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Abstract:  
 

Health fraternity is invariably challenged with early diagnosis, detection, identification, 

classification, treatment and convalescence of globally prevalent and life-threatening 

fatal diseases as liver cancer.  The early detection of liver cancer through medical image 

processing technique is so challenging that an iota of deviation conspicuous among 

healthy tissues, benign tumour and malignant tumour tissues is a matter of wake up call. 

This work is entailed with introduction of a novel, optimized YOLOv8-based model for 

liver tumour detection, harnessing the strengths of transformer-based feature extraction, 

global attention mechanisms, and advanced feature aggregation techniques.  The model 

was subjected to rigorous performance with relevant methods and messages as 

parameters time and again for repeated refinements. Eventually, it was concluded that the 

proposed model surpasses all the models in extant now in terms of precision, recall, and 

means average precision (mAP). This is ascertained by inference drawn from the model’s 

achievement of attaining 95.34% precision, 96.49% recall, and 97.31% mAP@0.5. In 

regard to tumour classification, the proposed model excels in differentiating normal 

cases, benign tumours, and malignant tumours. These innovations represent a significant 

step toward improving the accuracy of automated liver tumour diagnosis systems, with 

the potential to revolutionize clinical workflows and enhance patient outcomes.  

 

1. Introduction 

The global medical field invariably encounters with 

ubiquity of potentially fatal hepatocellular 

carcinoma.  It is one of the most critical illnesses that 

are causing death.  World Health Organization has 

disclosed that hepatic cancer is next to top most 

cause of death of all cancerous diseases [1].   It 

demands a futuristic method to detect tumours in 

liver for effective diagnosis and remedy.   

Accordingly, precision in review of tumors and 

analysis of them before becoming in critical phase 

are vital.  It is nothing but a challenge to the 

stakeholders to distinguish between healthy tissues 

and tumor tissues as there are a little bit noticeable 

deviations towards detection of liver tumor [2].  

Harnessing with Artificial Intelligence and medical 

imaging advancements, medical images show great 

promise of diagnosing with hepatic tumors.   A slew 

of methodologies has been employed to address the 

challenges in detecting hepatic tumors by the 

employment of image processing techniques, 

machine learning approaches, and, lately, deep 

learning-based frameworks [3]. In contrast to 

traditional methods, machine learning techniques get 

rid of the limitation of ability in generalization and 

robustness by making use of decision trees and 

support vector machines.  Machine learning 

approaches have fine-tuned the abilities to diagnose 

[4].  At the same time, they have their own 

constraints due to dependence on feature 

engineering and precision in quality data feeding. 

Intense learning has been incipient as the 

mainstream approach for target detection algorithms 

by taking into account of its excellent potentiality in 

comparison with traditional methods [5].  The 

algorithms pertaining to deep learning-based 

detection comprise of two-stage and one-stage 

approaches.  Such two-stage algorithms as Faster-

RCNN series, entail region generation by pre-
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selecting boxes that may contain objects, followed 

by feature map generation and sample classification 

through convolutional networks, achieving high 

accuracy but with longer detection times.  But 

YOLO series of one-state algorithms kind get rid of 

the necessity for region generation by an immediate 

prediction of object classification and location by 

means of convolutional networks, considerably 

lessening detection time [6]. 

The object detection has revolutionized by 

leveraging the potentials of YOLO series of models 

in combination by means of combined parameters of 

accuracy and speed in a single-stage detection 

framework.   The updated version of YOLOv8 sets 

up on its earlier architectures by exploiting state-of-

the-art improvements in feature extraction, detection 

accuracy, and computational efficiency.  The 

architecture of YOLOv8 is depicted by a three-part 

design.  The primary one is the Backbone meant for 

feature extraction; the secondary is the Neck meant 

for feature aggregation; and the tertiary is the Head 

meant for final object classification and bounding 

box regression.  Apart from its robustness, 

YOLOv8’s potential in detecting small and 

irregularly shaped objects, such as liver tumours, can 

be further augmented by the employment of targeted 

optimizations [7,8]. 

The emergence of deep learning has made a radical 

change in detecting liver tumour by the engagement 

of end-to-end learning and automation of feature 

extraction out of raw imaging data. Convolutional 

Neural Networks (CNNs) have proved to be 

effective in the tasks of segmentation, classification, 

and object detection related to medical image 

analysis by its state-of-the-art performance [9,10].  

