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Abstract:  
 

Glioblastoma Multiforme (GBM) is a very aggressive brain tumor which has poor 

prognosis despite wide range of treatment modalities with specific enhancements in 

radiotherapy. Correct evaluation of tumor response to treatment is crucial for guiding 

treatment decision-making for patients. Despite the wide application of deep learning 

models for tumor segmentation and evaluation, their fundamental complexity has cast 

doubt on whether a simpler, traditional approach can yield insights of comparable 

reliability. A retrospective analysis was performed using MRI data from 18 GBM 

patients who had radiotherapy.  An experienced radiologist evaluated all pre- and post-

treatment MRI’s and provided RANO scores to determine the tumor response.  

Multiparametric MRI sequences were segmented using Otsu's thresholding and GMM 

methods across sagittal, coronal, and axial planes.  Dice Similarity Coefficients (DSC) 

and Intensity Distribution Scores (IDS) were used to evaluate tumor changes, with low 

DSC and high IDS values indicating successful treatment.  The segmentation and 

statistical results were then compared with RANO scores to confirm the findings. The 

results demonstrated different tumor dynamics among patients, highlighting the 

variability in treatment outcomes. DSC and IDS offered additional insights into tumor 

alterations, where low DSC and high IDS values were determined as signs of successful 

radiotherapy. Both techniques effectively predicted outcomes with notable alterations, 

showcasing their capability for evaluating radiotherapy effectiveness in GBM 

treatment. This method provides a more straightforward, budget-friendly option 

compared to deep learning, yielding valuable understanding of tumor dynamics. Future 

research should prioritize confirming these results in more extensive groups by 

integrating advanced AI techniques.    

 

1. Introduction 
 

Main Glioblastoma multiforme (GBM), classified 

as grade IV by the World Health Organization 

(WHO), is the most frequent and aggressive 

primary malignant brain tumor in adults [1]. GBM 

comprises about 15% of all CNS tumors and is 

distinguished by rapid growth, extreme 

invasiveness and ultimate recurrence. The 

heterogeneous histopathology including necrosis 

and microvascular proliferation of GBM drives it 

is poor prognosis [2]. Clinically, patients typically 

display head symptoms, seizures, focal neurological 

deficits depending on the location of the tumor and 

it is stage. In spite of active therapeutic 

interference, the median overall survival is 
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restricted for GBM patients, in the range of 12 to 15 

months after the diagnosis [3].  

Radiotherapy is central in the treatment of GBM 

and constitutes the standard of care, along with 

maximal safe surgical resection and concurrent 

chemotherapy with temozolomide [4]. 

Radiotherapy is a localized treatment modality, 

which is mainly used to eliminate residual tumor 

cells that persist after surgery taking advantage of 

its mechanism to induce DNA damage and inhibit 

proliferation. The rise of sophisticated radiation 

delivery methods such as intensity-modulated 

radiotherapy (IMRT) and stereotactic radiosurgery 

(SRS) has allowed delivering radiation more 

accurately to the malignant tissues and sparing 

normal brain structures around the tumors [5]. 

However, due to the invasive nature of GBM, 

microscopic residual tumors can form beyond the 

visible tumor margins, making them resistant to 

radiotherapy. Moreover, the impact of radiation on 

adjacent healthy brain tissue, such as edema and 

radiation necrosis, complicates treatment decisions 

and follow-up imaging evaluations [6].  

Another major clinical challenge is monitoring the 

response to radiotherapy in GBM. Traditional 

imaging modalities, including magnetic resonance 

imaging (MRI), have limitation because of their 

lack of reliability in differentiating true tumor 

progression versus treatment-related changes, for 

example, pseudo-progression [7]. The vagueness 

of treatment response adds uncertainty to clinical 

decision-making and perpetuates delays in therapy 

modification, indicating that novel methods are 

needed to adequately quantify treatment response. 

Artificial intelligence (AI) has a potential solution 

for these challenges, particularly in the application 

of AI in neuroradiology. All of these factors 

support the incorporation of AI technology into 

imaging-based methods, especially deep learning 

algorithms, for enhanced tumor segmentation, 

feature extraction, and longitudinal analyses over 

time of the imaging data. These tools can also offer 

new quantitative perspectives of tumor dynamics, 

including tumor volume variability and changes in 

peritumoral niches, with superior accuracy and 

reproducibility [8,9]. These powerful capabilities 

gained wider practical relevance in the realm of 

radiotherapy, where a synergistic integration of 

clinical readouts could potentially lead to the early 

identification of treatment response or resistance 

that drives adaptive treatment strategies and 

ultimately improves treatment outcomes.  

In this retrospective study, we aim to incorporate a 

mathematical and statistical framework to 

investigate and independent correlation with 

radiotherapy response in GBM patients from pre- 

and post-radiotherapy imaging data. Therefore, this 

study aims to use quantitative measurements of 

volumetric and morphological changes in tumor 

and peritumoral regions to extract mathematical 

models and statistical metrics that reflect the 

impact of treatment. This has led to the 

development of these methods, which can be used 

to create reliable frameworks, that are interpretable 

and can assess the radiotherapy treatment 

outcomes, owing to a more objective and precise 

evaluation of the therapeutic effectiveness, 

contributing to the management of GBM.    

 

2. Material and Methods 
 

The changes in tumor features were studied using 

pre and post radiotherapy magnetic resonance (MR) 

images of patients who were diagnosed with 

Glioblastoma Multiforme (GBM). This study was 

performed as a retrospective analysis and approved 

by the ethical committee of Biruni University 

Hospital (2024-BİAEK/04-48). We extracted data 

from the PACS (Picture archiving and 

communication system) for around 750 patients 

using this ethical clearance. From this data, we 

found 18 patients who met the inclusion criteria. In 

addition, for strengthening our data set for analysis, 

data were collected at Special Neolife Medicine 

Center. The criteria for the inclusion of patients can 

be outlined as follows: (i) Patients diagnosed with 

GBM and treated with radiotherapy, (ii) patients 

with complete MR images obtained pre-

radiotherapy and post-radiotherapy, (iii) patients 

with MR images in DICOM (Digital Imaging and 

Communications in Medicine) format and sufficient 

quality for analytical purposes, (iv) adult patients 

aged 18 or older. This study was retrospective and 

allowed us to evaluate existing MRI data to 

determine the evolution of tumor features with 

radiotherapy. The selected dataset has also provided 

a rich basis to assess segmentation methods and 

clinical relevance.  

