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Abstract:  
 

Today, there are many diseases caused by cell or inter molecular 

communication. For example, a communication disorder in the nerve nano-

network can cause very serious nervous system-related diseases such as Multiple 

Sclerosis (MS), Alzheimer's and Paralysis. Understanding these diseases caused 

by communication is very important in order to develop innovative treatment 

methods inspired by information technologies. In addition, many advanced 

environmental and industrial nano-sensor networks such as the development of 

biologically inspired Molecular Communication systems (MCs), cellular-

accurate health monitoring systems, many medical applications such as the 

development of communication-capable nano-implants for nervous system 

diseases. Nano networks focused on communication between nano-sized devices 

(Nano Machines) is a new communication concept which is known as MCs in 

literature. In this study, on the contrary to the literature, a new Long Short-Term 

Memory (LSTM) based MC model has been used to analyse the proposed 

system. After obtained the number of received molecules for different number of 

Amyloid Beta (Aβ) which causes Alzheimer’, a new method based on the LSTM 

model of deep learning is used for the classification of Aβ. Finally it is obtained 

that when the number of Aβ increases, the number of received molecules 

decrease. On a data set with five classes, experiments are conducted using 

LSTM. The proposed model's precision, accuracy and sensitivity values are 

determined as 97.05, 98.59 and 98.54 percent, respectively. The categorization 

procedure of the findings generated from the designed model appears to be 

performing well. 

  
 

1. Introduction 
 
In Molecular communication systems (MCs), 

chemical transceiver may be more favorable for 

implementation issues in transmitting information 

from transmitter to receiver or vice versa. In several 

fields, such as dentistry, bio-medical, 

environmental monitoring, industrial and defense 

purposes, these models can be used. Nearly all 

biological cells on their receiver surface use 

receptors to receive proteins, nutrients or other 

substances. A lot of studies have been carried out 

about the communication of nano-devices in recent 

years [1-6]. Generally, the transmitter (Tx) and 

receiver (Rx) parts are investigated to analyze 

transmitted and received molecules in a fluid media 

such as channel transfer function and the number of 

received molecules with a point transmitter and 

fully and half fully absorbing spherical receiver, 

pulse peak time and pulse amplitude concerning for 

the distance between transmitter and receiver, and 

attenuation, propagation delay, receptor models 

which are placed on the receiver randomly are 

considered as antenna using graphene and carbon 

nanotubes due to their prominent sensing 

capabilities for fixed Rx and Tx model of molecular 

communication via diffusion (MCvD) systems 

[7,8]. In [9], the proposed MCs model is analyzed 

for different distance values between Tx-Rx 

nanomachines and the diffusion constant of the 

environment. It is concluded from the study that, 

the number of received molecules increases with 

increasing diffusion constant and a decreasing 

distance between Tx and Rx. In [10], an adaptive 
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threshold mechanism, signal to interference, and bit 

alignment scheme are investigated for a simple and 

effective demodulation scheme for a mobile 

receiver with a speed of drift V = 7.9 × 10
−4

 m/s and 

diffusion coefficient of D = 2.42 × 10
−10

 m
2
/s. The 

parameters such as the ratio of flow and receiver 

velocity and symbol interval are analyzed in terms 

of bit error rate (BER) using a fixed transmitter and 

mobile receiver. BER with or without ISI 

mitigation for different transmitting intervals is 

calculated and analyzed in this study [10]. The 

communication distance, which is described in MC 

systems as the distance between nanomachines, is 

one of the critical parameters that have a major 

impact on the quality of communication efficiency. 

In fixed MC, for instance, the CIR is defined as the 

expected number of molecules received, depending 

on the distance between nanomachines. The 

receiver can predict CIR and set an effective 

detection threshold in advance with knowledge of 

distance. The distance calculation and developing a 

mechanism between nanomachines should 

therefore be a primary justification for the design of 

MC systems using a neural networks or deep neural 

networks [11-14]. The hitting probability of 

transmitted molecules is generally analyzed at the 

receiver part in literature. The probability of a 

molecule being transmitted in a 1-D system is as 

follows: 

               𝑓ℎ𝑖𝑡
1𝐷(𝑡) =

𝑑

√4𝜋𝐷𝑡3
𝑒−

𝑑2

4𝐷𝑡,                               (1) 

          𝑓ℎ𝑖𝑡
3𝐷(𝑡) =

𝑟𝑟

𝑑+𝑟𝑟

𝑑

√4𝜋𝐷𝑡3
𝑒−

𝑑2

4𝐷𝑡  ,                         (2) 

where 𝑟𝑟 and d show the radius of the receiver, and 

distance from the transmitter to the surface of 

receiver, respectively. 