Nevertheless, the multifarious tumours in respect of 

its sizes, irregular shapes and heterogeneous image 

contrast pose significant challenges.  The 

bottlenecks of these call for refining the optimization 

of existing frameworks to attain higher accuracy and 

robustness in diverse clinical scenarios. 

Improvement of medical image analysis has 

acquired new avenues with recent advancements in 

transformer-based architectures and attention 

mechanisms [11].  The employment of these 

components into framing of detection modes has 

exhibited a good result in understanding unique 

challenges of liver tumour detection [12].  

Especially, the properties of efficiency and accuracy 

in object detection tasks that have been inherited 

from its earlier version of YOLOv8 framework, 

serve as a strong foundation for incorporating these 

advanced methodologies [13].  This work 

concentrates on attaining maximum optimum of 

YOLOv8 by the amalgamation of the Swin 

Transformer, Global Attention Mechanism (GAM), 

augments to the Path Aggregation Network (PANet), 

and attention mechanisms post-up-sampling layers 

to combat the challenges inherent in liver tumour 

detection and ramp up diagnostic outcomes. 

In order to leverage the hierarchical feature 

extraction capabilities amalgamation of the Swin 

Transformer is set at the P3 position, thereby 

permitting the model to capture both local and global 

contextual information effectively.  This is 

paramount to liver imaging where obscured 

variations in texture and structure can point out the 

presence of disease.  Furtherance to the above, the 

phenomenon of Global Attention Mechanism 

(GAM) at position P5 ramps up the capability of the 

model to pay attention on relevant features across the 

entire image, allowing it to grab long-range 

dependencies and contextual information.  The 

model is aided the GAM to enhance the ability of 

detecting liver tumours and heterogeneities. 

Better performance of multi-scale feature fusion is 

smoothened by another critical optimization which 

is attained by augmenting the PANet structure in the 

Neck section.  This stepping up makes sure that the 

model can potentially make use of both low-level 

and high-level features, which is necessary for 

accurate detection of tumours of diverse sizes and 

characteristics.  Besides, combining attention 

mechanisms after up-sample layers in the Neck 

section permits the model to fine-tune its point of 

concentration on salient features, thereby enhancing 

detection accuracy and robustness against noise and 

artefacts commonly found in medical images. 

This work presents a new-fangled, maximum 

effective, perfective and functional YOLOv8 

framework for detection of hepatic liver lesion, 

conglomerating the potentials of transformer-

supported feature extraction, all stakeholder’s 

attention mechanisms, and state-of-the-art feature 

aggregation techniques. These innovations manifest 

a momentous step toward escalating the accuracy 

and integrity of automated hepatic lesion diagnosis 

systems, with the capability to revolutionize clinical 

workflows and augment patient outcomes. 

The rest of this paper is systematically depicted as 

under.  Section 2 imparts an inclusive review of 

pertained work, exposing salient features of 

developments in liver lesion detection and neo-

innovations in YOLO-based object detection 

models.  Section 3 outlines the methodology, 

entailing the architectural modifications and 

bringing into use of strategies.  Section 4 talks about 

the outcome obtained from comparison of the 

performance of the proposed model with baseline 

YOLOv8 and state-of-the-art approaches.  

Eventually, Section 5 concludes the work, 

abstracting the implications of the findings and 

future research directions. 
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2. Literature Review 
 

The procedures in vogue now for adoption of 

detecting hepatic lesions commonly comprehend an 

estimation of medical past events, physical scrutiny, 

lab test observations, and medical imaging [14]. The 

primary stage in diagnosing hepatic malady entails 

getting an inclusive medical history, comprehensive 

symptoms, ancestral history, and risk factors 

pertained to liver disease [15]. A physical scan can 

detect hepatic distension or tenderness, while 

haematic tests evaluate hepatic function and 

correlate damage markers.  

Therapeutic imaging agents like ultrasound, MRI, 

and CT scans are helpful to radiographic 

visualization of the liver and the identification of 

abnormal functionalities.  Ultrasound is preferred to 

examine the hepatic architecture as it involves no 

invasive procedure [16].  On the other hand, CT 

scans produce complex cross-sectional views for 

lesion identification and other liver malfunctions.  

The procedure involving these techniques finds 

widespread employment in medical diagnostics.  

Conventional methods have their virtues, but state of 

the arts in medical technology and research have 

made conducive for the enhancement of more 

advanced and less invasive techniques for liver 

disease detection and diagnosis. 

