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Abstract:  
 

The rapid evolution of 5G networks necessitates efficient and adaptive resource 

allocation strategies to enhance network performance, minimize latency, and optimize 

bandwidth utilization. This study systematically evaluates multiple machine learning 

(ML) models, including Neural Networks, Support Vector Machines (SVM), Decision 

Trees, Ensemble Learning, and Regression-based approaches, to determine the most 

effective techniques for 5G resource allocation. The classification-based models 

demonstrated superior performance in predicting network congestion states, with 

Boosted Trees achieving the highest accuracy (94.1%), outperforming Bagged Trees 

(92.7%) and RUS Boosted Trees (93.8%). Among SVM classifiers, Gaussian SVM 

exhibited the highest accuracy (92.3%), highlighting its robustness in handling non-

linearly separable data. Levenberg-Marquardt-trained Neural Networks (93.4%) 

outperformed SVM models in overall accuracy, emphasizing deep learning’s 

effectiveness in hierarchical feature representation. Meanwhile, regression-based models, 

particularly Gradient Boosting (R² = 0.96, MSE = 4.92), demonstrated the best predictive 

performance for continuous resource allocation optimization, surpassing Random Forest 

(R² = 0.94, MSE = 6.85) and Polynomial Regression (R² = 0.92, MSE = 9.21). The 

integration of Self-Organizing Maps (SOMs) for unsupervised network clustering further 

improved resource segmentation. Future research should explore Deep Reinforcement 

Learning (DRL) for autonomous 5G optimization and Explainable AI (XAI) techniques 

for improved interpretability in real-world deployments. 

1. Introduction 
 

The advent of fifth generation (5G) networks has 

ushered in a new era of high-speed, low-latency, and 

ultra-reliable wireless communication. With an 

increasing number of devices connected to mobile 

networks, the demand for efficient resource 

allocation has become a critical research challenge. 

Traditional resource allocation strategies often fail to 

dynamically adapt to varying network conditions, 
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leading to suboptimal performance in terms of 

bandwidth utilization, signal efficiency, and quality 

of service (QoS) [1]. In this context, machine 

learning (ML) techniques have emerged as a 

promising solution to optimize resource allocation in 

5G networks. ML-driven approaches leverage 

predictive analytics to model network traffic 

patterns, optimize spectrum usage, and enhance 

network efficiency [2]. Among ML techniques, 

classification and regression models play a pivotal 

role in forecasting resource allocation trends, 

identifying bottlenecks, and improving overall 

network performance [3]. While existing research 

has explored individual ML models such as support 

vector machines (SVMs), decision trees, neural 

networks, and ensemble learning methods, there 

remains a lack of comprehensive comparative 

analysis that evaluates their relative effectiveness in 

real-world 5G scenarios [4]. Prior studies have 

predominantly focused on isolated algorithmic 

improvements rather than a holistic benchmarking 

approach that systematically compares multiple ML 

techniques based on standardized performance 

metrics such as accuracy, precision, recall, F1-score, 

mean squared error (MSE), and coefficient of 

determination (R²) [5]. Consequently, this study 

seeks to bridge this research gap by providing an in-

depth comparative evaluation of various 

classification and regression models applied to 5G 

resource allocation optimization. Traditional 

resource allocation techniques in wireless networks 

have long relied on rule-based and heuristic 

approaches to manage bandwidth, spectrum 

allocation, and network congestion. However, these 

methods are often rigid and fail to adapt dynamically 

to the highly variable and complex nature of 5G 

environments [6]. The increasing demand for low-

latency, high-reliability, and ultra-dense 

connectivity necessitates the development of 

intelligent, data-driven approaches capable of real-

time optimization of network resources [7]. Machine 

learning (ML) has emerged as a promising paradigm 

for optimizing resource allocation by leveraging 

data-driven predictions and adaptive decision-

making. However, a key challenge remains 

identifying the most effective ML model for this 

purpose. The literature presents a variety of ML 

techniques, including Neural Networks, Support 

Vector Machines (SVM), Decision Trees, 

Regression Models, and Ensemble Learning 

Methods, each demonstrating potential advantages 

in specific contexts [8]. The lack of a standardized 

comparative analysis hinders the ability to determine 

which ML model best optimizes resource allocation 

across different 5G network scenarios. To address 

this challenge, this study aims to systematically 

evaluate and compare multiple ML models based on 

their performance in real-world 5G resource 

allocation tasks. By assessing their effectiveness 

using key performance metrics such as accuracy, 

recall, precision, F1-score, mean squared error 

(MSE), and coefficient of determination (R²), this 

research seeks to establish a benchmark for selecting 

the optimal ML approach for 5G network 

optimization [9]. 

This study aims to evaluate and compare multiple 

machine learning models for optimizing resource 

allocation in 5G networks. The key objectives are as 

follows:  

 Conduct a comprehensive evaluation of

classification and regression-based ML models

on a real-world 5G dataset.

 Identify the best-performing algorithms for

resource allocation optimization based on key

performance metrics.

 Compare classification models (Neural

Networks, SVM, Decision Trees, Ensemble

Learning) with regression approaches (Linear

Regression, Random Forest, Gradient Boosting)

to assess their predictive efficiency.

 Benchmark model performance using MSE, R²,

Precision, Recall, F1-score, and other evaluation

metrics to determine the most effective technique

for dynamic 5G resource management.

