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Abstract:  
 

Crop burning is an age-old issue that is practiced by farmers mostly for clearing the 

fields. This practice causes environmental pollution ranging from reducing soil fertility 

to human health. This study utilized multi-geospatial processing platforms: Google 

Earth Engine (GEE) and Fire Information for Resource Management System (FIRMS) 

to derive Normalized burn ratio (NBR), and pre/post-fire ΔNBR for 2015 and 2023 to 

identify burnt fields and changes in burning practices. Further, the study relied upon on-

field data to assess soil properties pre/post-fire date of 2023 in selected fields within 

Babil governorate. Overall, the study found that the leveraging of cloud-based 

geospatial platforms performed well in detecting burnt fields with a noticeable decrease 

in fire hotspots of 2023 when compared to 2015. The results of pre/post burning 

analysis soil samples showed that soil nutrients are declined. Among the measured soil 

properties, Nitrogen and soil organic matter are highly declined in average of 30% for 

nitrogen and 45% for O.M. While the average of decreasing in CEC and CaCO3 ranged 

from 5 to 15%. A slightly increased are observed for pH, salinity, Ca, Na, Mg, and 

Potassium.  Open wheat field burning depletes soil organic matters and nutrients 

contents and away all the essential that make the topsoil healthy. The fire severity 

classification results indicated a dominant of low severity class over all selected Wheat-

cultivated fields with value ranged from 22 to 86% of the burned area. A low 

correspondence was observed for low to moderate severity class with accuracy of 

47.58%, suggesting high misidentification of these classes. Moreover, the study 

findings confirmed the effectiveness of utilizing multi- processing platforms approaches 

to overcome the misidentification of residue burnt fields. 

 

1. Introduction 
 

Burning of agricultural residues is a serious 

problem in modern agricultural practices. It is often 

considered necessary in the crop management 

process due to a lack of time between harvest and 

sowing of the new crop [1].  As crop residue 

constitutes a significant part of soil organic carbon, 

recycling crop residue is beneficial for improving 

soil health and provides a route to conserve natural 

resources [2]. Crop residues management requires 

significant labour and equipment costs, crop 

residues burning is such a common, effective, time 

saving and inexpensive way, Although, an effective 

residues management has the key role to put a large 

quantity of burned crop residues in alternative 

sustainable use [3,4]. Almost of Iraqi farmers tend 

to burn residues across their fields to simplify the 

preparation practices for the next cultivation. This 

practice encompasses a long-term risky impact on 

the soil depending on its type. Soil health is closely 

related to sustainable agricultural crop productivity. 

Destruction of crop residues causes a decrease in 

soil organic carbon, soil degradation, biological 

degradation, fertility loss, and leads to the release 

of greenhouse gases. However, many studies 

referred to decrease in soil nutrients, inducing soil 

erosion, decimate soil microbes, destroy soil 
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http://www.ijcesen.com
mailto:iskenderakkurt@sdu.edu.tr
mailto:%20anmarjhayl@mu.edu.iq%20@


Suhad M. Al-Hedny, Qassim A. Talib Al-Shujairy, Anmar Hamoudi Kadhim / IJCESEN 11-2(2025)2505-2514 

 

2506 

 

organic matter, and degrade water holding capacity 

as main impacts of burning [5-8]. Agarwal et. al. 

observed a significant increase in soil pH leading to 

alkalinity as the organic matter and levels of 

nitrogen (N) and carbon (C) in the top layer of the 

soil profile (0-15 cm) are decreased [9]. However, 

despite the benefits of burning crop residues in 

controlling diseases and pests, the resulting heat 

elevates soil temperatures to over 40 degrees 

Celsius [10]. This elevated soil temperature is 

detrimental, causing the death of approximately 

50% of beneficial soil organisms critical for 

maintaining soil fertility [11].   Air pollution is the 

other risky impact of the open agricultural residues 

burning, as such practice releases a large amount of 

smoke in a short amount of time hence ends in 

long-term effects on the human health. Biomass 

burning affects in climate through releasing 

greenhouse gases and other pollutants that 

contribute to the climate change in the longer term 

[12,13].  In Iraq, mostly in Babil governorate, such 

agricultural practice is a widespread implemented 

and poorly documented. This gap emphasizes the 

necessitate for a broad spatiotemporal study.  