Numerical methods, entailing artificial intelligence, 

machine learning, and data analytics, have 

considerably augmented the identification and 

diagnosis of hepatic disorders. These methods are 

able to have a thorough analysis of medical data, 

recognizing patterns, and coming out with accurate 

predictions.  Amalgamation of these technologies is 

fructuous to patient care and consequences.  

Machine learning algorithms, directed on huge 

datasets of medical records, laboratory results, and 

imaging data, can identify patterns pertained to 

various hepatic illnesses. These algorithms can 

categorize new patient data and help in determining 

specific hepatic conditions [17].  Deep learning, a 

subset of machine learning, makes use of neural 

networks to make out complex representations from 

data.  Convolutional neural networks (CNNs) have 

been employed to medical imaging to ascertain the 

detection of liver lesions and abnormalities. These 

methods can automatically locate biomarkers from 

intricate datasets suggestive of hepatic illness, which 

can be put into use of diagnostic models or well-in-

advance warning indicators [18]. Compilation of 

data from clinical data, laboratory results, medical 

imaging, and genetic information can extend the 

frontier of the accuracy and reliability of hepatic 

malady detection and diagnosis [19,20].  

Chen et al [21] put forward a modern method to trace 

the edge of stroke lesions utilizing YOLOv5. Sapitri 

et al [22] presented a real-time fetal cardiac 

substructure detection approach on the basis of the 

YOLO frame work, explicating the versatility of the 

YOLO architecture in puzzling out complex medical 

imaging tasks. These advancements in YOLO-based 

medical image analysis underline the scaling up 

importance and prospect of this object detection 

framework in driving innovative solutions for 

clinical decision-making and patient care. 

Deep learning techniques have proved to be 

significant potential in detecting hepatic illnesses 

through medical imaging [23], accurately 

recognizing a slew of hepatic conditions. 

Nonetheless, sustaining consistently great accuracy 

poses a challenge, especially with complex disease 

patterns. Iterative refinement and optimization are 

prerequisite to augment model performance, 

manifest these limitations, and enhance diagnostic 

precision, eventually supporting better clinical 

decision-making. 

Existing state of the arts in machine learning and 

computer vision have stimulated interests in 

automatic translation of medical image. Bygone 

research works portray the efficacy of deep learning 

in assorting lesion types, but works on YOLOv8—a 

real-time object detection model—for liver tumour 

screening lays restricted. Majority of prevalent 

research work attunes at deep learning architectures 

or general object detection, accentuating the need for 

further examination into YOLOv8’s efficacy in 

hepatic lesion detection. AI-propelled methods, 

especially CNNs, have enhanced lesion detection 

and categorization in histopathology images. A 

thorough analysis of YOLOv8’s speed and 

efficiency is necessitated to manifest specific 

challenges in hepatic lesion diagnosis. 

This research work underscores the salient features 

of YOLOv8’s architectural augmentations, 

comprising improved feature of extraction, 

potentially heightened detection accuracy in medical 

imaging. The desegregation of transformer 

architectures additionally ameliorates the model’s 

capability to grab complex features in liver scans, 

while attention mechanisms upgrade the point of 

concentration on relevant tumour characteristics. 

Comparative analyses suggest that YOLOv8 

supersedes the performance over traditional CNNs 

and other object detection frameworks in terms of 

both digital correctness and computational speed. 

These advancements juxtapose atop YOLOv8 as a 

most probable succeeding tool for real-time clinical 

applications in hepatic lesion diagnosis. 

3. Methodology 

Figure 1 demonstrates the configuration of YOLOv8 

model [24] composed of three major constituents 
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namely, Backbone, the Neck, and the Head.  The 

Backbone is assigned with feature extraction from 

input images. Centred in the middle of the Backbone 

and Head sections, the Neck part escalates the 

expressive capacity of these components by 

deducing and ameliorating information across many 

layers.  Heightening of this capacitates the Head 

section to determine the exact locations and 

classifications of varied objects inside the image. 