This study provides the following key contributions: 

 Comprehensive performance analysis of Neural

Networks, Support Vector Machines (SVM),

Ensemble Learning, and Regression models for

5G resource allocation.

 Experimental validation using NS2 (Network

Simulator 2) and Classification Learner-based

analysis.

 Novel insights into the practical implementation

of ML-driven optimization strategies for

dynamic resource management in 5G networks.

The paper is organized into multiple sections, each 

addressing a critical aspect of machine learning-

driven 5G resource allocation optimization. The 

Introduction section provides the background, 

motivation, and objectives of the study, highlighting 

the importance of classification and regression 

models in optimizing 5G networks. The Literature 

Review explores prior research, emphasizing 

existing gaps in ML-based resource allocation, 

particularly the lack of a holistic benchmarking 

approach. The Methodology section details the 

dataset sources, preprocessing techniques, and 

machine learning models employed, including 

Neural Networks, SVMs, Decision Trees, and 

Ensemble Learning Methods, trained using NS2 

simulations. The Experimental Results section 

presents quantitative evaluations of regression and 
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classification models, with comparative analyses 

based on MSE, R², Accuracy, Precision, Recall, and 

F1-score. The Discussion interprets the findings, 

addresses limitations such as computational 

constraints and data imbalance, and highlights the 

practical implications of ML techniques for real-

time 5G network optimization. Finally, the 

Conclusion summarizes the key insights and 

suggests future research directions, including the 

integration of Reinforcement Learning, Explainable 

AI (XAI), and Federated Learning for scalable and 

adaptive 5G network management. 

2. Literature Review

Recent advancements in machine learning (ML) 

have significantly influenced resource allocation 

strategies in 5G networks, aiming to enhance 

network efficiency, spectral utilization, and quality 

of service (QoS). Various ML models, including 

regression techniques, decision trees, neural 

networks, support vector machines (SVMs), and 

ensemble methods, have been explored to optimize 

resource distribution in dynamic 5G environments 

[10,11]. Regression models have been employed for 

predictive resource allocation, utilizing historical 

network data to forecast bandwidth requirements, 

latency variations, and throughput optimization. 

However, their effectiveness in capturing non-linear 

dependencies in complex 5G scenarios is limited 

[12]. Decision tree-based models, such as random 

forests and gradient boosting, offer interpretability 

and adaptability in handling large-scale datasets. 

These models effectively classify network states and 

optimize power control, interference mitigation, and 

spectrum allocation [13]. Nonetheless, their reliance 

on predefined decision thresholds may restrict their 

generalization to diverse network scenarios [14]. 

Neural networks, particularly deep learning 

architectures, have emerged as robust alternatives 

for autonomous resource allocation in 5G. By 

leveraging architectures like multi-layer 

perceptron’s (MLPs), convolutional neural networks 

(CNNs), and recurrent neural networks (RNNs), 

these models can capture complex patterns in 

network traffic, user mobility, and service demands 

[15]. Despite their superior accuracy, neural 

networks require substantial computational 

resources and real-time optimization frameworks to 

ensure low-latency performance [16].Support vector 

machines (SVMs) have demonstrated significant 

potential in classification-based resource allocation, 

effectively distinguishing between different network 

conditions using kernel-based learning techniques 

[17]. Studies have highlighted their efficiency in 

network slicing, interference classification, and 

congestion control [18]. However, their scalability in 

large-scale 5G deployments remains an area of 

active research [19]. Ensemble learning methods, 

such as boosted decision trees, bagging techniques, 

and stacked models, have been explored to improve 

prediction accuracy and robustness in resource 

allocation tasks [20]. By integrating multiple ML 

models, ensemble approaches mitigate individual 

model weaknesses and enhance overall decision-

making reliability. Nevertheless, trade-offs between 

computational overhead and real-time adaptability 

continue to pose challenges for practical deployment 

[21]. While previous studies have investigated 

individual ML models for 5G resource optimization, 

a comprehensive comparative analysis of multiple 

ML techniques under real-world network conditions 

remains an open research problem. This study aims 

to address this gap by systematically evaluating and 

benchmarking ML-driven resource allocation 

strategies using NS2-based simulations and 

classification learner methodologies [22].  

2.1 Research Gaps & Challenges 

 Lack of holistic comparison: Existing studies

focus on individual ML models without a

comprehensive evaluation of their comparative

performance in 5G resource allocation [23].

 Limited real-time benchmarking: Most research

relies on simulated datasets, lacking empirical

validation using live network data for practical

applicability [24].

 Absence of integrated ML approaches:

Classification-based and regression-based

techniques are often studied separately, without a

unified framework for hybrid ML-based

optimization [25].

 Scalability and adaptability issues: Current ML

models struggle to adapt dynamically to varying

network conditions, impacting real-time

efficiency [26].

 Computational overhead concerns: While deep

learning models offer high accuracy, their

resource-intensive nature poses deployment

challenges in real-world 5G scenarios [27].

3. Methodology

The proposed ML-based 5G resource allocation 

model follows a structured approach comprising 

dataset collection, preprocessing, machine learning 

model selection, training, and performance 

evaluation. The dataset includes 5G network traffic 

data and classification learner data, undergoing 

preprocessing steps such as data augmentation and 

feature engineering to enhance predictive accuracy. 