Remotely sensed imagery studies take advantage of 

the fact that spectral response is one of the most 

reliable methods to estimate the burned areas of 

interest. The advance in this technology and data 

processing platforms offer a helpful tool to 

environmental monitoring. Google Earth Engine 

(GEE) and NASA's Fire Information for Resources 

Management System (FIRMS) represent a promise 

tool to depict and mapping crops residue burning 

and assessing burn severity with high efficiency 

and accuracy. In recent years, several fire indices 

have gained substantial attention for mapping 

burned areas [14-16].  

Cloud-based platforms provide valuable method to 

determine changes in burning density around area 

of interest under period of study. According to 

Mathur and Srivastava [17], the burning density 

events / Km2 area/ year in 2009 was much larger 

than burning events in 2001. They detected 

significant increasing in soil pH and the electrical 

conductivity (EC) with decreasing in soil 

permeability, content of nitrogen, and shifting in 

microorganisms' population. Generally, fertility is 

an aspect that many scientists are deeply involved 

in. However, for soil fertility assessment in some 

areas, particularly in the study regions where post-

harvest burning is widely used to clear the field 

from debris, there are very few studies. Up until 

now, there has also been a lack of studies carried 

out to assess the change in soil fertility after crop 

residue burning activities. Many scientists 

emphasize the reduction in crop yield, air pollution, 

and airflow, but concerns regarding soil fertility are 

not well mentioned. Besides this, nowadays the 

world is facing the problem of food scarcity, and 

land is not enough to feed the billions of the rising 

population, mainly in low-income socio-economic 

conditions. 

In Iraq, the burned areas were not detected, nor 

have they been identified. With intellectual 

curiosity and concern for managing soil health, this 

paper was an attempt to assess the influence of crop 

burning on soil properties. Furthermore, this study 

assumes that a multi- platforms combining 

approach can provide dependable data on duration 

and extending of burning occurrence, considering 

the country-specific needing for a proper crop 

residue management to reduce the environmental 

footprint from agricultural sector. The primary 

objective of this study is to: 

 

-  Evaluate soil fertility pre/post burning practices. 

- Describe patterns, duration and frequency of crop 

residue burning in Babil governorate.  

- Evaluating the effectiveness of rapid processing 

data platforms (GEE and FIRMS) in estimating the 

fire severity and extent and overcoming the 

limitations of lacking data for such studies.  

 

2. Materials And Methods 
 

2.1 Study Area  

 

In Iraq, Babil classified as the most prominent 

cultivated governorate with 512 thousand hectares 

divided into four administrative districts: Al-Hilla, 

Al-Mahaweel, Al-Musayyib and Al-Hasmiyah. The 

governorate famous in cultivation of rice, maize, 

barely, wheat, cotton, and sesame, as well as 

various vegetables. A large amount of these crops' 

residues are burned annually across farms [18]. The 

governorate exhibits a flat topography and 

characterized by low annual rainfall ranging from 

50 to 200 mm and high temperatures that can raise 

to 50 degrees Celsius in summer.  

 

2.2- Field Data 

 

Field data were collected from two district across 

Babil governorate include: Al-Kifil, and Al-

Hashmiyah in 2023 to validate burned spatial extent 

outputs.  To ensure a representative coverage, the 

pre-burning visits during 15th April to 15th May, 

and post-burning visits during June 2023 was 

planned to select the ground fields based on their a 

widespread prevalence with residues burning 

practices. A total of 100 soil samples were selected 

from each of randomly distributed fields in each 

district. The burned (post burning) and un-burned 

(pre-burning) soil in this system were analyzed in 
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terms of fertility (available nitrogen, phosphorus, 

and potassium). We examined CEC, pH, salinity, 

CaCO3, Na, Ca, Mg and soil organic matter along 

with document the pre, post- fire observations. 