The default YOLOv8 model’s standard Backbone 

component makes use of Feature Pyramid Network 

(FPN) architecture to inherit features extraction from 

the image given as input.  P1 and P2 denote lower-

level features. They are in possession of complicated 

local details, bestowing them particularly proficient 

in recognizing small-sized items.  On the other hand, 

P4 and P5 possess higher-level traits that enwrap 

more sophisticated global information, bestowing 

them for larger objects identification. Unlike 

conventional medical pictures, CT scans meant for 

hepatic lesion identification display various iota-

sized tumour areas. Nevertheless, the default Neck 

component of YOLOv8 insufficiently exploits these 

lower-level traits that are ideal for locating small 

objects. There is also a potential threat in 

determining the size and appearance of hepatic 

lesions subject to changes of parameters in CT 

scanning and imaging angles.  In the wake of 

employment of optimized YOLOv8 model as shown 

in the Figure 2, detection of small tumours and 

consistent accuracy in identifying tumours of 

different sizes and characteristics are ensured. 

The quadric-modular optimization modules entail 

with different components of the YOLOv8 

backbone's Feature Pyramid Network (FPN) 

architecture and the Path Aggregation Network 

(PANet) structure in the Neck portion. The YOLOv8 

set up files pave way for the straightforward 

implementation, modification, and extension of 

these modules. The subsequent subsections will 

expound optimization techniques and the specifics 

for implementation of each component 

comprehensively. 

3.1. Incorporation of GAM at P5 Position for 

Enhanced Feature Capture  

The Global Attention Mechanism (GAM) [25] is a 

state-of-the-art technique formulated to augment 

model's capability to target on the features closely 

akin to an image, particularly when dealing with 

complex tasks like hepatic lesion detection.  

Ascertainment of regions within having subtle, 

frequently small, abnormalities like hepatic lesions, 

which are prone to oversight because of their size 

resemblance to surrounding healthy tissue, is pivotal 

in medical imaging.  GAM commissions varied 

attention weights across different regions of the 

image, permitting the model to selectively target on 

key areas—such as the abnormal tissue patterns or 

lesions—that are vital for accurate tumour detection. 

By escalating the representation of significant 

features, GAM facilitates the model to grab more 

precise, informative details necessary for diagnosing 

liver tumours, regardless of their stage or size. As 

illustrated in Figure 2, enhancement presents the 

GAM module at P5 feature level position of the 

Backbone section. By integrating GAM at this 

crucial feature level, we ensure that the network 

focuses on the most relevant regions at multiple 

scales, effectively bettering tumour detection 

accuracy. The SPPF module process the enriched 

feature maps for further optimization, which 

provides even more refined features for subsequent 

processing in the Neck section. Hepatic lesions can 

differ significantly in size, shape, and texture, and 

often appear subtle, especially in early-stage 

diagnoses. GAM’s propensity to concentrate on 

censorious region facilitates YOLOv8 to grab 

lesions more precisely regardless of their size which 

are diminutive, indistinct, or adjacent to analogous 

structures. This results in higher detection accuracy, 

facilitating more precise, prompt diagnosis, and 

augment patient outcomes. 

3.2. Integrate Swin Transformer at P3 Position 

for Feature Extraction 

In state-of-the-art developments in vision 

transformers, the powerful architecture has emerged 

in the form of Swin Transformer [26], especially 

surpassing in medical image analysis and prediction 

tasks. In contrast to traditional transformers that 

utilise global self-attention throughout every aspect 

of an image, the Swin Transformer introduces a 

hierarchical architecture with shifted windows, 

facilitating a compromise between computational 

efficiency and feature representation capability. This 

design allows efficient multi-scale processing, 

making it highly suitable for hepatic lesion 

detection, where both small and large lesions need to 

be accurately identified within high-resolution 

medical images. Swin Transformer fundamentally 

relies on the concept of shifted window-based self-

attention, mathematically defined as shown in 

equation 1. 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) V (1) 

Where Q, K, and V represent the query, key, and 

value matrices derived from the input feature maps 

within each window. √𝑑𝑘is the dimensionality of 

the key vectors, used for scaling to stabilize gradient 

updates. The shifted window mechanism is devised 

in such a way that each local self-attention window 

interacts 
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Figure 1. Structure of YOLOv8 Architecture 

 
 

 
Figure 2.  Optimization Structure of YOLOv8 Architecture
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with adjacent windows, triggering the grab of long-

range dependencies. This mechanism is particularly 

advantageous for hepatic lesion diagnosis, as it 

stimulates the model to store fine-grained lesion 

details while ascertaining that the contextual 

information from surrounding liver tissues is 

effectively leveraged. As highlighted in Figure 2, our 

architectural enhancement entails replacing the C2f 

module at P2 in the Backbone Feature Pyramid 

Network of YOLOv8 with the Swin Transformer 

module. This optimization scales up the feature 

extraction process, permitting the model to: 

 Effectively desegregate multi-scale lesion 

features, bettering the detection across varying 

lesion sizes and locations. 