Machine learning algorithms are categorized into 

regression models (Linear Regression, Polynomial 
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Regression, Decision Trees, Random Forest, SVM, 

and Gradient Boosting) and classification models 

(Neural Networks, Logistic Regression, SVM, and 

Ensemble Trees). The models are trained using a 70-

20-10 Train-Validation-Test split and k-fold cross-

validation, followed by performance evaluation 

using MSE, RMSE, R² for regression models, and 

accuracy, precision, recall, F1-score, and specificity 

for classification models. This framework ensures a 

comprehensive comparative analysis of ML 

techniques for optimizing 5G resource allocation, 

facilitating improved network efficiency, adaptive 

bandwidth management, and enhanced service 

quality in dynamic wireless environments. 

Figure 1. Block Diagram of proposed ML-based 5G 

resource allocation model 

The proposed ML-based 5G resource allocation 

model integrates data preprocessing, regression and 

classification models, training-validation strategies, 

and performance evaluation metrics to optimize 

network efficiency and adaptive resource 

management, as shown in Figure 1.  

3.1 Dataset Description Data Sources: 

5G Network Traffic Data: This dataset contains key 

performance indicators (KPIs) such as signal 

strength, latency, allocated bandwidth, throughput, 

and network congestion levels, sourced from real-

world telecommunication logs and experimental 

network simulations [28].  

Classification Learner Data: Extracted from an 

uploaded Excel file, used in the Classification 

Learner App, facilitating training and evaluation of 

multiple ML models [29]. To improve dataset 

quality and ensure robustness in ML predictions, the 

dataset undergoes two unique preprocessing 

techniques:  

3.2 Hybrid Adversarial Sampling (HAS) for 5G 

Data Augmentation:  

Traditional data augmentation techniques, such as 

SMOTE (Synthetic Minority Over-sampling 

Technique) and Generative Adversarial Networks 

(GANs), struggle to preserve the time-dependent 

variations in 5G network traffic data. To address 

this, we propose Hybrid Adversarial Sampling 

(HAS), a novel approach that integrates Fourier-

transform-based perturbation with adversarial 

sample optimization. This technique generates 

synthetic yet realistic network conditions, improving 

ML model robustness against real-world network 

congestion, signal interference, and bandwidth 

fluctuations. Methodology of HAS: The HAS 

technique consists of two key components  

Fourier Perturbation (FP) Augmentation 
To simulate realistic network fluctuations, we 

introduce Fourier domain augmentation, where the 

signal is transformed, perturbed, and reconstructed 

to create synthetic variations. Step 1: Convert 5G 

Signal into Frequency Domain The real 5G network 

signal 𝑋(𝑡) is transformed into the frequency domain 

using the Fourier Transform (FT): 

To simulate realistic network fluctuations, we 

introduce Fourier domain augmentation, where the 

signal is transformed, perturbed, and reconstructed 

to create synthetic variations. 

Step 1: Convert 5 G Signal into Frequency Domain 

The real 5G network signal 𝑋(𝑡) is transformed into 

the frequency domain using the Fourier Transform 

(FT): 

𝑋𝑓(𝜔) = ∑  

𝑇

𝑡=0

𝑋(𝑡)𝑒−𝑗𝜔𝑡

where: 

 𝑋(𝑡) is the original time-series signal

representing network parameters (e.g.,

signal strength, latency).

 𝑋𝑓(𝜔) is the signal in the frequency domain.

 𝜔 is the frequency component.

Step 2: Perturb Frequency Components to Simulate 

5G Network Variations 

In real-world 5G networks, fluctuations occur due to 

interference, congestion, and environmental factors. 

To simulate these effects, we introduce controlled 

perturbation: 

𝑋𝑓
′(𝜔) = 𝑋𝑓(𝜔) + 𝛼𝑃(𝜔)

where: 

 𝑋𝑓
′(𝜔) is the perturbed frequency-domain

representation.
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 𝑃(𝜔) is a random noise function derived

from empirical 5G traffic variations.

 𝛼 is a scaling factor that controls

perturbation intensity, ensuring realistic

alterations.

Step 3: Convert Back to Time Domain using Inverse 

Fourier Transform (IFT) 

The perturbed synthetic network traffic signal is 

reconstructed via Inverse Fourier Transform (IFT): 

𝑋′(𝑡) = ∑  

𝜔

𝑋𝑓
′(𝜔)𝑒𝑗𝜔𝑡

where 𝑋′(𝑡) represents augmented synthetic data

that preserves natural signal properties while 

simulating realistic network conditions. 

Adversarial Sample Optimization 

To ensure that the generated synthetic data does not 

diverge unrealistically, we apply adversarial training 

by constraining perturbations within realistic 5 G 

signal variations [30]. Step 1: Optimization of 

Adversarial Loss Function We define an adversarial 

loss function that ensures synthetic samples 

resemble real-world fluctuations while maximizing 

model generalization [31]: 

min
𝑋′

 ‖𝑋′ − 𝑋‖2 + 𝜆 ⋅ 𝐿𝑎𝑑𝑣(𝑋′)

where: 

 ‖𝑋′ − 𝑋‖2 ensures that synthetic samples

remain close to real data in feature space.

 𝐿adv 
(𝑋′) is the adversarial loss function,

which penalizes unrealistic perturbations.