In this study, firstly, the proposed MCs model is 

analyzed on the molecule reception rate of the 

model for different number of Aβ values separately. 

Secondly, after the number of received molecules is 

obtained for different number of Aβ, a new method 

based on the Long Short-Term Memory (LSTM) 

model of deep learning is used for the classification 

of number of Aβ. 

2. Materials and Methods 
 

Amyloid peptide is a protein produced by the cell 

itself in order to maintain its vital activities. 

However, with the breakdown of this protein by 

various enzymes, deterioration of the cell structure 

or overproduction, diseases for which no cure has 

yet been found arise. The most well-known of these 

is Alzheimer's disease, which causes forgetfulness 

in humans [14,15]. It is estimated that Alzheimer's 

disease is a disease caused by miscommunication or 

inability of cells to communicate. Amyloid beta 

(Aβ) peptides are formed by the degradation of 

amyloid precursor proteins (app), known as type 1 

membrane protein, by β-secretase and γ-secretase 

enzymes [15], It is known that App is produced by 

many cells of living things, but precursor proteins 

produced by nerve cells in the brain cause 

Alzheimer's disease [14,15]. Molecular 

communication is being studied by many 

researchers within the scope of nano-bio systems in 

order to shed light on the treatment of diseases 

caused by the disruption of communication systems 

of these and similar cells [16]. Although it is not 

known exactly how the communication between 

cells is disrupted in the literature, as a result of 

some experimental studies on mice, it has been 

concluded that the Aβ 40-42 peptide accumulates 

between neurons more than normal and prevents 

the transfer of information from the donor to the 

receiver [17]. 

In this study, pure diffusive channel method is used 

for moving of NMs in the fluid media. [18-20]. A 

point transmitter, sphere receiver, transporting 

molecules, and receptors on the receiver make up 

the suggested MCs model. Between the transmitter 

and the receiver, MMs are used as information 

carriers as shown in Fig. 1. In a 3-D environment, 

the receiver is set at the origin (0, 0, 0) and the 

transmitter is randomly placed at a distance d from 

the receiver. Every time step, the position of the 

receiver is changed at random, while the position of 

the transmitter is changed after each bit duration. A 

fluid propagation medium surrounds both the 

transmitter and the receiver. The medium is thought 

to be unconstrained, allowing it to spread in all 

directions to infinity. After being discharged into 

the medium, where they propagate according to 

Brownian motion, the molecules may arrive at the 

receiver. The information molecules are absorbed 

by the spherical receiver's receptors with a radius of 

r s. The receiver absorbs a molecule that collides 

with one of the receptors on its surface. It bounces 

back if it collides with the receiver's surface 

without striking a receptor [21,22]. For the sake of 

simplicity, the suggested model ignores messenger 

molecule collisions, as stated in the literature. The 

cumulative number of received molecules for a 

spherical completely absorbing receiver is 

calculated analytically in Eq. 3. The absorption 

probability of a chemical in transition is presented 

in 3-D environment without taking into account the 

influence of receptors by the completely absorbing 

receiver until time t. 



Ibrahim ISIK/ IJCESEN 8-2(2022)25-31 

 

27 

 

             𝐹ℎ𝑖𝑡(𝑡) =
𝑟𝑟

𝑟0
𝑒𝑟𝑓𝑐(

𝑑

√4𝐷𝑡
) ,                                (3) 

where 𝑟0 denotes the distance between the point 

transmitter and the receiver's center, t is the time 

after the molecule was released, and erfc() denotes 

the complementary error function [21].  

Table 1. System parameters. 

Radius of receiver, rr 3.101 μm 

Number of Aβ 5, 10, 15, 20 μm 

Radius of receptor, rs 0.01 μm 

Number of receptor  

Number of transmitted 

molecules 

7200 

20000 

Number of simulation 100 

Diffusion constant of 

environment, D 

79.4  μm
2
/s 

 

2.1 Long Short-Term Memory (LSTM) 

 

Long Short-Term Memory (LSTM) networks are a 

form of Recurrent Neural Networks (RNN) [23]. 