 Deescalate computational complexity while 

saving detailed liver tissue structures, essential 

for early-stage liver cancer detection. 

 Improve lesion boundary delineation, decreasing 

false positives by focusing on discriminative 

features in CT scans. 

By making most of the hierarchical self-attention 

mechanism of the Swin Transformer, YOLOv8 

attains advantages a more precise and adaptive 

feature representation, consequentially augmenting 

the sensitivity and specificity of hepatic lesion 

detection and diagnosis. This improvement is critical 

in clinical applications, where accurate lesion 

classification can directly impact patient outcomes. 

3.3. Desegregating CBAM in Top-down block of 

Neck section to eliminate redundancy and 

concentrate on key features  

Though the Convolutional Block Attention Module 

(CBAM) [27,28] is lightweight, still it is an effective 

mechanism that escalates feature representation in 

deep neural networks by dynamically accentuating 

informative features across both channel and spatial 

dimensions. It consists of channel attention and 

spatial attention as two components working 

together to refine feature responses and scale up the 

model’s discriminative power. Choosy on 

accentuating potential features pertaining to liver 

lesion while dimming non-abstract details, CBAM 

drives the model to concentrate effectively on lesion-

specific characteristics, leading to enhanced 

localization and classification accuracy. This goal of 

refinement set for is particularly inevitable in 

medical imaging, where healthy tissue differentiated 

from tumour regions is a must for exact liver tumour 

detection and diagnosis. 

The channel attention is employed at first to locate 

and amplify the top most feature channels and then 

spatial attention is engaged to determine the most 

relevant regions within the feature maps when 

CBAM applies a sequential attention mechanism. 

Computation of Channel attention takes place to feed 

feature map Z∈RH×W×C by the application of global 

average pooling (GAP) and global max pooling 

(GMP).  These pooled features are then passed 

through two fully connected layers (FCL1 and 

FCL2), triggered by ReLU, and processed by 

function sigmoid to yield channel-wise attention 

weights αca as shown in equation 2. 

   αca = σ(FCL2(ReLU(FCL1(GAP(Z)))))  (2) 

Spatial attention Msa subject to further refinement of 

the feature maps by precisely locating the most 

significant spatial regions on spurring the channel 

attention. This is achieved due to application of a 

1×1 convolution to the concatenation of GAP and 

GMP outputs, making sure that both extreme and 

aggregate spatial cues contribute to the refinement 

process as shown in the equation 3. 

 Msa=σ(Convol1×1([GMP(Z),GAP(Z )]))  (3) 

The final attention-enhanced feature map is yielded 

via element-wise multiplication between the original 

input Z, the channel attention weights αca 

(broadcasted to match the shape of Z), and the spatial 

attention mask Msa as shown in the  

equation 4. 

          ZCBAM = Z ⊙ (α ⊗ Msa)     (4) 

Highly refined feature representation is produced by 

the fusion of channel and spatial attention 

synergistically, paving a way for the network to 

concentrate on critical features eliminating 

inapposite information, resulting in augmenting 

detection accuracy. In an attempt to obtain 

maximum of liver tumour detection within the 

YOLOv8 framework, CBAM is resorted to strategic 

desegregation of the interval between the Upsample 

and Concat layers in the Neck. This placement 

makes sure that upsampled feature maps are 

subjected to choose refinement before being 

combined, allowing the model to hold the most 

pertinent spatial and channel-based information. By 

getting rid of noise and escalating discriminative 

features, CBAM ramps up feature integration, 

enabling subsequent processes such as 

concatenation and context-to-feature (C2f) 

transformation to better utilize the optimized feature 

representations. Eventually, the model yields more 

accurate localization and classification of liver 

tumours, potentially increasing its diagnostic 

capabilities. 

3.4. Extending PANet Structure in neck part to 

utilize P2 features 

The Neck section engages Path Aggregation 

Network (PANet) based structure to improve multi-

scale feature fusion by refining information flow 
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between feature maps taken out from the Backbone’s 

Feature Pyramid Network (FPN). The PANet 

structure presents additional bottom-up and top-

down pathways, permitting the network to 

consolidate and refine features across different 

scales as illustrated in Figure 2. This structure is 

especially beneficial for liver tumour detection, 

where both spatial details and advanced semantic 

features are crucial for precise localization and 

classification. 