 𝜆 is a hyperparameter controlling the

balance between data realism and diversity.

Step 2: Boundary-Constrained Adversarial Training 

To prevent unrealistic alterations, we define upper 

and lower perturbation bounds: 

𝑋min ≤ 𝑋′ ≤ 𝑋max

where: 

 𝑋min and 𝑋max represent realistic lower and

upper limits based on historical 5 G network

statistics.

 This constraint ensures that synthetic data

remains within feasible network

performance ranges.

3.3 Machine Learning Framework for 5G 

Resource Allocation:  

Regression and Classification Approaches To 

enhance 5G resource allocation, this study utilizes a 

combination of regression and classification-based 

machine learning (ML) approaches. These models 

facilitate both predictive analytics for resource 

estimation and classification-based decision-making 

for dynamic network state optimization. The 

proposed machine learning framework for 5G 

resource allocation integrates regression and 

classification models to enhance predictive analytics 

and decision making. Regression models, including 

Linear Regression, Polynomial Regression, 

Decision Trees, Random Forest, Support Vector 

Regression (SVR), and Gradient Boosting, predict 

continuous network parameters such as latency, 

bandwidth allocation, and signal strength variations. 

These models follow mathematical formulations, 

where Linear Regression models the network 

variable 𝑦 as a linear function of features x, while 

Polynomial Regression extends this by 

incorporating higher-degree terms to capture 

nonlinear dependencies.  

Decision Trees partition the feature space 

recursively, minimizing squared error, while 

Random Forests aggregate multiple decision trees to 

improve prediction robustness. SVR optimizes a loss 

function constrained by an ε-insensitive margin, 

making it effective for modelling fluctuating 5G 

signals, whereas Gradient Boosting iteratively 

refines weak learners by optimizing a loss function 

to minimize residual errors. Classification models, 

including Neural Networks, Support Vector 

Machines (SVM), Logistic Regression, and 

Ensemble Trees (Bagging & Boosting), are utilized 

to classify network conditions, congestion levels, 

and QoS metrics. Neural Networks use multi-layer 

perceptron’s optimized via Levenberg Marquardt 

and Bayesian Regularization for improved 

generalization, while SVMs maximize margin 

separation using kernel functions for high-

dimensional decision boundaries. Logistic 

Regression employs a sigmoid activation function to 

estimate class probabilities, and Ensemble Trees 

leverage bagging to reduce variance and boosting to 

enhance classification accuracy by focusing on 

misclassified points. This hybrid ML approach 

enables real-time adaptation, dynamic network 

optimization, and efficient resource allocation, 

ensuring improved reliability, scalability, and 

computational efficiency in 5G network 

management [32]. 

min
𝑤,𝑏

 
1

2
| ‖𝑤‖2 subject to |𝑦𝑖 − (𝑤𝑇𝑋𝑖 + 𝑏)| ≤ 𝜖

where 𝑤 represents the weight vector, and 𝑏 is the 

bias term. This formulation ensures that minor 

fluctuations in network parameters do not overly 

influence the predictive model, enhancing 

robustness in high-variability environments. 

Additionally, Gradient Boosting Regression 

iteratively refines weak learners by optimizing a loss 

function: 

𝐹𝑚(𝑋) = 𝐹𝑚−1(𝑋) + 𝛾ℎ𝑚(𝑋)
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where ℎ𝑚(𝑋) represents the weak learner at step 𝑚,

and 𝛾 controls the learning rate. This method 

incrementally reduces residual errors, making it 

particularly effective for adaptive bandwidth 

management and congestion forecasting. For 

classification-based decision-making, the ML 

framework incorporates Neural Networks, Support 

Vector Machines (SVM) [33], Logistic 

Regression[34], and Ensemble Trees (Bagging & 

Boosting) [35], which are essential for categorizing 

network conditions, congestion levels, and QoS 

metrics. Neural Networks, particularly those trained 

using Levenberg-Marquardt and Bayesian 

Regularization, optimize a nonlinear function[36]: 

𝑦 = 𝜎(𝑊2𝜎(𝑊1𝑋 + 𝑏1) + 𝑏2)

where 𝑊1, 𝑊2 are weight matrices, 𝑏1, 𝑏2 are bias

terms, and 𝜎(𝑥) is the activation function (ReLU or 

sigmoid). The Levenberg-Marquardt optimization 

accelerates convergence by combining gradient 

descent and Gauss-Newton updates, while Bayesian 

Regularization introduces probabilistic priors to 

prevent overfitting [37]: 

𝐸 = ∑  

𝑛

𝑖=1

(𝑦𝑖 − 𝑦̂𝑖)2 + 𝜆‖𝑤‖2

where 𝜆 controls the regularization strength. Support 

Vector Machines (SVMs) for classification find the 

optimal hyperplane that maximizes the decision 

margin: 

max
𝑤,𝑏

 
1

‖𝑤‖
subject to 𝑦𝑖(𝑤𝑇𝑋𝑖 + 𝑏) ≥ 1

where 𝑤 and 𝑏 define the decision boundary. Kernel-

based SVMs, particularly Radial Basis Function 

(RBF) kernels[38,39], are employed to project non-

linearly separable network conditions into a higher 

dimensional space, enabling better classification of 

congested vs. non-congested network states[40]. 

