differences in calcium 

levels could suggest that calcium cycling, 

particularly in relation to carbonate precipitation, 

needs to be more thoroughly represented [32]. 

 BOD5 (Biochemical Oxygen Demand for 

5 days) Parameter (Figure 3,4g): 

• Observation vs. Simulation: If BOD5 is 

overestimated or underestimated, this could 

indicate that the microbial community dynamics or 

organic matter decomposition rate in the model are 

not accurate, leading to incorrect predictions of 

oxygen demand [33]. 

• Interpretation: Variability could also stem 

from inaccuracies in the representation of organic 

matter inputs or biodegradation rates under specific 

environmental conditions [34]. 

 Mg (Magnesium) Parameter (Figure 

3,4h): 

• Observation vs. Simulation: Magnesium 

behaves similarly to calcium in many systems, and 

any discrepancies could be due to model 

shortcomings in predicting the complex interactions 

between magnesium and other ions [35]. 

• Interpretation: Larger differences might 

suggest that magnesium dynamics, especially in the 

context of water hardness or ion exchange, need to 

be calibrated more accurately [36]. 

 

5.3. Comparing simulated and observed data for 

eight water quality parameters during the 

validation across 34 and 11 cross sections 

 

(a) Dissolved Oxygen (DO):  

The simulated values closely follow the observed 

trends, demonstrating a gradual decrease over time. 

 

 

 
Figure 3. Hydrographs showing the difference between simulation and observation for calibtionin 34 gross section. (a) 

Do parameter; (b) TDS parameter; (c) Ec parameter; (d) No3 parameter. (e) Po4 parameter; (f) Ca parameter; (g) 

BOD5 parameter; (h) Mg parameter. 



Saraa M. Ali, Zaid Abed Al-Ridah, Mohammed S. Shamkhi/ IJCESEN 11-2(2025)2423-2435 

 

2430 

 

 
Figure 4. Hydrographs showing the difference between simulation and observation for calibtionin 11 gross section. (a) 

Do parameter; (b) TDS parameter; (c) Ec parameter; (d) No3 parameter. (e) Po4 parameter; (f) Ca parameter; (g) 

BOD5 parameter; (h) Mg parameter. 

 

However (Figure 5,6), slight deviations are evident 

in the later months, suggesting minor model 

limitations in accurately capturing oxygen 

dynamics under varying flow conditions [37]. 

(b) Total Dissolved Solids (TDS):  

The hydrograph indicates a strong alignment 

between simulated and observed data, particularly 

in the early and middle months (Figure 5, 6). The 

model successfully predicts the increasing TDS 

concentrations toward the later period, reflecting its 

reliability in simulating dissolved solids under 

changing hydrological scenarios [38]. 

(c) Electrical Conductivity (EC): 

While the simulation generally aligns with 

observed values, noticeable discrepancies occur 

during the low-conductivity period in March. This 

may be attributed to the model’s sensitivity to 

localized flow conditions or external influences not 

accounted for in the dataset [39]. 

(d) Nitrate (NO₃⁻): 

The model exhibits a high degree of accuracy in 

predicting nitrate concentrations throughout the 

validation period. Both observed and simulated 

values show a consistent decline, underscoring the 

robustness of the model in simulating nutrient 

transport [40]. 

(e) Phosphate (PO₄³⁻): 

Although the model effectively captures the 

decreasing trend in phosphate levels, a significant 

deviation is observed in the early months, 

potentially due to variations in external phosphate 

inputs or retention processes not fully represented 

in the model[41]. 

(f) Calcium (Ca): 

The hydrograph reveals a strong agreement 

between simulated and observed values, with only 

minor deviations during the mid-period. This 

indicates the model's reliability in representing 

calcium dynamics under unsteady flow conditions 

[42]. 

(g) Biochemical Oxygen Demand (BOD₅): 

The simulated and observed BOD₅ values 

demonstrate a close correlation, particularly in the 

later months, with a steady increase in 

concentration. This suggests the model accurately 

represents organic matter decomposition and 

oxygen demand processes [43]. 

(h) Magnesium (Mg): 
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The simulation effectively captures the observed 

trends in magnesium concentrations, with minor 

variations during specific periods. The alignment 

underscores the model's capacity to simulate 

magnesium transport under varying hydrological 

conditions (Figure 5, 6) [44]. 

 

5.4. Variations of water quality parameters 

along the system for calibration and validation 

 

(a) Dissolved Oxygen (DO): 

The schematic plot reveals a consistent decrease in 

DO levels moving downstream, indicating oxygen 

consumption due to organic matter degradation and 

microbial activity. Higher DO values upstream 

suggest minimal pollution sources at the initial 

sections [45]. 

 

(b) Total Dissolved Solids (TDS): 

TDS levels exhibit an increasing trend downstream, 

reflecting the accumulation of dissolved ions from 

anthropogenic activities and natural mineral 

dissolution. This pattern highlights potential 

pollution hotspots along the flow path (Figure 7,8) 

[45]. 

(c) Electrical Conductivity (EC): 

EC follows a similar pattern to TDS, with a gradual 

increase downstream, confirming the accumulation 

of ionic constituents and their proportional 

relationship with dissolved solids(Figure 7,8) [43]. 

(d) Nitrate (NO₃⁻):  

The nitrate distribution shows varying 

concentrations, with elevated levels in specific 

sections. These spikes could indicate localized 

agricultural runoff or effluent discharge containing 

nitrogen compounds [44]. 

 

(e) Phosphate (PO₄³⁻):  

The phosphate schematic plot demonstrates distinct 

areas with higher concentrations, reflecting inputs 

from agricultural fertilizers or untreated 

wastewater. Downstream reduction may indicate 

phosphate uptake by aquatic plants or sediment 

adsorption (Figure 7, 8) [42]. 

(f) Calcium (Ca): 

Calcium concentrations display a relatively stable 

distribution, with minor increases downstream. This 

stability suggests its source is predominantly 

natural, such as rock weathering or groundwater 

contributions [44]. 

(g) Biochemical Oxygen Demand (BOD₅):  

The schematic highlights areas with higher BOD₅ 

concentrations, indicating zones of significant 

organic pollution and microbial activity requiring 

oxygen for decomposition (Figure 7, 8) [45]. 

(h) Magnesium (Mg): 

Magnesium distribution is relatively uniform, with 

a slight increase downstream, likely due to 

geochemical contributions and the dissolution of 

magnesium-bearing minerals(Figure 7,8) [46]. 

Mathematical Modelling is applied for different 

fields in the literature [47-57].

 
Figure 5. illustrates the hydrographs comparing simulated and observed data for eight water quality parameters 

during the  validation process across 34 cross sections. 
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Figure 6. compares simulated and observed data for eight water quality parameters across 11 gross sections, 

highlighting the model's performance during the validation phase. 

 

 
Figure 7.  illustrates the calibtionin in (a) Do parameter; (b) TDS parameter; (c) Ec parameter; (d) No3 parameter. (e) 

Po4 parameter; (f) Ca parameter; (g) BOD5 parameter; (h) Mg parameter. 
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Figure 8. illustrates the variations in (a) Do parameter; (b) TDS parameter; (c) Ec parameter; (d) No3 parameter. (e) 

Po4 parameter; (f) Ca parameter; (g) BOD5 parameter; (h) Mg parameter. 
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