In the top-down pathway, multiple modules work 

together to refine features: 

 Upsample module ramps up resolution to retain 

finer details. 

 Concat module proves lateral connections for 

improved feature integration. 

 C2F (Context-to-Feature) module augments 

feature processing and fusion. 

 Conv module parts with refined, high-quality 

features for better discrimination. 

The connections on both end but in opposite 

direction make sure of perpetual advancement of 

refinement of features from top to bottom levels vice 

versa, permitting the model to make most of both 

detailed local structures and global contextual 

information, which is indispensable to lesions 

detection. 

Nonetheless, as per Figure 2, YOLOv8 default Neck 

only concatenates bottom-up and top-down blocks to 

the P5, P4, and P3 layers of the Backbone FPN, 

leaving direct connections to the P2 layer, which 

possesses detailed spatial features. Though this 

structure proves effective for general object 

detection, the default of direct integration with the 

P2 layer may contain the detection of small and 

subtle tumour regions, detrimental to the model’s 

sensitivity in medical imaging. 

In order to surmount this shortcoming, we propose 

to engage bottom-up and top-down blocks in the 

section of Neck as shown in Figure 2, highlighted by 

the red solid lines. The engagement of these new 

blocks extending the original PANet pathway 

(shown in black) without any ambiguity connects 

and blend features from the FPN P2 layer. By 

incorporating low-level spatial features, this 

modification elevates the model’s capability to 

detect indistinct and iota of tumours, paving a way 

to more and more an accurate localization and 

improved classification of liver tumours in medical 

imaging. 

The enhancement of YOLOv8 for hepatic lesion 

diagnosis is evident from amalgamation of advanced 

feature extraction and attention mechanisms.  GAM 

at P5 firms up high-level semantic features, while the 

Swin Transformer at P3 augments spatial feature 

learning.  The enhanced PANet structure ensures 

effective multi-scale feature aggregation, and post-

upsample attention mechanisms refine 

discriminative features for precise tumour 

localization. These modifications make the model 

more accurate and reliable for automated liver 

tumours diagnosis in medical imaging. 

4. Result and Discussion 

This section deals with presentation of observational 

outputs and results collected from optimized 

YOLOv8 model for hepatic lesion detection.  From 

the Figure 3, the output from the model delves into 

deep penetrative details of its capability to locate and 

identify different classes, entailing normal liver, 

benign tumour, and malignant tumour. These classes 

characterize serious clinical conditions that call for 

the precise detection in order to medical diagnosis. 

The figures exhibit the model's predictions and 

constitute its significant ability to set out between 

these varied tumours. 

 

 

Figure 3. (a) Normal Liver (b) Benign Tumour  

(c) Malignant Tumour 

A rigorous analysis on the area distribution and 

sample counts of varied hepatic tissue classes in the 

dataset was unleashed for the enhancement of 

experimental effectiveness as depicted in Table 1. 

The normal liver category tops all in terms of 

average area, furnishing a strong reference for 

classification. The benign and malignant tumours 

also display sufficient variability, which aids in 

understanding various patterns.  

Table 1. Statistical overview of class annotations 

Statistical 

Data 

Normal 

Liver 

Benign 

Tumour 

Malignant 

Tumour 

Min. area 

(in pixels) 
26298.31 12251.14 103.14 

Max. area 

(in pixels) 
121780.34 186034.92 76641.50 

Avg. area 

(in pixels) 
65081.92 58019.53 7270.02  

Train count 

(images) 
721 4739 6515 

Val count 

(images) 
75 458 623 

Train Val 

ratio (%) 
9.61 10.35 10.46 
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Further, the train-to-validation ratios maintain 

consistency across all categories, solidifying a well-

structured dataset for model training. These 

characteristics are paramount importance to a 

comprehensive and balanced hepatic lesion 

identification framework. 

4.1. Model-wise Performance Analysis 

The evaluation of hepatic lesion detection across 

normal liver, benign tumour, and malignant tumour 

categories as illustrated in the Table 2 on 

performance of the proposed model and different 

YOLOv8 variants was conducted. For category-wise 

classification, the proposed model surpassed in 

distinguishing Normal (0.9261), Benign (0.9946), 

and Malignant (0.9905) cases, superseding all other 

models.  