Furthermore, Logistic Regression is implemented 

for binary classification tasks, employing the 

sigmoid function to estimate probability 

distributions: 

𝑃(𝑦 = 1 ∣ 𝑋) =
1

1 + 𝑒−(𝛽0+𝛽𝑋)

where 𝛽 represents model coefficients. Logistic 

regression is particularly useful in predicting 

network failures or service degradations based on 

historical QoS data. 

To further enhance classification accuracy, 

Ensemble Trees are utilized, incorporating both 

bagging and boosting approaches. Bagged decision 

trees reduce variance by training multiple classifiers 

on bootstrapped samples: 

𝑦̂ =
1

𝐵
∑  

𝐵

𝑏=1

𝑓𝑏(𝑋)

where 𝑓𝑏(𝑋) represents the decision tree trained on

the 𝑏-th sample. Conversely, Boosted Trees, such as 

AdaBoost or Gradient Boosting Classifiers, 

iteratively refine weak classifiers by reweighing 

misclassified samples, improving overall predictive 

accuracy. This hybrid ML approach ensures real-

time adaptability, dynamic network optimization, 

and efficient resource allocation, making it a 

scalable and computationally efficient solution for 

next generation 5G networks[41]. By leveraging 

both regression and classification models, this 

framework enables precise bandwidth forecasting, 

congestion prediction, and intelligent decision-

making[42], ultimately improving network 

reliability, quality of service (QoS) [43], and 

scalability in 5 G communications[44]. 

3.4 Model Training & Evaluation Strategy 

To ensure the generalization, robustness, and 

predictive accuracy of the machine learning models 

for 5G resource allocation, a rigorous training and 

evaluation framework is employed[45,46]. This 

framework includes structured dataset partitioning, 

cross-validation techniques, and standardized 

performance metrics for both regression and 

classification models. 

Training and Validation Methodology 

To prevent overfitting and improve model reliability, 

the dataset is partitioned using a stratified split 

strategy: 

 Train-Validation-Test Split (70 − 20 − 10) :

The dataset is divided into:

 70% for training, ensuring the model learns

meaningful patterns.

 20% for validation, tuning hyperparameters and

preventing overfitting.

 10% for testing, evaluating final model

performance on unseen data.

Mathematically, if 𝐷 represents the dataset and 

𝐷tratin . 𝐷val , 𝐷test  are training, validation, and test

sets, respectively[47]: 
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𝐷 = 𝐷train ∪ 𝐷val ∪ 𝐷teat

|𝐷train | = 0.7|𝐷|, |𝐷val | = 0.2|𝐷|, |𝐷test | = 0.1|𝐷|

where |𝐷| denotes the total number of samples. 

 K-Fold Cross-Validation: To enhance 

model stability, 𝐤-fold cross-validation is 

implemented, where the dataset is split into 𝑘 equal-

sized folds, with 𝑘 − 1 folds used for training and 

one-fold for validation in each iteration. The process 

is repeated 𝑘 times, ensuring each sample is used for 

both training and validation[48]. For a dataset 𝐷, let 

𝐷𝑘 be the fold subset: 𝐷 = ⋃  𝑘
𝑖=1 𝐷𝑖. The final model

performance is computed as the average score across 

all 𝑘 iterations:  

 Score =
1

𝑘
∑  

𝑘

𝑖=1

Performance (𝐷𝑖)

where Performance (𝐷𝑖) is the evaluation metric for

the model trained on 𝑘 − 1 folds and validated on 𝐷𝑖.

Regression Model Evaluation 
Regression models predict continuous network 

parameters, such as latency, bandwidth allocation, 

and signal strength fluctuations. The following 

metrics are used:[49] Mean Squared Error (MSE): 

Measures the average squared difference between 

predicted ( 𝑦̂ ) and actual ( 𝑦 ) values: 

𝑀𝑆𝐸 =
1

𝑛
∑  

𝑛

𝑖=1

(𝑦𝑖 − 𝑦̂𝑖)2

where lower MSE indicates better model accuracy. 

Root Mean Squared Error (RMSE): Provides an 

interpretable error measure by taking the square root 

of MSE: 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 = √
1

𝑛
∑  

𝑛

𝑖=1

  (𝑦𝑖 − 𝑦̂𝑖)2

Coefficient of Determination (𝑅2) : Measures the

proportion of variance explained by the model: 

𝑅2 = 1 −
∑  (𝑦𝑖 − 𝑦̂𝑖)2

∑  (𝑦𝑖 − 𝑦‾)2

where 𝑦‾ is the mean of actual values. Higher 𝑅2

values (closer to 1 ) indicate better model 

performance. 

Classification Model Evaluation 

Classification models predict categorical network 

conditions, such as network congestion levels and 

QoS states. The following metrics are employed: 

Accuracy: Measures overall correctness of 

predictions: 

 Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

where: 

 𝑇𝑃 = True Positives

 𝑇𝑁 = True Negatives

 𝐹𝑃 = False Positives

 𝐹𝑁 = False Negatives

Precision: Measures of how many of the predicted 

positive cases were correctly classified: 

 Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Recall (Sensitivity): Measures the proportion of 

actual positives correctly identified: 

 Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

F1-Score: A harmonic mean of precision and recall, 

balancing both metrics: 

𝐹1 = 2 ×
 Precision ×  Recall 

 Precision +  Recall 

Specificity: Measures the proportion of actual 

negatives correctly identified: 

 Specificity =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

These metrics provide a comprehensive evaluation 

of the model's ability to classify network conditions 

accurately and reliably. 