Image preprocessing was performed on the 

aforementioned DICOM files in order to maintain 

uniformity and increase the data quality for 

segmentation as well as conducting further analysis. 

Preprocessing included rescaling of MR images to a 

uniform intensity range, denoising to remove noise, 

and registration (spatial alignment) for cross-scan 

consistency. These steps were necessary to reduce 

the impact of variances in image acquisition and to 

allow for standardization of the dataset for 

subsequent processing.  

The tumor regions were delineated using two 

different segmentation methods: Otsu's 

thresholding method and Gaussian Mixture Model 

(GMM)-based segmentation. Otsu's segmentation 

was carried out for binary segmentation of tumor 
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regions in the pre- and post-treatment MR images. 

Namely, this approach determines an optimal 

threshold value such that the inter-class variance 

between the foreground (tumor) and background 

(non-tumor) regions of the image is maximized 

[10]. Assuming there are two main pixel intensity 

distributions in the image, each for a respective 

class, the algorithm proceeds to define separation 

boundaries. In our implementation, the threshold 

which maximizes inter-class variance is chosen as it 

provides the best discrimination between tumor 

and non-tumor areas by incrementally trying out 

threshold values. The threshold T is determined 

mathematically by maximizing the between-class 

variance (σ_B^2), expressed as: 

 

𝜎𝐵
2(𝑇) = 𝜔1(𝑇)𝜔2(𝑇)[𝜇1(𝑇) − 𝜇2(𝑇)]2            (1) 

 

 

where  𝜔1(𝑇) and 𝜔2(𝑇) are the probabilities of 

the two classes separated by 𝑇, and 𝜇1(𝑇) and 

𝜇2(𝑇) are the mean intensities of the respective 

classes. Thus, the segmentation was based on 

statistically most significant threshold.  

Prior to segmentation, some preprocessing methods 

were used to enhance image quality and make the 

segmentation algorithm robust. To enhance 

contrast, histogram equalization was applied, 

allowing pixel intensities to be spread more 

uniformly, which aided in distinguishing tumor 

from non-tumor regions. Furthermore, contrast 

stretching was applied using the 2nd and 98th 

percentiles of the pixel intensity values. This linear 

rescaling highlighted the key elements represented 

in the images while minimizing the effects of 

outlier intensities, allowing us to effectively utilize 

Otsu's method. After pre-processing, Otsu's method 

was implemented on each MR images. The 

threshold value at which the optical density of the 

images reached its minimum was calculated, and 

binary images were produced using that threshold 

and all the pixels with intensity greater than were 

treated as foreground pixels and the rest were 

treated as background pixels. The generated binary 

segmentation maps were encoded into matrices and 

tumor regions were denoted with a label of 1 and 

non-tumor regions with a label of 0. 

On the other hand, GMM segmentation method 

offers a probabilistic framework to categorize 

image pixels into various components, utilizing the 

statistical properties of pixel intensities. This 

approach represents the pixel intensity values as a 

combination of Gaussian distributions, where each 

Gaussian represents a distinct tissue type or area 

within the brain tumor dataset [11]. The process of 

segmentation starts with converting the image 

pixels into a one-dimensional vector and utilizing 

the “GaussianMixture” class from the `sklearn` 

library. The quantity of components, n, indicates 

the number of Gaussian distributions to be fitted, 

providing adaptability in modeling varied tissue 

areas. This parameter was configured to 4, enabling 

the algorithm to categorize the image into four 

separate clusters: necrotic tissue, enhancing tumor, 

non-enhancing tumor, and healthy brain or 

background.  

In mathematical form, the GMM assumes the 

probability density function 𝑝(𝑥) of the pixel 

intensities, 𝑥, can be modeled as a weighted sum of 

𝑛 Gaussian components: 

 

𝑝(𝑥) = ∑ 𝜋𝑖𝑁(𝑥|𝜇𝑖 , 𝜎𝑖
2)𝑛

𝑖=1             (2) 

 

 

where 𝜋𝑖 are the mixture weights (summing to 1), 

𝜇𝑖  are the means, and 𝜎𝑖
2 are the variances of the 𝑖-

th Gaussian component. The Expectation-

Maximization (EM) algorithm estimates iteratively 

these parameters to maximize the likelihood of 

observed data. After fitting the GMM, the 

segmentation is done by assigning each pixel to the 

component with the highest posterior probability, 

given by Bayes' theorem: 

 

𝑙𝑎𝑏𝑒𝑙 (𝑥) = arg (max )𝑖
𝜋𝑖𝑁(𝑥|𝜇𝑖,𝜎𝑖

2)

∑ 𝜋𝑗𝑁(𝑥|𝜇𝑗,𝜎𝑗
2)𝑛

𝑗=1

      (3) 

 

In order to ensure computational efficiency, the 

input images are down-sampled to a fixed 

resolution (e.g., 128 × 128) before GMM fitting. 

The output segmentation label (after segmentation) 

is then up-sampled to the original image size using 

nearest-neighbor interpolation to preserve discrete 

labels. By reducing the amount of data while 

retaining enough detail for segmentation, this 

preprocessing step minimizes the amount of 

computation required. 