Sample points coordinates and visual observed 

indicators were recorded to document burn severity 

characteristics.  

 

2.3 Remote-Based Data Sources and Platforms  

 

This study is based on the utilization of cloudy-

based processing platforms, where Google Earth 

Engine (GEE) was used to facilitate deriving large-

scale indices like NDVI and NBR. The free 

accessible data sources like Sentinel-2 and MODIS 

were accessed through GEE and utilized for Land 

cover classification and burned area mapping. This 

study chooses two timeframes, where 2015 was 

selected to stand for a baseline for depicting burned 

areas before recent adopted residues management. 

while 2023 was selected to reflect the current 

residues managing if any.  The comparative study 

period (2015-2023) was selected to identify the 

changes and tendency of residues management and 

the shortcoming in agricultural residues overseeing 

in Babil governorate.  

Fire Information for Resource Management System 

(FIRMS) was used to detect burned areas. NASA's 

FIRMS is an essential platform for fire monitoring 

that operational since 2006, facilitating near real 

time fire detection utilizing data from MODIS and 

VIIRS satellites. Moderate Resolution Imaging 

Spectrometer (MODIS) is the mostly product used 

by the scientific community, with information in 36 

spectral bands from visible to thermal infrared 

region of spectrum.  MODIS sensor on board 

NASA's Terra and Aqua satellites provides senses 

in near - daily temporal resolution and moderate 

spatial resolution at 250, 500, and 1000 m at global 

scales [19].  

 

2.4 Fire Detection Techniques 

 

Normalized Difference Vegetation Index 

The Normalized Difference Vegetation Index 

(NDVI) is an extensively utilized remote sensing 

index to measure vegetation density, growth rate, 

and stress level.  

This index analyses the reflectance of vegetation in 

the near-infrared and red parts of the spectrum. 

Healthy vegetation reflects a large amount of NIR 

and absorb most of red part of visible spectrum. In 

general, NDVI is calculated by using this equation 

[20]. 

VI =  
(NIR − RED)

(NIR + RED)
                     (1) 

The calculated values usually range between -1 and 

+1, whereas water, built-up areas, and soil range 

from -1 to 0, and dense vegetation has values of 0.5 

to +1. NDVI was computed in GEE by processing 

Sentinel-2 level - 1C imagery for April to June 

across 2015 and 2023. NDVI pixel-by-pixel 

comparison values were performed for 2015 and 

2023 to identify areas with loss or burned 

vegetation, which typically have significant 

decreasing in NDVI values.  

 

 Normalized Burn Ratio. 

The Normalized burn ratio (NBR) represents the 

most used index in fire monitoring due to its 

sensitivity to distinguishing between burned and 

unburned areas. NBR was derived from near-

infrared (NIR) and shortwave infrared (SWIR) 

bands of satellite imagery. The methodology for 

calculating the Normalized Burn Ratio was applied 

according to Miller & Yool [21] with the following 

formula. 

NBR =  
(NIR − SWIR)

(NIR + SWIR)
                     (2) 

Where NIR is the reflectance value in the near-

infrared band, SWIR is the reflectance value in the 

shortwave infrared band.  The normalization 

process involves scaling the NBR values to a 

specific range, often -1 to 1. To map fire extended 

and severity, ΔNBR was derived to categorize burn 

severity into high, moderate and low severity. This 

calculation based on the capturing the differences 

between pre- and post-fire according to the 

following formula:  

ΔNBR = NBR postfire - NBR prefire                                  (3) 

NBR postfire and NBR prefire are the difference in 

NBR values between two different time periods. 

Applying ΔNBR values was used to classify areas 

into different categories, such as burned, 

recovering, or unchanged. This threshold is a 

valuable way to identify areas that have undergone 

significant changes in two different times of period 

and assess the fire severity [22],. NBRs were 

composited from April to June of 2023. This period 

was selected to encompass the winter crop harvest 

and the associated burning of residues in the study 

region. 

 

Fire Hotspot Detection. 