The hidden layer of an LSTM neural network, also 

known as the LSTM cell, has a complex structure. 

As illustrated in Fig. 1, the LSTM cell is made up 

of three gates: the input gate, the forget gate, and 

the output gate [23,25], which control the flow of 

information through the cell and neural network. 

The LSTM model shown in figure 1, is a chain-like 

structure built of progressively constructed data 

[26,27]. 
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Figure 1. The proposed MC model with LSTM. 

As shown in Eq. 4, the first step in processing an 

LSTM network is to determine the information to 

be taken from the cell (table 1). The sigmoid 

function awarded the data definition and exclusion 

process. The sigmoid function also determined 

which portion of the mine's output should be 

extracted. The forget gate layer, also known as ft, is 

a sigmoid layer that makes this decision: where h(t-

1) is a vector that goes from 0 to 1 for each integer 

in the cell state C(t-1). 

𝑓𝑡= σ(𝑊𝐹[ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑓)                        (4) 

where (𝑊𝐹) and (𝑏𝑓) are the weighting matrices of 

the forget gate and bias vector, respectively, and is 

the sigmoid function. The input gate of the LSTM 

is described in Eqs. 5-7. In Eq. 5, the new 

information (Xt) from the input gate layer is stored, 

and the cell state is also updated. There are two 

components to this. The "input gate layer," a 

sigmoid layer, chose which values would update or 

not (0 or 1), and the second layer is known as tanh. 

The tanh function in Eq. 6 produced a vector for the 

new candidate value (-1 to 1) and applied weight to 

the data provided (to push the values between 1 and 

1). To update the new cell state, two values are 

multiplied. The following stages are to update the 

old memory state, Ct-1, into the new memory state, 

Ct, as shown in Eq. 7. 

                     𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑋𝑡 + 𝑏𝑖]),                           

(5) 
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     𝑁𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑛[ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑛),                (6) 

                        𝐶𝑡 = 𝐶𝑡−1𝑓𝑡 + 𝑁𝑡𝑖𝑡 .                              (7) 

The cell states C(t-1) and Ct in the time interval 

between t-1 and t are C(t-1) and Ct, respectively. In 

Eq. 8, the sigmoid layer determined which parts of 

the current cell reach the output. The output of the 

sigmoid gate (Ot) is then multiplied by the new 

values (Ct) formed by the tanh layer, as shown in 

Eq. 9. 

 𝑂𝑡 = 𝜎(𝑊0[ℎ𝑡−1, 𝑋𝑡] + 𝑏0)       (8) 

 ℎ𝑡 = 𝑂𝑡𝑡𝑎𝑛ℎ (𝐶𝑡)                    (9) 

 

W0 and b0 which are the weight matrix and bias 

vector of the output gate respectively. 

The accuracy, precision, and sensitivity of the 

results obtained from the suggested method were 

assessed using assessment criteria. Eqs. 10-12 give 

the mathematical formulae for each of these 

evaluation criteria. 

         𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
|𝑇𝑃|+|𝑇𝑁|

|𝑇𝑃|+|𝐹𝑃|+|𝐹𝑁|+|𝑇𝑁|
                  (10) 

             𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|𝑇𝑃|

|𝑇𝑃|+|𝐹𝑃|
                       (11) 

             𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
|𝑇𝑃|

|𝑇𝑃|+|𝐹𝑁|
                         (12) 

 

In this study, the proposed methodology and main 

components for the classification of number of Aβ 

are analysed in detail. The number of Aβ, time and 

number of received molecule features are given as 

input to the LSTM model and then the 

specifications obtained from LSTM were classified 

by using Softmax. 

3. Results 
 
The recommended model is examined using 

MATLAB 2021. A PC with an Intel I95.1GHz 

processor, 64GB of memory, and an NVIDIA 

Quadro RTX 3000 GPU was also used to train and 

test the recommended model. The time, number of 

Aβ, and number of received molecules are given as 

inputs to the created two-layer LSTM model with 

32 and 64 outputs. Figure 2 shows the fluctuation 

of LSTM features in two-dimensional coordinates 

(x and y), which represent two of the LSTM 

characteristics. 