 

The code implementation incorporates GMM 

segmentation into a pipeline designed for 

processing MR images before and after 

radiotherapy. The image data of each patient is 

processed concurrently to enhance throughput, 

utilizing the `joblib` library for multi-core 

processing. The generated segmentations are saved 

as `.npy` files for subsequent analyses. In contrast 

to Otsu's method, which is fundamentally 

deterministic and presumes a single-modal intensity 

distribution in each segmented area, GMM 

segmentation considers the likelihood of 

multimodal distributions and offers probabilistic 

assessments of each pixel's class affiliation. This 

ability is especially beneficial when managing 
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intricate, diverse tissues in areas affected by 

tumors. 

Quantitative parameters were computed to analyze 

tumor changes between pre- and post-treatment 

imaging and segmentation performance. The spatial 

overlap between binary segmentation maps of 

images taken before and after treatment was 

measured using the Dice Similarity Coefficient 

(DSC) [12]. DSC has the following mathematical 

definition: 

 

𝐷𝑆𝐶 = 2 
|𝐴∩𝐵|

|𝐴|+|𝐵|
             (4) 

 

where A and B are the binary segmentation results 

for pre- and post-treatment images, respectively. 

The numerator |A∩B| represents the number of 

overlapping pixels in the segmented regions, while 

the denominator |A|+|B| corresponds to the sum of 

the pixels in both regions. DSC varies between 0 

and 1, where values nearing 1 suggest a higher 

level of overlap and consequently better 

consistency in tumor segmentation. To guarantee 

precise calculations, pre- and post-treatment images 

were trimmed to their smallest intersecting area 

prior to calculating DSC.  

We also calculated the intensity distribution 

between pre- and post-treatment scans using an 

Intensity Distribution Score (IDS). For each image, 

pixel intensity histograms were calculated and 

compared with distinct images using the 

Bhattacharyya distance. The IDS calculated as this 

distance provides a measure of the overlap of the 

intensity distributions, hence a value close to 0 

means high similarity and a value close to 1 

corresponds with a high degree of dissimilarity 

[13]. Statistically, the Bhattacharyya distance, 𝐷𝐵, 

between two normalized histograms 𝐻1 and 𝐻2 is 

defined as: 

 

𝐷𝐵 = − ln(∑ √𝐻1(𝑖)𝐻2(𝑖)𝑛
𝑖=1 )           (5) 

 

where 𝐻1(𝑖) and 𝐻2(𝑖) are the probabilities of 

intensity 𝑖 in the respective histograms. For IDS, 

1 − 𝐷𝐵 was used to simplify interpretation, with 

values closer to 1 reflecting more substantial 

treatment-induced changes in intensity 

distributions. 

The findings were illustrated for a group of five 

randomly chosen patients, emphasizing 

segmentation results for scans conducted before 

and after treatment. Binary segmentation maps 

were presented alongside their original and 

processed versions, facilitating qualitative 

evaluation of tumor boundary definition. 

Quantitative measurements, such as DSC and IDS, 

were computed for each patient, and the findings 

were gathered for additional statistical examination. 

The metrics offered significant understanding of 

how treatment affects tumor morphology, along 

with the dependability of the segmentation 

methodology. This layered strategy integrated 

statistical precision, preprocessing improvements, 

and strong segmentation methods to guarantee 

precise and significant analysis of tumor alterations 

in glioblastoma patients receiving radiotherapy.  

The mean and standard deviation of DSC values 

were calculated for each patient in order to compare 

the segmentation techniques' performance and 

examine the distribution of DSC and IDS scores 

among patients. This allowed for an evaluation of 

the segmentation methods' consistency and 

dependability. Based on the ranges of their mean 

DSC scores, the patients were further divided into 

groups, and bar charts, pie charts, and histograms 

were used to show the frequency distribution of 

these groups. In order to find patterns in intensity 

fluctuations, the distribution was evaluated after the 

scores were similarly divided into predetermined 

ranges for IDS analysis. 

Patients were grouped according to their score 

ranges, and scatter plots were created to find out the 

association between mean DSC scores and their 

accompanying standard deviations. The 

segmentation performance for several patients was 

revealed by this graphic, which also indicated 

patterns and outliers. Furthermore, each patient's 

temporal variations in DSC scores across image 

pairs were shown, allowing for an evaluation of the 

segmentation techniques' consistency over time. 

These evaluations provide a thorough assessment of 

the segmentation methods and their suitability for 

characterizing GBM tumors. 

To validate the findings, an experienced radiologist 

evaluated all of the pre- and post- MR images and 

determined the RANO (Response Assessment in 

Neuro-Oncology) scores for each patient.  RANO 

criteria offer a uniform approach for assessing how 

a tumor responds to therapy, relying on MRI results 

[14]. These scores classify treatment results into 

four categories: 

 RANO 1 (Complete Response): Signifies a 

total eradication of the tumor without 

requiring corticosteroids, demonstrating an 

outstanding therapeutic outcome. 

 RANO 2 (Partial Response): Indicates a 

notable decrease (≥50%) in tumor 

dimensions, implying a favorable reaction 

to radiotherapy. 

 RANO 3 (Stable Disease): Shows no 

significant alteration in tumor size, 

suggesting that the treatment did not 

alleviate or exacerbate the tumor load. 
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 RANO 4 (Progression): Indicates a ≥25% 

rise in tumor size or the emergence of new 

lesions, implying a treatment outcome that 

is ineffective. 