Fire spatial distribution and intensity change was 

detected in baseline year 2015 to recent 2023. The 

active fire data from Fire Information for Resource 

Management System (FIRMS) were analyzed to 

map burned areas in hotspots with different 

confidence levels. The freely downloaded from 

NASA/LANCE/FIRMS data provides real time 
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MODIS active fire locations as web fire Mapper, 

email alert, shape files, and MODIS subset formats. 

According to the quality of identification, the 

algorithm classifies all fire pixels into low, 

nominal, or high confidence. This study adopted 

only nominal to high-confidence with values 

ranged between 70-100%   within the study region.  

 

2.4 Land cover classification  

 

Remotely sensed data from Sentinel-2, level -1C 

from the Copernicus Programme that developed by 

European sensed data were used to classify the 

study area land cover into four categories: 

vegetation, bare land, built-up area, and water. The 

scenes of interest cover the study area during April 

of 2015 and 2023, were downloaded from 

Copernicus Open Access Hub. All collected images 

were pre-processed to reduce the atmospheric 

irradiance caused by different aspects, the study 

applied correction according to Soenen et al. [23]. 

The collected imageries set was computerised  to 

distinguish LULC in ArcView 10.8 with 

Supervised classification tool.  

 

2.5 Validation and Accuracy Assessment  

 

 Land Cover Classification Accuracy. 

This study adopted two different approaches to 

assess the accuracy of LULC classification and fire 

detection. Regarding LULC classification accuracy, 

a set of total 250 reference ground control points 

were randomly generated from visual interpretation 

of high-resolution of Google Earth Pro image over 

Babil governorate. As the most used method in 

accuracy assessment, Kappa's coefficient was 

computed from the following formula. 

Kappa coefficient =  
(T × C) − G

T2 −  G
 

Where: T is the test pixels, C is the correctly 

classified pixels, G is the sum of multiplied total 

value. The following formula was used to calculate 

the overall accuracy: 

𝑇 =  
∑ 𝐷𝑖𝑖

𝑁
 

Where: T is the overall accuracy, ∑D_ii is the total 

number of correctly classified pixels and N is the 

total number of pixels in the error matrix [24].  

 

Burn Severity Validation. 

Field visits for the collected districts: Al-Kifil, and 

Al-Hashmiyah were conducted immediately after 

burning events. The reliability of ΔNBR 

classification was assessed by using ground 

observations. A confusion matrix was constructed 

to compare ΔNBR -derived burn severity 

classification with field observed data. The 

validation was computed to assess the model's 

ability to identify specific classes in terms of 

Producer's and User's accuracy, we utilized the 

following equations to compute them [25].  

𝐏𝐫𝐨𝐝𝐮𝐜𝐞𝐫′𝐬 𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲 =  
𝐂𝐨𝐫𝐫𝐞𝐜𝐭𝐥𝐲 𝐜𝐥𝐚𝐬𝐬𝐢𝐟𝐢𝐞𝐝 𝐩𝐨𝐢𝐧𝐭𝐬 𝐟𝐨𝐫 𝐚 𝐜𝐥𝐚𝐬𝐬

𝐓𝐨𝐭𝐚𝐥 𝐠𝐫𝐨𝐮𝐧𝐝−𝐭𝐫𝐮𝐭𝐡 𝐩𝐨𝐢𝐧𝐭𝐬 𝐟𝐨𝐫 𝐭𝐡𝐚𝐭 𝐜𝐥𝐚𝐬𝐬
 × 𝟏𝟎𝟎 ---------------(4) 

𝐔𝐬𝐞𝐫′𝐬 𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲 =  
𝐂𝐨𝐫𝐫𝐞𝐜𝐭𝐥𝐲 𝐜𝐥𝐚𝐬𝐬𝐢𝐟𝐢𝐞𝐝 𝐩𝐨𝐢𝐧𝐭𝐬 𝐟𝐨𝐫 𝐚 𝐜𝐥𝐚𝐬𝐬

𝐓𝐨𝐭𝐚𝐥 𝐂𝐥𝐚𝐬𝐬𝐢𝐟𝐢𝐞𝐝 𝐩𝐨𝐢𝐧𝐭𝐬 𝐟𝐨𝐫 𝐭𝐡𝐚𝐭 𝐜𝐥𝐚𝐬𝐬
 × 𝟏𝟎𝟎 ------------------------ (5) 

These measures were used to ensure that no real 

burned area was missed, and reducing the bias of 

labelling unburned area as burned one [26].  