4. Experimental Results

4.1 Regression-Based Resource Allocation 

Performance Using NS2 Simulations 

To evaluate the effectiveness of regression-based 

machine learning models for 5G resource allocation, 

a quantitative analysis was conducted using Network 

Simulator 2 (NS2) simulations. The dataset was 

generated by simulating 5G network traffic 

conditions, including bandwidth allocation, latency 

variations, and network congestion levels. The 

regression models were assessed based on their  
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Figure 2. Comparative Analysis of Linear and Polynomial Regression 

prediction accuracy, error minimization, and 

generalization capabilities using statistical 

performance metrics. A performance comparison 

between Linear Regression and Polynomial 

Regression was conducted to determine the extent to 

which each  model fits complex non-linear 5G 

network variations as shown in figure 2. The Mean 

Squared Error (MSE) and 𝑅2 values were used to

quantify accuracy. Figure 2 depicts the correlation 

between predicted and actual values, illustrating the 

enhanced predictive accuracy of Polynomial 

Regression over Linear Regression. 

Linear Regression Performance: 

 R2 = 0.85, indicating moderate predictive

capability but limited adaptability to non-

linearity.

 MSE = 18.46, suggesting the presence of high

variance in predictions for fluctuating network

conditions.

Polynomial Regression Performance (Degree = 3 ): 

 𝑅2 = 0.92, demonstrating improved fit for

nonlinear resource allocation trends.

 MSE = 9.21, showing a significant reduction in

prediction error compared to linear regression. 

B . Decision Trees, Random Forest, and Gradient 

Boosting - 𝐑2 Performance Comparison

To evaluate tree-based learning models, we 

compared the performance of Decision Trees, 

Random Forest, and Gradient Boosting based on 

their ability to capture complex dependencies and 

generalize across varying network conditions 

simulated in NS2[50]. Table 1 is performance 

comparison of regression models for 5G resource 

allocation. Table 2 shows comparative performance 

metrics of regression models for 5G resource 

allocation. 

Table 1. Performance Comparison of Regression Models 

for 5G Resource Allocation 
Model 𝐑𝟐 Score MSE RMSE 

Decision Tree 0.88 11.62 3.41 

Random Forest 0.94 6.85 2.61 

Gradient Boosting 0.96 4.92 2.22 

 Decision Trees achieved R2 = 0.88, indicating

strong predictive capability but prone to

overfitting in dynamic traffic conditions.

 Random Forest improved generalization (R2 =
0.94) by reducing overfitting through ensemble

learning.

 Gradient Boosting outperformed all models with

R2 = 0.96, highlighting its ability to minimize

error and optimize resource allocation decisions

under simulated network conditions.

Figure 3. Performance Comparison of Decision Tree, 

Random Forest, and Gradient Boosting Models 

Figure 3 illustrates the difference in prediction 

accuracy among Decision Trees, Random Forest, 

and Gradient Boosting. 
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Figure 4. Error Histogram: Distribution of Prediction 

Errors Across Models 

Figure 4 shows the distribution of prediction errors, 

with Gradient Boosting exhibiting the lowest 

deviation from actual values. 

Performance Evaluation Using Regression 

Metrics in NS2 Simulated Environment  

A detailed quantitative performance assessment was 

conducted using standard error metrics to evaluate 

how well each regression model predicts optimal 

resource allocation in NS2-generated dynamic 5G 

environments. The following metrics were used: 

1. Mean Squared Error (MSE): Measures average

squared prediction error (lower is better). 

2. Root Mean Squared Error (RMSE): Provides an

interpretable error measure. 

3. Coefficient of Determination (R²): Measures the

proportion of variance explained by the model. 

Table 2. Comparative Performance Metrics of 

Regression Models for 5G Resource Allocation 
Metric Linear 

Regression 

Polynomial 

Regression 

Random 

Forest 

Gradient 

Boosting 

MSE 18.46 9.21 6.85 4.92 

RMSE 4.29 3.04 2.61 2.22 

R 2

Score 

0.85 0.92 0.94 0.96 

 Gradient Boosting achieved the lowest MSE

(4.92) and highest R2(0.96), making it the

most accurate model in NS2-generated

simulations.

 Polynomial Regression significantly 

outperformed Linear Regression, 

demonstrating better adaptability to

complex 5G traffic patterns.

 Random Forest maintained a balance

between model complexity and

generalization, reducing overfitting while

ensuring high predictive accuracy.

Figure 5 illustrates how error reduction progresses 

across training epochs for different models. 

Figure 5. Error Reduction Across Training Epochs 

 Figure 6 shows how well the predicted function 

matches actual network resource allocation data. 

Figure 6. Model fit Comparison 

The quantitative evaluation using NS2-simulated 5G 

network conditions confirms that Gradient Boosting 

outperforms all other models, achieving the highest 

prediction accuracy and lowest error rates. 

Polynomial Regression provides significant 

improvements over Linear Regression, while 

Random Forest demonstrates a strong balance 

between bias and variance. These findings suggest 

that ensemble-based learning models, particularly 

Gradient Boosting[51,52], are most effective for 

optimizing 5G resource allocation under dynamic 

traffic scenarios simulated in NS2.  