 

3. Results and Discussions 
 

The dataset included a total of 8,889 DICOM 

images, which included 3,990 pre-radiotherapy 

images and 4,899 post-radiotherapy images. The 

images were obtained from 18 patients who 

satisfied the inclusion criteria. Examples of raw 

DICOM images from four randomly selected 

patients before and after radiotherapy are illustrated 

in Figure 1. We used multiparametric MRI 

sequences, including T2-weighted (T2W), T1-

weighted (T1W), and contrast-enhanced T1-

weighted (T1ce) images in sagittal, coronal, and 

axial planes. For further segmentation and analysis, 

these raw images were utilized. The graphic 

illustrates how different anatomical features and 

imaging quality vary throughout individuals, 

necessitating meticulous preprocessing and 

segmentation to guarantee a consistent assessment 

of tumor alterations. Furthermore, Figure 2 

demonstrates the results of Otsu's segmentation 

applied to MRI slices of multiple patients of pre- 

and post-treatment. It illustrates the binary 

segmentation masks generated by Otsu's 

thresholding, where white regions represent the 

segmented areas and black regions correspond to 

the background. This effectively highlights distinct 

regions of interest in the MRI slices. This 

visualization emphasizes the alignment between the  

 

 
Figure 1. Raw multiparametric MR images of four 

randomly selected patients, showing pre- and post-

radiotherapy scans. 

 
Figure 2. Otsu's method segmentation results for four 

randomly selected patients' MR images. The figure 

displays pre- and post-radiotherapy segmented images 

for each patient, processed using multiparametric MRI 

sequences. 

 

segmented regions and the anatomical structures 

within the MRI, offering a comprehensive 

perspective on the segmentation results. Randomly 

selected samples from four patients across the 

dataset are presented, demonstrating consistent 

segmentation performance while reflecting 

anatomical and imaging variations. Multiparametric 

MR images from randomly selected patients, 

including T2W, T1W, and T1ce sequences in both 

pre- and post-radiotherapy scans, were segmented 

with the Gaussian Mixture Model (GMM). A 

representative example from four patients 

presenting their segmentation results is shown in 

Figure 3, where the colors denote clustered 

intensity segments among tumor areas and 

surrounding tissues. Outputs might not represent 

the overall segmentation performance due to the 

randomness in the selection of patients and images 

being sampled. However, these findings show the 

use of GMM to distinguish different areas of 

interest in the MRI data, reflecting the intensity 

changes between the scans before and after the 

radiotherapy. Second, all the segmented pre- and 

post-radiotherapy scans were used for further 

quantitative evaluation, including Dice Similarity 

Coefficient (DSC) and Intensity Distribution Scores 

(IDS) calculation. These metrics revealed 

consistency and intensity-based differences in the 

segmented tumor volumes between the various 

MRI modalities and time points. 
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Figure 3. GMM-based segmentation results on pre- and 

post-radiotherapy MR images for four randomly selected 

patients, showing intensity cluster classifications with a 

colormap of “viridis”. 
 

 

3.1 Evaluation Metrics for Otsu’s Segmented 

Images 

 

The DSC of Otsu segmented pre and post 

radiotherapy images ranged between 0 and 1 as 

shown in figure 4. The DSC mean values for 

individual patients were also widely spread 

reflecting patient-specific segmentation 

performance differences. For example, pre- and 

post-segmented regions of Patient_09 and 

Patient_14 overlapped better and therefore had 

higher DSC while lower DSC (Patient_16 and 

Patient_18) indicate lower agreement or greater 

variability. Error bars illustrate the range of DSC 

scores for each patient, which demonstrates the 

variability in segmentation quality across the  

 

 
Figure 4. Mean dice similarity coefficient scores (blue 

vertical bars) with standard deviations (black lines) 

dataset. This variation may correlate for example 

with tumor morphology, imaging quality, or 

segmentation difficulty. Figure 5 illustrates the 

Dice Similarity Coefficient (DSC) scores for 

various patients, comparing pre- and post-

radiotherapy image pairs, and emphasizes the three 

patients with the highest and lowest scores. Patients 

exhibiting the highest DSC scores (marked in red, 

green, and yellow) show a consistently strong 

resemblance between pre- and post-treatment 

images with elevated scores. This suggests slight 

alterations in the images, implying that the 

treatment probably did not work. Conversely, 

patients who have the lowest DSC scores (marked 

in dark brown, grey, and black) demonstrate scores 

close to 0, indicating substantial variances between 

pre- and post-treatment images. This indicates that 

the treatment might have worked, given that 

significant changes took place. The other patients, 

shown by dashed lines, display moderate or 

fluctuating DSC scores, suggesting varied results. 

These results imply that DSC scores may serve as 

an important measure for assessing treatment 

efficacy, where lower scores reflect more 

significant alterations in tumor segmentation and 

possibly better treatment results.  

 

 
Figure 5. Image pair index vs. DSC scores of pre- and 

post- images. Three patients with highest and lowest 

DSC scores are highlighted. 

 

The scatter plot in Figure 6 depicts the correlation 

between the mean and standard deviation of DSC 

scores for every patient, sorted by their mean score 

ranges. Patients exhibiting higher average DSC 

scores usually show reduced variability (standard 

deviation), indicated by the grouping of points. The 

color-coding clearly emphasizes score ranges, with 

distinct separations between groups evident. The 

detailed values of this plot are provided in Table 1. 

The bar chart illustrated in Figure 7 illustrates the 

average Intensity Distribution Scores (IDS) along 

with their standard deviations for every patient, 

indicating the differences in intensity distribution 

between segmented images taken before and after 

treatment. Patients_04 and Patient_17 exhibit the 

highest average IDS values of 0.46 and 0.33, 

respectively, with standard deviations of 0.15 and 
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Table 1. Mean and standard deviation values of patients 

(Otsu’s segmented) according to mean DSC scores 

Range Patient Mean Std 

0.25 - 0 Patient_04 0,205716 0,120245 

0.25 - 0 Patient_05 0,236853 0,147213 

0.25 - 0 Patient_06 0,153666 0,13822 

0.25 - 0 Patient_11 0,157233 0,101912 

0.25 - 0 Patient_16 0,073495 0,089431 

0.25 - 0 Patient_18 0,102145 0,105265 

0.5 - 0.25 Patient_02 0,438745 0,154307 

0.5 - 0.25 Patient_03 0,351615 0,157635 

0.5 - 0.25 Patient_07 0,310756 0,14558 

0.5 - 0.25 Patient_08 0,44861 0,163759 

0.5 - 0.25 Patient_10 0,324367 0,120712 

0.5 - 0.25 Patient_12 0,344076 0,198819 

0.5 - 0.25 Patient_15 0,378815 0,156853 

0.5 - 0.25 Patient_17 0,366739 0,123899 

0.75 - 0.5 Patient_01 0,564524 0,211738 

0.75 - 0.5 Patient_13 0,648 0,12701 

1 - 0.75 Patient_09 0,890691 0,078436 

1 - 0.75 Patient_14 0,756669 0,232002 

 

 

 
Figure 6. Scatter plot of 18 patients illustrating the 

mean DSC scores (x-axis) versus standard deviations (y-

axis). 