 

3. Results And Discussion  
 

3.1 Land Cover Classification  

 

The major LULC classification of Babil 

governorate involved two steps: Firstly, supervised 

classification based on the training reference points 

for different land cover categories were derived 

from sentinel RGB composition. Secondly, A 

collection of S2L2 sentinel images from the same 

period were computed by using Google Earth 

Engine (GEE) cloud-based platform (figure 1)[26, 

27] United Nations. Vegetation landscapes are 

typically complex, encompassing various types of 

vegetation cover that pose a challenge when 

attempting to classify them. The using of suitable 

algorithm with minimal time of processing and 

acceptable classification accuracy and supervised 

classification are crucial to overcome the 

challenges of mapping vegetated area.  

 

 
Figure 1. Maps of LULC 'COPERNICUS/S2_SR' images 

for Bail governorate, Al-Qasim, and Al-Kifil districts in 

2023. 
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Pixel-based approach from GEE was used to 

enhance classification accuracy [28]. The overall 

classification accuracy was 87.54%, and kappa 

coefficient of 79.63%, indicating high reliability of 

land cover classification (table 1). A noteworthy 

declining of vegetated areas in 2023 in comparison 

with 2015. The decline of vegetated areas has been 

supported by numerous prior studies [29-32]. These 

studies attributed such declines to the increased 

frequency of drought events and anthropogenic 

activities, including randomized patterns of urban 

expansion and the reduction of irrigated agricultural 

areas due to water scarcity.  

 
 

Table 1. Classification validation of LULC for Babil governorate in 2023. 
Category Water Vegetation Built-up Bare soil Total Correct sampled 

Water 46 0 0 4 50 46 

Vegetation 0 92 0 17 109 92 

Built-up 0 0 41 6 47 41 

Bare soil 0 10 2 32 44 32 

Total 46 102 43 59 250 211 

Overall accuracy 87.54% Kappa coefficient 79.63% 

 

3.2 Temporal Changes in Fire Hotspots 

 

This study relied upon FIRMS to identify fire 

hotspots changes between 2015 and 2023, where 

data from FIRMS identifies all pixels with actively 

burning fires as "fire pixels" while the other pixels 

are classified as non-fire, cloud, missing data, or 

unknown pixels. To confirm whether the burned 

area prolonged from 2015 to 2023, Table 2 shows 

results of nominal to high-confidence  (70-100% ) 

hotspots for both Al-Qasim and Al-Kifil districts. A 

noticeable shifting in total fire hotspots in 2023 

when compared to 2015 with alike change in both 

studied districts with percentage of 21.3 and 22.1%  

for Al-Kifil and Al-Qasim, respectively. In term of 

changing, this shifting well aligned with decreasing 

of cultivated area across the study region (figure 2). 

The findings, revealing a slightly reduction in 

average brightness, reflecting shorter or less 

complete burning periods.  Results of fire intensity 

indicator (RFP), indicating a significant drop of 

burning intensity hence the results showed a 

dominant of low intensity class over both studied 

districts. Al-Qasim district showed higher drop in 

FRP with percentage of 20.3% than 5.5% in Al-

Kifil. The observed decrease in fire detection 

metrics (total number of hotspots and fire intensity 

RFP), suggesting crop cultivation diminish among 

farm owners and increase the tendency of shift 

agricultural into urbanized areas due to 

neighbourhood effect [33]. 