4.2 Classification-Based ML Performance on 5G 

Data Using NS2 Simulations  

To evaluate the classification efficiency of different 

machine learning models in 5G resource allocation, 

we analyze performance across multiple algorithms, 

including Neural Networks, Support Vector 

Machines (SVMs), and Ensemble Learning Models. 

The performance metrics considered include 

Accuracy, Precision, Recall, and F1-Score, derived 

from NS2-simulated 5G network traffic. 
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A. Neural Network Performance Analysis : Training 

Performance (Levenberg-Marquardt vs. Bayesian 

Regularization) 

Two neural network training methods were 

evaluated: 

 Levenberg-Marquardt (LM) 

Backpropagation

 Bayesian Regularization (BR) 

Backpropagation

Table 3. Performance Comparison of Neural Network 

Models for 5G Resource Allocation 
Neural 

Network 

Model 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

Levenberg-

Marquardt 

93.4 91.2 92.1 91.6 

Bayesian 

Regularization 

92.8 90.8 91.5 91.1 

 Levenberg-Marquardt achieved the highest

accuracy (93.4%), outperforming Bayesian

Regularization.

 Bayesian Regularization exhibited slightly

better generalization, as indicated by its

stable recall (91.5%).

B. Clustering Performance (from Results

Analysis)

Using Self-Organizing Maps (SOMs) and 

hierarchical clustering, cluster formations were 

analyzed to segment 5G network conditions based 

on QoS metrics (latency, bandwidth utilization, and 

congestion levels). 

 SOM clustering revealed distinct network

state patterns, enabling adaptive resource

allocation.

 Validation checks confirmed effective

clustering with minimal misclassification.

Figure 7. Clustering boundary mapped using SOMs. 

Figure 8. Training State Plot Illustrates the convergence 

behavior of different neural networks 

4.3 Support Vector Machines (SVM) 

Performance Analysis 

Kernel-Based SVM Performance Comparison 

To analyze the impact of different kernels on 

classification accuracy, four kernel types were 

evaluated: 

Table 4. Kernel-Based SVM Performance Comparison 

SVM 

Kernel 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

Linear 

SVM 

88.5 87.5 86.9 87.2 

Quadratic 

SVM 

90.2 89.8 89.1 89.4 

Cubic 

SVM 

91.5 90.6 90.2 90.4 

Gaussian 

SVM 

92.3 91.1 90.8 91.0 

 Gaussian SVM achieved the highest

accuracy (92.3%), demonstrating its

strength in handling non-linearly separable

data.

 Cubic SVM outperformed Quadratic and

Linear kernels, confirming that higher-

degree transformations enhance feature

separability.

Table 3 shows performance comparison of neural 

Network Models for 5G Resource Allocation and 
table 4 is kernel-based SVM performance 

comparison. 

Comparison of SVM with Neural Networks 

 Neural Networks (Levenberg-Marquardt)

outperformed SVMs in overall accuracy

(93.4% vs. 92.3%).
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 SVMs required more computational time

due to kernel transformations, whereas

Neural Networks learned hierarchical

representations more efficiently.

Figure 9. Support Vector Machine Decision Boundary 

Figure 10. Compares classification misclassifications 

across models 

Figure 7 shows clustering boundary mapped using 

SOMs and figure 8 shows training state plot 

illustrates the convergence behavior of different 

neural networks. Figure 10 compares classification 

misclassifications across models. The performance 

analysis of Support Vector Machines 

(SVMs)[53,54] with different kernel functions 

highlights that Gaussian SVM achieved the highest 

accuracy (92.3%), confirming its ability to handle 

non-linearly separable data effectively. Among 

polynomial kernels, Cubic SVM (91.5%) 

outperformed Quadratic (90.2%) and Linear 

(88.5%), indicating that higher-degree 

transformations enhance feature separability. While 

SVMs performed well, Neural Networks[55,56] 

(Levenberg-Marquardt) achieved slightly higher 

accuracy (93.4%), suggesting that deep learning 

models can learn hierarchical representations more 

efficiently. However, SVMs required more 

computational resources due to kernel 

transformations, making Neural Networks a 

preferable choice for real-time 5G resource 

classification[57]. The decision boundary 

visualization (Figure 9) illustrates how different 

kernels classify network states, while the error 

histogram (Figure 10) compares classification 

misclassification rates[58], further validating the 

superior generalization ability of ensemble-based 

learning models [59]. Figure 11 shows performance 

comparison of the ensemble model. 

4.4. Ensemble Learning Models Performance 

Analysis 

Performance Comparison of Boosted Trees, 

Bagged Trees, and RUS Boosted Trees 

To enhance classification robustness and 

generalization, three ensemble learning models-

Boosted Trees, Bagged Trees, and RUS Boosted 

Trees - were evaluated based on their predictive 

accuracy and error minimization 

capabilities[60,61,62]. The classification 

performance was assessed using Accuracy, 

Precision, Recall, and F1-Score as evaluation 

metrics as shown in table 5. 