0.10, reflecting significant differences in intensity 

distribution. Conversely, Patient_09 and Patient_13 

exhibit the lowest mean IDS values at 0.01 and 

0.02, with minimal variations of 0.001 and 0.01, 

indicating slight intensity fluctuation. Patients like 

Patient_05 (average IDS: 0.23, standard deviation: 

0.10) and Patient_15 (average IDS: 0.25, standard 

deviation: 0.08) exhibit moderate ratings, indicating 

intermediate intensity variations. The variation in 

deviations, exemplified by Patient_08 with a 

standard deviation of 0.19 versus Patient_12 at 

0.06, underscores disparities in the consistency of 

intra-patient intensity distribution. 

  

 
Figure 7. Mean and standard deviation of IDS of each 

patient with blue bars representing mean values while 

red bars representing standard deviations. 

 

IDS of the 18 patients were examined, categorizing 

them into four unique score intervals: 0.01–0.12, 

0.12–0.23, 0.23–0.35, and 0.35–0.46, which 

included 6, 7, 3, and 2 patients, respectively. The 

pie chart given in Figure 8 displays the percentage 

breakdown of patients across these score ranges, 

demonstrating that the largest group of patients 

(38.9%) is found in the 0.12–0.23 range, with 

33.3% in the 0.01–0.12 range. Patients falling 

within the 0.23–0.35 and 0.35–0.46 ranges 

represent 16.7% and 11.1% of the cohort, 

respectively, suggesting that elevated IDS values 

are less frequent.  

The scatter plot given in Figure 9 offers additional 

understanding, illustrating the connection between 

the mean IDS and standard deviation for each 

patient, grouped by score ranges. Patients 

displaying a higher average IDS, generally between 

0.35 and 0.46, show comparatively less variability, 

indicated by reduced standard deviations. On the 

other hand, individuals in the lowest scoring range 

(0.01–0.12) show varying standard deviations, 

indicating variability in IDS patterns. This trend 

indicates that patients exhibiting higher IDS values 

show more uniform intensity distributions, whereas  

 

 
Figure 8. Percentages of patients by IDS with specified 

subgroups 
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Figure 9. Scatter plot of mean IDS of patients versus 

standard deviation. 

 

those with lower scores face increased variability. 

These visualizations offer an in-depth perspective 

on the IDS distribution among patients, 

highlighting intensity and variability patterns that 

may guide additional analyses of underlying 

conditions or segmentation effectiveness. 

 

3.2 Evaluation Metrics for GMM Segmented 

Images 

 

Using Gaussian Mixture Model (GMM) 

segmentation, the Dice Similarity Coefficient 

(DSC) scores for each patient are illustrated over a 

number of image pair indices in the Figure 10. With 

various colors representing the 18 patients, each 

point reflects the DSC score for a particular image 

pair of a particular patient. High structural 

similarity between pre- and post-therapy images is 

indicated by a majority of DSC scores being 

focused in the upper range (0.7–1.0). For certain 

patients or image pairings, this suggests that the 

segmented regions have only slight morphological 

alterations. Nonetheless, a sizable portion of ratings 

are below 0.5, with some approaching 0.0. major 

variations between pre- and post-therapy images 

are demonstrated by these lower scores, which may 

be a reflection of major therapy-induced alterations, 

tumor growth, or other anatomical differences. 

Patients' DSC scores demonstrated a variety of 

trends. Some, like Patient_02 and Patient_18, 

exhibit minimal variation between pre- and post-

therapy states, continuously maintaining high DSC 

ratings throughout all image pairs. Conversely, 

patients with DSC values that range from great 

similarity to significant divergence, such as 

Patient_04 and Patient_11, exhibit significant 

variability. In many situations, this variety may 

indicate dynamic tumor activities or diverse 

therapeutic responses. Furthermore, certain 

patients—like Patient_07 and Patient_13—

consistently exhibit lower DSC ratings across 

picture pairs, which may be a sign of severe 

therapeutic side effects or difficult imaging 

circumstances. There are also discernible temporal 

or sequential dependencies. Patient_16, for 

example, has a decreasing trend in DSC values over 

the image pair indices, which can indicate 

increasing alterations as treatment goes on. For 

certain pairings of images, the appearance of 

outliers with DSC scores close to 0.0 indicates 

significant variances between the pre- and post-

therapy images. To find potential underlying 

causes, such as notable tumor shrinkage, new tumor 

growth, or imaging irregularities, these cases need 

detailed evaluation.  

 

 
Figure 10. DSC scores of GMM segmented pre- and 

post- therapy image pair indexes 

 

DSC scores for the pre- and post- radiotherapy 

images from each patient are shown in Figure 11. 

While Patients 01, 08, 09 and 10 show consistently 

high DSC scores, Patients 03, 04, 07 and 11 show 

limited variability. Patient 16 and 17 also have 

predominantly low scores, indicating significant 

changes. These variances embody distinct 

structural changes among various patients.  

 

 
Figure 11. DSC scores of GMM segmented image pair 

indexes for each patient separately. 
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Figure 12 illustrates the percentage of patients 

categorized by average DSC score ranges (GMM). 

The majority of patients (38.9%) are within the 

0.75–0.5 range, suggesting moderate similarity. 