 

 
Table 2. Fire hotspots metrics for both districts over two timeframe 2015 and 2023 

Metrics Al-Kifil Al-Qasim 

2015 2023 Average of change % 2015 2023 Average of change % 

Total Fire Hotspots 80 63 21.3 86 67 22.1 

Average Brightness (K) 282.5 278.3  295.4 291.4  

Fire Radiative Power (FRP)  101.7 96.13 5.5 118.6 94.5 20.3 

 

We employed a combination of Normalized 

Difference Vegetation Index (NDVI) figure 2, and 

land use/land cover classification to detect the 

alteration in vegetation cover and contrast between 

vegetated areas and the other surrounding land 

covers. This approach was adopted to overcome the 

limitations associated with field sampling at the 

district level within our study area. The using of 

high spatial resolution imaging from Sentinel-2 

satellites noticeably enhanced the detection of 

cultivated areas over the studied periods of 2015 

and 2023 (figure 2). The spatial pattern of 

cultivated areas over the study years, reflect a 

vegetation considerably decreased in 2023. On-site 

visit data was combined with temporal NDVI to 

identify this reduction in accurate manner, and to 

overcome the deficiency of lacking historical data.   

Figure 2. Maps of NDVI computed from 

'COPERNICUS/S2_SR' images for Al-Qasim and Al-

Kifil districts in 2015 and 2023 
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The another reason behind the declining of fire 

hotspots in 2023 (table 3) is the fact that  crop 

residues burning is anthropogenic activity. Whether 

the residues of a particular farm are burned or not 

depends on the choices made by the farm's owners. 

As a rapid and effortless way to prepare land for the 

next planting season, farmers burn crop residues 

immediately after harvesting [18]. Hence such 

activity is extremely different from forest fire in 

terms of spatial and temporal extent, as open crop 

residues burning can generate a large amount of 

smoke in a short period of time. Such practices 

pose additional challenges in burning area 

determination due to the sensitivity of the satellite-

based algorithms to small fires and the time of 

burning that usually start according to the farmers 

time schedule [25].  That may generate a bias in the 

estimate of the burned farm area and detection of 

active fire.  

 

3.3 Soil Properties Alteration  

 

Most of the studied fields have at least some soils 

that may be more susceptible than most districts 

soils to harmful consequences from burning. The 

results of soil analysis showed direct effects of 

burning on most of soil characteristics (table3). 

Overall results indicated that the selected fields of 

Al-Qasim district have higher values of all studied 

soil metrics than Al-Kifil fields. Burning the crop 

residue results in a sharp decline in essential 

nutrients such as nitrogen and phosphorus in both 

selected districted, where a noticeable decreasing in 

available soil N from 87.22 to 60.33 mg/g in Al-

Kifil, and from 92.15 to 71.56 mg/Kg in Al-Qasim 

post- burning of crop residue. Alike, soil available 

P depleted from 45.82 to 30.18 mg/Kg in Al-Kifil 

and from 55.84 to 33.14 mg/Kg in Al-Qasim fields. 

Organic matter, which acts like a sponge in the 

topsoil, declined from ~ 0.45 to ~ 0.23%.  The 

valuable soil organic matter components are lost in 

greater heat, and even the remaining ashes after the 

burning are not able to replace the degraded soil 

quality. Soil organic matter is an essential property 

for soil that is susceptible to management practices, 

so soil organic matter is progressively lost through 

oxidation. The proportional contribution to cation 

exchange capacity from organic matter is 

approximately four times higher than clay. Thus, 

the decline in organic matter due to the burning of 

crop residues will significantly affect the increase 

or decrease in the fertility of affected soil. Soil 

organic matter is related to soil pH, nitrogen 

dynamics, and soil management, and more 

specifically, soil microbial diversity. As the higher 

the quantity of organic matter, the more nutrients 

and moisture it will retain.  Burning of these 

materials thus becomes an element that slightly 

increase the pH of the soil (more alkaline) in 

response to the increment of basic cations, K+, 

Ca2+, Na+ due to ash deposition [34]. Burning of 

overdeveloped materials leads to excessive Na+ led 

to obvious increasing in soil salinity. The process of 

burning has a great effect on soil nutrient content 

due to its volatilizing effects on nutrients, 

especially nitrogen and phosphorus. Post-burning 

analysis showed severely declined in available soil 

nitrogen, phosphorous, and soil organic matter with 

percentages from 30 to 67%, and slightly reduction 

in CEC with percentages from 19 to 30% [35].  