Table 5. Performance Analysis of the Ensemble Model 
Ensemble 

Model 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

Boosted 

Trees 
𝟗𝟒. 𝟏 𝟗𝟑. 𝟓 𝟗𝟒. 𝟐 𝟗𝟑. 𝟖 

Bagged 

Trees 

92.7 91.9 92.2 92.0 

RUS 

Boosted 

Trees 

93.8 92.4 93.1 92.7 

 Boosted Trees achieved the highest accuracy

(94.1%), outperforming both Bagged Trees and

RUS Boosted Trees, demonstrating strong

generalization capabilities.

 Bagged Trees performed well (92.7%) but

exhibited slightly lower accuracy due to reduced

variance control, leading to suboptimal feature

selection.

 RUS Boosted Trees ( 𝟗𝟑. 𝟖% ) effectively

handled imbalanced class distributions,

improving recall performance while maintaining

competitive accuracy[63].

4.5 Feature Importance and Decision Boundary 

Analysis  

To further analyze model decision-making, feature 

importance rankings were extracted to determine 

which 5G network parameters contributed most to 

classification performance. 
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Figure 11. Performance Comparison of the Ensemble 

model 

Figure 12. Feature Importance in 5G Classfiication 

Feature Importance Analysis: Latency and 

bandwidth utilization were identified as the most 

significant predictors influencing classification 

outcomes. And Secondary features, such as packet 

loss rate and congestion levels, also contributed but 

with lower weights as shown in figure 12.  

Decision Boundary Evaluation: Boosted Trees 

effectively captured complex decision boundaries, 

reducing false positives by optimizing the trade-off 

between bias and variance. The model demonstrated 

high adaptability to non-linearly separable 5G 

network conditions, leading to better predictive 

stability compared to Bagged Trees. 

5. Discussion

5.1 Interpretation of Findings 

The experimental results provide a comparative 

assessment of various machine learning models for 

real-time 5G network optimization. Among the 

evaluated models, ensemble-based classifiers 

(Boosted Trees, Random Forest) and deep learning 

architectures (Neural Networks - Levenberg-

Marquardt) exhibited superior performance in 

handling dynamic and non-linear network 

conditions, ensuring efficient resource allocation 

and congestion management. In contrast, Support 

Vector Machines (SVMs) with Gaussian kernels 

demonstrated robust classification capabilities but 

incurred higher computational costs. The 

comparative analysis of regression and classification 

approaches highlighted that classification models 

outperform regression techniques in predicting 

network congestion states, while regression-based 

models (Gradient Boosting, Polynomial Regression) 

effectively model continuous network parameters 

such as latency and bandwidth allocation trends[64]. 

5.2 Limitations & Challenges 

Despite the promising performance of ML-driven 

5G network optimization, certain limitations persist. 

Scalability constraints in computational 

performance remain a challenge, particularly for 

deep learning models, which require high 

computational resources for real-time inference. 

Additionally, dataset constraints impact model 

generalization, as imbalanced traffic distributions in 

training data can lead to biased predictions, reducing 

model adaptability to unseen network conditions. 

Addressing these challenges requires improved data 

augmentation techniques, transfer learning 

methodologies, and optimization of ML 

architectures for real-time deployment in large-scale 

5G networks.  

5.3 Practical Implications 

The findings of this study highlight the practical 

feasibility of ML-based approaches in optimizing 

real-world 5G networks. The deployment of Boosted 

Trees and Neural Networks in adaptive resource 

management systems can significantly enhance 

Quality of Service (QoS) metrics, minimizing 

latency and congestion fluctuations. Furthermore, 

SOM-based clustering techniques can assist in 

dynamic spectrum allocation, enabling autonomous 

network adaptation to traffic variations. Future 

research should focus on integrating hybrid AI-

driven frameworks, incorporating reinforcement 

learning and federated learning paradigms to ensure 

scalable, efficient, and secure 5G network 

management  

6. Conclusion

This study conducted a comprehensive evaluation of 

machine learning models for 5G resource allocation 

and network optimization, identifying Boosted 

Trees, Neural Networks (Levenberg-Marquardt), 

and Gaussian SVM as the top performing 

classification models due to their high accuracy, 

adaptability, and ability to handle dynamic traffic 
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variations. Regression-based approaches, 

particularly Gradient Boosting and Polynomial 

Regression, demonstrated strong predictive 

capabilities in forecasting bandwidth fluctuations 

and latency trends. The results emphasize the 

synergistic potential of combining classification and 

regression techniques, enabling enhanced predictive 

modeling for real-time 5G optimization. The 

integration of Self-Organizing Maps (SOMs) for 

clustering-based resource segmentation further 

reinforces the importance of hybrid learning 

strategies in improving network efficiency and 

adaptive resource management. Future research 

should focus on developing hybrid ML architectures 

that integrate Deep Learning with Reinforcement 

Learning, enabling autonomous, self-optimizing 5G 

networks. The incorporation of Explainable AI 

(XAI) techniques is also critical for enhancing model 

interpretability, ensuring transparent and 

accountable decision-making in AI-driven 5G 

infrastructure. Additionally, federated learning 

approaches should be explored to enable distributed, 

privacy-preserving network intelligence, facilitating 

scalable and adaptive 5G deployments. As 6G 

networks emerge, further advancements in AI-

driven spectrum allocation, energy-efficient 

resource optimization, and security-aware ML 

frameworks will be essential to ensure seamless, 

intelligent, and future ready wireless communication 

systems. 
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