Scores in the lower ranges (0.25–0 and 0.5–0.25) 

represent 22.2% each, whereas the highest range 

(1–0.75) comprises 16.7% of patients, indicating 

variability in segmentation results. The specific 

mean and standard deviation values for each patient 

is provided in Table 2. 

 
Table 2. Mean and standard deviation values of patients 

(GMM segmented) according to mean DSC scores 

Range Patient Mean Std 

0.25 - 0 Patient_06 0.220979 0.196961 

0.25 - 0 Patient_14 0.174759 0.266865 

0.25 - 0 Patient_16 0.064041 0.160468 

0.25 - 0 Patient_17 0.017998 0.036674 

0.5 - 25 Patient_02 0.296327 0.297387 

0.5 - 0.25 Patient_03 0.453709 0.283054 

0.5 - 0.25 Patient_07 0.494161 0.318920 

0.5 - 0.25 Patient_18 0.480168 0.303567 

0.75 - 0.5 Patient_04 0.510406 0.298773 

0.75 - 0.5 Patient_05 0.547195 0.233237 

0.75 - 0.5 Patient_08 0.731772 0.147899 

0.75 - 0.5 Patient_10 0.630400 0.354381 

0.75 - 0.5 Patient_11 0.575500 0.213715 

0.75 - 0.5 Patient_12 0.626682 0.228277 

0.75 - 0.5 Patient_15 0.609753 0.215147 

1 - 0.75 Patient_01 0.782270 0.217551 

1 - 0.75 Patient_09 0.901926 0.142500 

1 - 0.75 Patient_13 0.817502 0.219824 

 

 

 

 
Figure 12. Pie chart distribution of mean DSC scores 

for GMM segmented images 

 

The bar chart shown in Figure 13 illustrates the 

average and standard deviation of IDS for each 

patient, organized using GMM. Individuals like 

Patient_02, Patient_08, and Patient_15 show the 

highest average scores, suggesting stronger 

intensity distributions, whereas Patient_13 and 

Patient_16 display significantly lower average 

scores. The standard deviation, illustrated by the 

red bars, emphasizes the differences in scores 

among patients. In patients like Patient_08 and 

Patient_14, greater variability is noted, while 

patients like Patient_11 exhibit low variability. 

Overall, a clear positive correlation exists, where 

higher average values are frequently linked to 

larger standard deviations, indicating a wider 

dispersion in the scores for those patients. This 

examination offers insights into the distribution and 

uniformity of intensity scores within the patient 

group.   

 

 
Figure 13. Mean and standard deviation scores of IDS 

for GMM segmented images 

 

3.3 Comparison of RANO Scores with the 

findings 

 

The assumption that low DSC values and high IDS 

values are associated with positive treatment 

outcomes (RANO 1 or RANO 2) and high DSC 

values and low IDS values are associated with 

negative treatment response (RANO 3 or RANO 4) 

was to be validated in the present study. This is 

done by comparing the segmentation-based 

predictions from both Otsu’s thresholding and 

GMM methods with RANO score by an 

experienced radiologist which are provided with 

patient IDs in Table 3. (CR: Complete Response; 

PR: Partial Response; S: Stable; P: Progression) 

 
Table 3. RANO scores of each patient assessed by an 

experienced radiologist 

Patients RANO 

02, 05 1 - CR 

06, 07, 08, 10, 15 2 - PR 

01, 13, 14, 17, 18 3 - S 

03, 04, 09, 11, 12, 16 4 - P 

 

For the low DSC and high IDS which were 

expected to be RANO 1 or 2, Otsu’s method 

identified seven patients, four of whom (57%) had 

matching outcomes. However, three patients (43%) 

did not align with this assumption, as they showed 

stable or progressive disease (RANO 3 or 4). On 

the other hand, GMM performed in predicting 



Serhat Ünalan, Didem Karaçetin, Ümit Tüzün, Osman Günay / IJCESEN 11-2(2025)3146-3159 

 

3155 

 

responders with 50% of patients correctly classified 

as RANO 1 or 2.  Both techniques correctly 

classified all patients in this group as stable or 

progressive (RANO 3 or 4), showing the validity of 

this pattern.  All of these results are provided in 

Table 4.  
 

 

Table 4. The agreements of our findings with the RANO scores 

Segmentation 

Method 

Low DSC & 

High IDS 

(Expected: 

RANO 1 or 2) 

Actual 

RANO 

Score 

Agreement 

High DSC & 

Low 

IDS 

(Expected: 

RANO 3 or 4) 

Actual 

RANO 

Score 

Agreement 

Otsu 

Patient 6 RANO 2 ✅ Patient 1 RANO 3 ✅ 

Patient 16 RANO 4 ❌ Patient 9 RANO 4 ✅ 

Patient 4 RANO 4 ❌ Patient 13 RANO 3 ✅ 

Patient 5 RANO 1 ✅ Patient 14 RANO 3 ✅ 

Patient 11 RANO 2 ✅ Patient 3 RANO 4 ✅ 

Patient 18 RANO 3 ❌ Patient 12 RANO 4 ✅ 

Patient 2 RANO 1 ✅ 
   

GMM 

Patient 6 RANO 2 ✅ Patient 1 RANO 3 ✅ 

Patient 14 RANO 3 ❌ Patient 13 RANO 3 ✅ 

Patient 17 RANO 3 ❌ Patient 14 RANO 3 ✅ 

Patient 2 RANO 1 ✅ Patient 3 RANO 4 ✅ 

 
Patient 12 RANO 4 ✅ 

3.4 Discussions 

 
Radiotherapy is one of the cornerstones treatment 

modalities for Glioblastoma Multiforme (GBM) 

and is used with the goal of reducing tumor size 

and prolonging survival. However, its efficacy is 

hampered by the highly heterogeneous infiltrative 

nature of GBM, which generally leads to 

incomplete tumor control and subsequent 

recurrence. Radiotherapy response is usually 

assessed based on their size and morphology 

changes on imaging (e.g. MRI). Though such 

assessments offer important insights, they are 

inherently subjective and may differ widely 

between clinicians, especially when determining 

the treatment effect versus tumor progression. 