Table 2. Comparative Analysis of YOLOv8 Variants and 

the Proposed Model 

Model 
Normal 

Liver 

Benign 

Tumou

r 

Malignant 

Tumour 

YOLOv8n 0.9000 0.9800 0.9700 

YOLOv8s 0.9243 0.9938 0.9897 

YOLOv8m 0.9180 0.9921 0.9882 

YOLOv8l 0.9102 0.9903 0.9856 

Proposed Model 0.9261 0.9946 0.9905 

Analyses on the basis of crucial evaluation metrics 

such as recall, precision, and mean Average 

Precision (mAP) as illustrated in the Table 3 resulted 

with effectiveness of each model variants and the 

proposed model. The proposed model’s performance 

was phenomenal and achieved the highest precision 

(95.34%) and recall (96.49%), surmounting all 

YOLOv8 variants. It also recorded the highest 

mAP@0.5 (0.9731), superseding YOLOv8s 

(0.9691), YOLOv8m (0.9600), and YOLOv8l 

(0.9500), implying superior detection capabilities. 

The mAP@0.5-0.95 score of 0.8604 is competitive 

with YOLOv8s (0.8617) and YOLOv8m (0.8600), 

demonstrating consistent performance across 

different confidence thresholds. YOLOv8s and 

YOLOv8m demonstrated close performance, but the 

proposed model proved a slight edge in precision 

and recall, ensuring more reliable tumour detection. 

Table 3. Model-wise Performance Analysis 

Model Precisi

on(%) 

Recall 

(%) 
mAP

@0.5 

mAP@ 

0.5:0.95 

YOLOv8n 92.00 96.00 0.9200 0.5800 

YOLOv8s 94.14 95.42 0.9691 0.8617 

YOLOv8

m 
94.00 96.00 0.9600 0.8600 

YOLOv8l 93.00 95.50 0.9500 0.8550 

Proposed 

Model 
95.34 96.49 0.9731 0.8604 

The results emphasize the effectiveness of the 

proposed model in liver tumour detection, benefiting 

from optimized feature extraction and classification 

strategies. Its superior accuracy and consistency 

make it a propitious approach for automated liver 

tumour diagnosis.  

The assimilation between different YOLOv8 models 

(YOLOv8n, YOLOv8s, YOLOv8m, and YOLOv8l) 

and the model proposed in terms of precision, recall, 

mAP@0.5 and mAP@0.5:0.95 scores is depicted in 

Figure 4. The mAP@0.5 indicates a steady increase 

from YOLOv8n to YOLOv8s, reaching peak 

performance with YOLOv8m and YOLOv8l, while 

the proposed model maintains a competitive score, 

signalling high detection accuracy. The 

mAP@0.5:0.95 reveals a substantial enhancement 

from YOLOv8n to YOLOv8s and remains stable 

across YOLOv8m, YOLOv8l, and the proposed 

model, proving strong generalization across 

different IoU thresholds. Overall, the proposed 

model performs on par with or slightly better than 

YOLOv8l, highlighting its effectiveness in object 

detection while maintaining robustness and 

accuracy. 

 

Figure 4. Performance metrics of YOLOv8 variants and 

the proposed model 

4.2. Performance of Class-wise Analysis 

Table 4 depicts the performance of class-wise 

proposed model in liver tumour detection.  It was 

evaluated by putting into use of key metrics like 

recall (R), precision (P), mean Average Precision 

(mAP) at different thresholds, the number of images 

and instances per class. 

The overall performance across all classes is 

overarching, with a precision of 95.34%, recall of 

96.49%, and a high mAP@0.5 of 0.9737, insinuating 

the model's ability to accurately detect and classify 

liver conditions. The mAP@0.5:0.95 score of 

0.8593 further illustrated the model's consistency 

across varying Intersection over Union (IoU) 

thresholds. 

 Normal Liver: The proposed model was 

subject to rigorous performance with 70 
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images and instances.  It yields a precision 

of 94.20% and recall of 92.86%. The 

mAP@0.5 is 0.933, while the 

mAP@0.5:0.95 is lower at 0.793, 

insinuating slightly reduced performance in 

capturing fine-grained variations in normal 

liver images. 