While, almost of the rest soil metrics exhibited 

alike of increasing changes in both studied districts. 

Nutrient dynamics following burning influenced by 

several factors include the physical and chemical 

properties of the soils, local environmental 

conditions, burning intensity, and the residual 

properties associated with burning [36]. It is thus 

important to cover better management practices for 

maintaining or increasing nutrient stocks in soils 

against the likely preference of farmers to remove 

non-usable organic matter by burning. Retaining 

nutrients, and perhaps greater soil carbon content, 

would increase the sustainability of cropping 

systems.  
 

Table 3. Changes in Soil Metrics Induced by Crop Residue Burning: Comparative Analysis Across Districts 
Metrics Al-Kifil Al-Qasim 

Pre-burning Post-burning  Change %  Pre-burning Post-burning  Change % 

Min Max Min Max Min Max Min Max 

N mg/Kg 13.25 87.22 5.01 60.33 -62 to- 31 20.55 92.15 7.73 71.56 - 67 to -22 

P mg/Kg 3.8 45.82 1.9 30.18 -50 to -34 2.93 55.84 1.28 33.14 -56 to -40 

K (meq/L) 13.87 44.92 14.01 50.11 1 -  11 13.85 49.66 14.88 59.45 1 to 19 

EC (dS/cm³) 1.43 1.81 1.64 2.4 14 -  32 1.23 2.11 1.91 2.83 55 to 34 

pH 7.1 7.3 7.3 7.8 3 -  7 7.1 7.5 7.6 8.0 7 to 6 

Na (meq/L) 10.87 11.64 11.97 13.65 10 - 17 10.09 11.61 12.87 14.35 15 - 23 

Ca+Mg 

(meq/L) 

50.01 54.08 52.23 57.17 4 - 6 54.36 59.12 56.34 63.18 4 - 7 

O.M (%) 0.13 0.45 0.09 0.21 - 30 to - 53  0.11 0.42 0.08 0.28 -27 to 33 

CEC 

(Meq/100g) 

33.87 41.98 26.31 29.21 -22 to -30 33.58 39.74 27.31 29.78 -19 to -25 

CaCO₃ (%) 4.12 36.01 3.92 32.12 -5 to -11 3.98 35.14 3.74 32.17 -6 to -8 
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3.4 Burn Severity Analysis 

 

This study adopted complementary approach by 

using several multispectral burn indices NBR, 

dNBR to map burned areas. As each index supplies 

different information, a combination of multiple 

indices will enhance detecting of burning in 

agricultural area.  NBR shows the overall 

distinguishing burned from unburned areas, where 

high values of 0.777 indicate the healthy vegetated 

areas while the negative values of -0.669 highlight 

areas affected by crop residues burning (figure 3). 

The efficiency of NBR map is very limited for 

actual burned areas estimation due to the high 

spatial variability of active fires in the total burning 

period, and the area of the burned farm. Hence the 

underestimation is caused by the small, burned 

areas, while the large, burned areas result in 

overestimation [37].  

The efficiency is also affected by the time of 

satellite pass, which is crucial to detect the active 

fire, so the NBR map does not represent the actual 

burning patterns. Large number of active fires 

could be missed as agricultural burning remains for 

few hours compared to forest fires that remains for 

several days.  

 
Figure 4. NBR map estimated over selected wheat fields the studied districts during May, 2023. 

 

 
Figure 4. dNBR generated from FIRMS data for the selected farms within Al-Musayiab, Al-Kifil, and Al-Hashmyia 

districts. 