Thus, there is an increasing demand for more 

accurate, measurable, reproducible ways to evaluate 

tumor dynamics, the manner in which tumor cells 

respond to radiotherapy and imaging tools with 

objective performance in this setting. 

 

Artificial intelligence (AI)-driven segmentation 

techniques have emerged as a transformative 

solution to these challenges, capitalizing on their 

high accuracy and efficiency in processing 

complex imaging data [15,16]. In contrast to 

manual delineation, artificial intelligence–based 

methods, such as deep learning algorithms and 

automated clustering techniques, allow for both 

consistent and reproducible segmentation of GBM 

tumor regions. Manually difficult-to-recognize 

nuances radiological changes as pseudo-

progression or necrosis, have been identified using 

convolutional neural networks (CNN) and hybrid 

approaches. Havaei et al. (2017) created a deep 

learning model with convolutional neural networks 

(CNNs) for automating brain tumor segmentation 

in multi-modal MRI, showcasing excellent 

accuracy and resilience across various datasets, 

emphasizing the promise for reliable and repeatable 

outcomes [17]. CNNs and hybrid methods have 

been utilized to detect manually challenging 

nuances in radiological changes, including pseudo-

progression and necrosis. This is especially 

significant in GBM, where it is vital to differentiate 

between actual tumor advancement and changes 

associated with treatment for effective clinical 

management. In another study, Myronenko (2018) 

introduced a 3D U-Net model with variational 

autoencoder (VAE) regularization, focusing on the 

difficulty of segmenting necrotic areas and 

enhancing tumor core regions, demonstrating 

enhanced capability in distinguishing these intricate 

tissue types [18]. These studies showcase the 

capability of AI to enhance both segmentation 

precision and consistency, while also assisting in 

the difficult process of characterizing intricate 

tumor microenvironments. In addition, 

unsupervised approaches such as Otsu's 
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thresholding and Gaussian Mixture Models 

(GMMs) are promising for segmenting tumors 

without relying heavily on large annotated datasets, 

making them useful in clinical settings [19,20]. 

Bridging these autonomously derived layers of 

treatment response with the outcomes of 

radiotherapy will further enlighten the field and 

lead to more personalized intervention for patients 

with GBM. 

The main objective of this research was to assess 

whether complex deep learning approaches are 

necessary to predict radiotherapy output with 

respect to Glioblastoma Multiforme (GBM), or if 

standard segmentation methods combined with 

mathematical and statistical metrics are sufficient. 

Tumor heterogeneity and infiltrative nature of 

GBM tumors further complicate segmentation 

process of tumor regions in pre- and post-

radiotherapy MRI scans and hence, it is crucial for 

tumor segmentation accurate to assess the 

treatment efficacy. Despite the fact that deep 

learning approaches can unlock the state-of-the-art 

capabilities, they are resource-hungry and demand 

large amounts of labeled data, so the question 

remains whether simpler methodologies can 

provide similar interpretations. 

 

In order to fully address this, both Otsu’s 

thresholding and Gaussian Mixture model (GMM) 

segmentation, common segmentation techniques, 

were utilized in this study. This procedure was 

selected because of its simplicity and its non-

reliance on extensive amounts of training data. The 

DSC and intensity distribution measures were 

computed for the segmented MRI data from both 

methods to quantify their agreement or discordance 

with the pre-treatment and post-treatment tumor 

regions. The hypothesis was that a high similarity 

between pre- and post-treatment images suggest a 

poor treatment efficacy whereas large differences 

indicate a successful reduction of the tumor. As 

such, this strategy gives us insight into how 

efficiently more traditional approaches can be 

applied to this task, perhaps making it a more 

tractable, representative alternative to deep learning 

applications in clinical settings.  

The assessment of similarity or dissimilarity 

between pre- and post-radiotherapy images based 

on DSC and IDS relies on their quantitative 

measurements. DSC assesses the spatial correlation 

between two segmentations, with values from 0 to 

1. A DSC value near 1 signifies high similarity, 

indicating that the tumor area has not altered much 

after treatment, which might suggest reduced 

treatment efficacy. In contrast, reduced DSC values 

indicate increased dissimilarity, implying notable 

alterations in tumor volume or structure, which may 

suggest successful radiotherapy. In the same way, 

IDS assesses the intensity-related variations in the 

segmented areas. A lower IDS value indicates 

greater similarity in intensity distributions, while 

higher IDS values reflect significant differences, 

which relate to alterations in tumor characteristics 

following treatment. By evaluating these metrics in 

segmented images taken before and after 

radiotherapy, one can quantitatively measure the 

extent of tumor response to the treatment. 

Successful treatment outcomes are linked to a 

combination of low DSC values, which indicate 

major structural changes, and high IDS values, 

which indicate notable intensity differences, 

according to an analysis of a particular patient's 

data. This method aids in locating instances when 

the tumor has been considerably damaged by 

radiation.  

According to the Otsu method, patients who have 

low DSC scores are 4, 5, 6, 11, 16, and 18. Patients 

with medium DSC scores include 2, 3, 7, 8, 10, 12, 

15, and 17, whereas high DSC scores were noted in 

patients 1, 13, 9, and 14. In the GMM method, the 

patients with low DSC scores are numbered 6, 14, 

16, and 17. Patients 2, 3, 7, and 18 exhibit medium 

DSC scores, while those with high DSC scores are 

4, 5, 8, 10, 11, 12, 15, 1, 9, and 13.  