 Benign Tumour: The proposed model was 

subject to rigorous performance with 452 

images and instances.  It brings about high 

accuracy, attaining 99.56% precision and 

99.12% recall. The mAP@0.5 is 0.994, and 

the mAP@0.5:0.95 is 0.875, reflecting 

robust detection and classification of benign 

liver conditions. 

 Malignant Tumour: This class tops of all 

instances (1100) across 625 images. The 

model yields a precision of 98.99% and 

recall of 98.27%, with mAP@0.5 of 0.994 

and mAP@0.5:0.95 of 0.910. The high 

scores are suggestive of strong sensitivity 

and precision in identifying malignant liver 

conditions. 

Table 4. Class-wise Performance 

Class Images 
Insta

nces 

Preci

sion 

(%) 

Recal

l (%) 

mAP

@0.5 

mAP

@0.5

:0.95 

All 1077 1622 95.34 96.49 0.974 0.859 

Normal 70 70 94.20 92.86 0.933 0.793 

Benign  452 452 99.56 99.12 0.994 0.875 

Maligna

nt  
625 1100 98.99 98.27 0.994 0.910 

 

Figure 5 depicts the performance metrics across 

classes such as normal liver, benign tumour, 

malignant tumour and all. On the whole, the results 

of the proposed model's efficiency in liver tumour 

classification, with particularly high performance in 

detecting benign and malignant cases are 

phenomenal.  While the normal liver class sports 

slightly lower mAP@0.5:0.95, the overall accuracy 

remains competitive, making the model well-suited 

for practical medical applications. The superior 

performance of the proposed model can be attributed 

to its optimized YOLOv8 architecture, which 

incorporates advanced feature extraction and 

classification techniques. The improvements in 

precision (95.34%) and recall (96.49%) further 

highlight its reliability in detecting liver tumours 

with high accuracy. These results indicate that the 

proposed model is a highly effective solution for 

automated liver tumour detection, offering better 

generalization and robustness than existing 

approaches. 

 

Figure 5.  Performance metrics comparison across 

classes 

5. Conclusion 

The entirety of this work contributes to an optimized 

YOLOv8-based model for hepatic lesion detection, 

surpassing models prevalent in terms of recall, 

precision, and means average precision (mAP). The 

model proposed brought forth 95.34% precision, 

96.49% recall, 97.31% mAP@0.5, and 86.04% 

mAP@0.5:0.95, proving superior performance 

compared to YOLOv8 variants and previous deep 

learning models. 

The proposed model is up to the mark of radiologists 

to identify liver conditions through effective 

disintegration.  It paves way for tumour 

classification by achieving 0.9261 mAP, 0.9946 

mAP and 0.9905 mAP respectively for healthy 

cases, benign tumour and malignant tumours.  The 

results obtained from this model proclaim its 

potentiality for a precise detection of liver 

abnormalities, which exhibits consistency in 

producing higher accuracy, upholding enhanced 

diagnostic reliability. 

Significant enhancement of detection accuracy and 

sustained computational efficiency are the fortes of 

optimized YOLOv8 and hence it is preferable for 

real-time liver tumour screening applications.  The 

improved model architecture features enhanced 

speed and precision in the detection of hepatic 

abnormalities, minimizing eventualities of 

misdiagnosis and augmenting early detection 

abilities. 

On the other hand, there is a desperate need of 

iterative refinements to ensure its enhanced clinical 

applicability and real-world reliability.  For winning 

clinicians’ confidence in the interpretation of 

predictions, the model transparency has to be 

enhanced by harnessing explainable AI techniques 

and expanding the dataset to include diverse 

populations and imaging modalities of generalizing. 

The employment of minimum cost hardware by 

optimizing the model will pave way for flexible 
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accessibility in resource-limited settings, enabling 

broader adoption in healthcare. Furthermore, 

conglomerating YOLOv8 with patient clinical data, 

biochemical markers, and complementary 

diagnostic tools can deduce a multi-modal 

framework for liver disease assessment, improving 

diagnostic precision. Future studies should also 

explore longitudinal disease tracking to enable early 

detection and real-time monitoring of disease 

progression. Close collaboration with healthcare 

professionals is essential to refine the model for 

seamless integration into clinical workflows, 

ensuring its practicality in real-world settings. 

Addressing these future directions will further 

strengthen the model’s potential as a comprehensive, 

efficient, and scalable solution for liver tumour 

diagnosis, ultimately improving patient outcomes. 
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