Pre-burning field visits during 20th to 30th May, 

2023 were planned to select some field locations, 

which can be later used as a base to analyse the 

extent and severity of burning practices in Al-Kifil, 

and Al-Qasim districts. The Fire Information for 

Resource Management System (FIRMS) was used 

to analyze dNBR and burning severity class (Figure 

4).  The results showed that the low severity class is 

the most dominant in both selected districts with 

values of 45.7%, and 54.8%, while the percentage 

of areas with high severity class are 5%, and 2.7% 

of burned area in Al-Kifil, and Al-Qasim, 

respectively. The data were further compared using 

Sentinel-2A/B satellite images and accuracy 

assessment to ensure the dependability of burn 

severity categorization. The producer's accuracy 
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was 73.12%, indicating the effectiveness in 

detecting areas of high severity burning class, and 

the User's accuracy was also high with value of 

70.08% emphasise that most pixels were correctly 

categorized as high severity burns. The detection of 

moderate burns class was relatively reliable with 

values of 63.14% and 61.23% for producer's and 

user's accuracy, respectively. The spectral overlap 

caused some misidentification of moderately burns 

and unburned pixels. At the same time, the low-

severity burns achieved the lowest value of 

producer's accuracy (47.58%) signifying the 

spectral confusion with bare soil and leading to 

reduce classification accuracy. The fragmented 

pattern of agricultural fields exacerbates the 

complexity of burns pixels classification which are 

often smaller than the spatial resolution of using 

sensor. This misidentified could convincingly be 

expected for a  

small fire due to the confused ambiguous of water 

and land pixels near fire pixels [36].  As a rapid 

burned area classification FIRMS offers promise 

available real time data for crop residues burning 

detecting especially soon after fire, but further data 

are required to help decision making regarding crop 

residues management. Both active fire data and 

ground onsite knowledge are needed to accurately 

detect of crop residues fire as confirmed by several 

studies [38-42]. 

Figure 4.  dNBR generated from FIRMS data for the selected farms within Al-Musayiab, Al-Kifil, and Al-Hashmyia 

districts. 

 

These results highlighted the complexity of 

accurately detecting small, fragmented fire areas. 

The multisensory approach proved effective in 

using GEE, FIRMS, Sentinel-2, and ground-truth 

data in enhancing the reliability of distinguishing 

burned from unburned areas.  Furthermore, the 

results addressed spatial biases in using single data 

resources or algorithm.  

 

4- Conclusion 

 
This study integrated Google Earth Engine (GEE) 

and NASA's Fire Information Management System 

(FIRMS) with Sentinel-2 and ground-truth data to 

detect residue burning activities over two 

timeframe 2015 and 2023, and soil fertility 

dynamics under such practices. The results detected 

a noteworthy reduction in fire hotspots in 2023 

compared to 2015, aligning with the reduction in 

vegetated areas in the last 8 years. The conventional 

practices of burning crop residues influence soil 

fertility, resulting in sharp loss of main soil 

available nutrients (nitrogen and phosphorous), soil 

organic matter, and CEC. In the studied regions, 

burning contributes to increased soil salinity, pH, 

and availability of Na+, K+, Ca+2, and Mg+2. The 

complementary results of land cover classification 

and NDVI attributed this declining trend in 

vegetated areas to the urbanization and drought, 

while the implementation of sustainable residue 

managing practices were low probability to reduce 

fire hotspots. According to our results, the 

fragmented patterns and small size of farms are the 

main factors that limit the efficiency of using 

burning indices. Results of Delta NBR classified 

fire severity into three classes: low severity burns, 

which was the dominant class over all studied 

districts with low producer's and user's accuracy. 

While moderate and high severity burns were low 

to rare with high values of producer's and user's 

accuracy. These findings confirmed the importance 

of the field data and multi-sensor imagery 

approaches to accurately generate and categorize 

the spatial extent and severity class of burned areas. 

In conclusion, this study contributes to filling the 
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gaps in detecting spatial and temporal residue 

burning particularly in small farms. The future 

research needs to develop machine learning models 

to overcome the misclassification or bias detection, 

especially in small burned farms. This study sets 

the groundwork for monitoring approach and 

making a basic national database that contributes in 

the future sustainable development and 

environmental conservations.   
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