Concerning Otsu IDS scores, the patients with 

extremely low IDS scores (Q1) are 1, 3, 9, 12, 13, 

and 14. Individuals with low IDS scores (Q2) 

comprise 5, 6, 7, 10, 11, 15, and 18, whereas those 

with medium IDS scores (Q3) are represented by 

patients 8, 16, and 17. Patients 2 and 4 show high 

IDS scores (Q4). In the GMM method, patients 1, 

9, 13, and 14 exhibit extremely low IDS scores 

(Q1). Patients 3, 6, 7, 11, 12, 17, and 18 show low 

IDS scores (Q2). Patients 4, 5, 8, and 10 are linked 

with medium IDS scores (Q3), while high IDS 

scores (Q4) are observed in patients 2, 15, and 16.  

Individuals with low DSC scores and high IDS 

scores might demonstrate the capability for 

effective therapy. In the Otsu method, the patients 

who exhibited low DSC scores are 4, 5, 6, 11, 16, 

and 18, whereas those with high IDS values are 2 

and 4. In the same way, according to the GMM 

approach, patients with low DSC scores are 6, 14, 

16, and 17, while those with high IDS scores are 2, 

15, and 16. These patients might be linked to the 

successful treatment results due to the combination 

of these evaluation metrics.   

Patients exhibiting high DSC values and low IDS 

values for both Otsu and GMM segmentation 

techniques might suggest that the treatment was 

ineffective. In the Otsu method, patients exhibiting 

high DSC values are 1, 13, 9, and 14, whereas those 

having low IDS values are 1, 3, 9, 12, 13, and 14. 

In the same way, for the GMM approach, high DSC 
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values are noted in patients 4, 5, 8, 10, 11, 12, 15, 

1, 9, and 13, whereas low IDS values are seen in 

patients 1, 9, 13, and 14. The rationale for this is 

that high DSC values typically indicate a strong 

resemblance between images taken before and after 

treatment, implying that the tumor or impacted 

region may not have noticeably altered or reacted to 

the therapy. Moreover, low IDS values usually 

suggest minimal variation or alteration in the 

images, supporting the notion that the treatment did 

not significantly affect the tumor or lesion. In such 

scenarios, the significant dissimilarity noted with 

high DSC values combined with low IDS values 

suggests that the treatment may not have been as 

effective as anticipated, showing little change or 

reduction in the tumor's features after radiotherapy. 

According to the results of comparison this study’s 

findings with the actual RANO scores 

demonstrated that the two segmentation approaches 

had comparable performance in predicting cases of 

RANO 1 and RANO 2, and detected patients with 

poor radiotherapy response. Collectively, these 

observations suggest that high DSC and low IDS 

values correlate with good RANO scores and 

support the ability of DSC and IDS to detect non-

responders early so that treatment strategies can be 

adapted accordingly. For RANO 1 and RANO 2 

patients, respectively, it is found that Otsu's method 

had higher accuracy in predicting responders, 

correctly identifying 57% (4 out of 7) of 

responders, versus 43% (3 out of 7) than GMM. To 

enhance treatment responder detection, it may be 

beneficial to incorporate deep learning-based 

segmentation, radiomic features, or advanced 

intensity-based parameters. These results 

emphasize that the assessment of the radiotherapy 

response in GBM will benefit from new methods 

and larger datasets. 

The small sample size is the major limitation of 

this study. While the dataset includes pre- and 

post-radiotherapy MRI scans from 18 patients, this 

small cohort may not reflect the heterogeneity and 

variation found in the field of GBM. This tumor 

displays heterogeneity in behavior, response to 

therapy, and patient outcomes. A larger dataset 

would have granted us much better statistical 

power, better exploration of the significance and 

highlighting of the differences between 

segmentation methods, as well as a finer exploring 

the relationship between DSC and IDS scores and 

treatment response. Broadening the patient 

extension across a wider range of GBM 

presentations and therapy response may also 

enhance the generalizability of the findings. 

Another major challenge is the dependence on 

retrospective data. Although these types of studies 

are useful, they can often lack data completeness 

and standardization. Differences in MRI acquisition 

protocols, imaging quality, and methods of 

performing radiotherapy between institutions may 

lead to variations in the analysis. Segmentation 

accuracy may be susceptible to differences in the 

resolution and positioning of MRI sequences, 

especially for more complex methods. Resolving 

these would either necessitate the standardization 

of imaging protocols or supplementary integration 

of sophisticated image preprocessing methods to 

standardize the data.  

Additionally, the research focused exclusively on 

Otsu's and GMM segmentation methods, both of 

which are valuable but do not encompass all the 

segmentation algorithms currently available. More 

sophisticated techniques, like segmentation 

utilizing deep learning, could also enhance 

sensitivity to alterations in low-grade tumors. It's 

important to mention that these methods typically 

require more data for both training and validation, 

leading to the need for a larger dataset. 

Furthermore, the lack of ground truth annotations, 

such as human-segmented masks provided by 

clinical experts, complicates the direct evaluation of 

the performance of these methods. Utilizing this 

ground truth data in upcoming research will allow 

for more precise validation of the employed 

segmentation techniques.  

The shortcomings of current research emphasize 

the need for future studies to include larger and 

more varied datasets, consistency in imaging 

techniques, and investigate various segmentation 

methods to enhance both the predictive power and 

dependability of treatment outcome assessments in 

GBM.  

 

4. Conclusions 

 
In this study, we examined GBM tumor dynamics 

using pre- and post- radiotherapy MRI data with 

Otsu and GMM segmentation methods. Patients 

with low DSC and high IDS values predicted as 

significant tumor response to treatment, 

highlighting these metrics as indicators of 

therapeutic efficacy. Through validation by 

comparing the results of this study with actual 

RANO scores, it was determined that the Otsu 

method demonstrates superior accuracy in 

estimating complete and partial responses 

compared to the GMM method. However, both 

methods exhibit comparable performance in 

identifying stable disease and progression 

responses. Although promising, the study's small 

sample size highlights the necessity for additional 

research with larger data to confirm these findings. 

Developing such further researches could improve 
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predictive modeling and aid in creating more 

tailored treatment strategies for GBM.  
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