 

Aβ=0 

Aβ=0.005 

Aβ=0.015 

Aβ=0.025 
Aβ=0.05 

 
Figure 2. 2D Representation of LSTM Features. 

 

Half of the data is utilized for training and half is 

used for testing in the first trial. In the second trial, 

the data is separated for testing and training using 

the 10-fold cross validation process. Many 

parameters are used during the training phase to 

guarantee that the model is adequate and optimal. 

The measurements are carried out with varied batch 

sizes and learning rates for the optimum results. 32, 

64, and 128 batch sizes have been chosen. The 

learning rates are also chosen as 0.1, 0.01, and 

0.001 respectively. The epoch has been changed 

from 50 to 50. The accuracy and loss during 

training and testing are depicted in Figure 3. 

 

 
Figure 3. Plots of accuracy and loss on training and 

validation sets. 

 

Table 2 shows the categorization results obtained 

by employing 50 percent for training and 50 

percent for testing. The greatest accuracy of 97.05 

percent is attained when the batch sizes are set to 

128 and the learning rate is set to 0.001. The batch 

sizes were set to 64 and the learning rate was 0.1, 

yielding the maximum accuracy of 96.12 percent, 

and the batch sizes were set to 32 and the learning 

rate was 0.001, yielding the best accuracy of 96.14 

percent. 
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Table 2. Classification results obtained by splitting the 

data into 50% training and 50% test. 

 Batch

-Size 

Learn

ing 

rate 

Accuracy 

% 

Precision 

% 

Sensitivity 

% 

L

S

T

M 

 0.1 95.79 96.02 96.54 

32 0.01 95.59 96.02 95.82 

 0.001 96.14 96.42 94.23 

 0.1 96.12 96.68 96.52 

64 0.01 95.59 95.54 98.54 

 0.001 95.41 96.92 97.50 

 0.1 96.85 97.50 97.97 

128 0.01 95.92 97.90 96.98 

 0.001 97.05 98.59 97.01 

 

Table 3 displays the classification results obtained 

by utilizing the 10-k fold cross validation procedure 

to divide the data. When the batch sizes are set to 

64 and the learning rate is set to 0.001, the 

maximum accuracy is achieved. The batch sizes 

were 32 and the learning rate was 0.001, resulting 

in a maximum accuracy of 97.99 percent, while the 

batch sizes were 128 and the learning rate was 0.01, 

resulting in the greatest accuracy of 97.75 percent. 

The confusion matrix and Receiver Operating 

Characteristic (ROC) curve for the best 

classification result are shown in Figures 4 and 5. 

Table 3. Classification results obtained by dividing the 

data with the 10-fold cross validation technique. 

 Batch-

Size 

Lear

ning 

rate 

Accuracy 

% 

Precision 

% 

Sensitivity 

% 

L

S

T

M 

 0.1 96.92 96.92 96.42 

32 0.01 96.88 97.79 95.29 

 0.001 97.99 96.34 94.99 

 0.1 96.66 97.39 99.09 

64 0.01 96.81 97.81 95.07 

 0.001 98.57 96.54 96.90 

 0.1 97.45 97.36 97.03 

128 0.01 97.75 97.53 96.14 

 0.001 96.06 96.86 95.01 
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Figure 4. Confusion Matrix. 

4. Conclusion and Future work  
 

A new LSTM-based MC model is suggested in this 

paper to improve the hitting probability of MMs. 

For the lowest number of Aβ values, the number of 

received molecules is obtained higher. Although the 

proposed model has the lowest number of Aβ 

values, the number of received molecules is higher 

because certain molecules are absorbed by the 

number of Aβ 
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Figure 5. ROC Curve. 

placed in the diffusion environment, which impacts 

communication quality. After obtaining the number 

of molecules received, the LSTM deep learning 

model was used to classify the number of Aβ 

values. More dynamic and biological systems can 

be constructed in the future by constructing a 
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proposed mobile MC model that takes into account 

more practical parameters such as precise drift 

velocity, vascular branching, and the influence of 

blood molecules. Also, using a deep neural 

network, estimate and optimization of the number 

of Aβ values in the environment can be considered 

to construct a more dynamic model with a lower 

signal to interference rate and a high receiver 

reception probability [28-30]. 
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