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Abstract:  
 

The elastic scattering of kaons from different targets 6Li, 12C, and 40Ca at 

energies 635, 715, and 800 MeV have been studied. The equivalent local 

potential form of Kisslinger optical potential with the eikonal approximation 

using Wallace expansion up to the 2nd order have been used. The potential 

depends on the density of the target nuclei, and the scattering amplitude 

parameters. Satisfactory fits to the elastic scattering experimental data are 

obtained. 

 
 

 

1. Introduction 
 
It is known that the K+ meson scattering can be 

used as a weak hadronic interacting probe for 

investigating the neutron density distributions in 

nuclei which is providing insights into the nature of 

the scattering. Therefore the experimental data on 

elastic differential cross sections at intermediate 

energies [1,2] are under the permanent attention of 

theoreticians for years. Many optical model 

analyses of the elastic scattering of kaons from 

nuclei have been carried out using potentials of the 

Kisslinger form [3], its local equivalent form is 

introduced by Johnson [4], microscopic optical 

potential [5], and other forms for different nuclear 

density models.  

 

The first and second-order corrections to the zero 

order eikonal phase shifts for heavy-ion elastic 

scattering based on the Coulomb trajectories of 

colliding nuclei have been applied satisfactory and 

improve the agreement with the exprimental data 

[6]. Also this work extended to cover the charged 

pions scattering on nuclei by using the Coulomb 

modified eikonal phase shift and its first order 

correction [7]. It has been applied satisfactory to 

800 MeV/c pions scattering from 12C and 40Ca 

nuclei. The overall results are in excellent 

agreement at momentum 800 MeV/c and the 

agreement extended to the angle 36o. The local 

form of the Kisslinger optical potential succeeded 

before with the eikonal approximation model in 

analysis of pion scattering without recourse to the 

complexities of the nonlocal interactions [8,9]. 

 

Among all the hadronic probes, K+ meson holds 

special properties, below 1 GeV/c, the K+-N strong 

interaction has a slow energy and momentum 

dependence and it is the weakest of all strong-

interaction processes [10].  

 

Because of the quark content of the K+ which can’t 

annihilate with valence quark content of the 

nucleon, K+ has a long mean free path in the 

nuclear matter and capable of probing the interior 

of nuclei. A small cross section means a long mean 

free path (λ =
1

ρσ
> 5𝑓𝑚) for propagation of the 

K+ in the nuclear medium, in contrast to the 

strongly interacting particles which get absorbed at 

the surface [11], so it is an ideal probe to study 

nuclear structure, and for a light nucleus, such as 
12C, the uncertainties which appear in working with 

the strong interaction are much smaller [12].   

http://dergipark.ulakbim.gov.tr/ijcesen
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Recently, Ebrahim [10] proposed that the 

equivalent local optical potential with the zero-

range distorted-wave Born approximation can be 

used to analyze the K+-nucleus elastic scattering but 

needs an enhancement in the dominated S11 K+-N 

phase shift by 10 % for 6Li and around 12 % for 
12C, and 40Ca nuclei. The DWUCK4 code is used to 

calculate the angular distributions with distorted-

wave Born approximation.  The charge distribution 

is used for 6Li, the harmonic oscillator form for 2H 

and 12C, and the three parameter Fermi 3PF shape 

distribution of nucleons is used for 40Ca. 

 

The Ericson-Ericson Lorentz-Lorentz (EELL) 

parameter ζ slightly affects the elastic scattering. 

The disagreement between the calculated results 

and data at K+-12C is about 15% at 800 MeV/c but 

appears to decrease with decreasing momenta [10]. 

A good agreement by using the 3PF distribution 

density for the 40Ca at 800 MeV/c and the 

polarization 𝜁 = 1.0 is obtained by increasing the 

S11 phase shift by 12%.  If the K+-N phase shifts 

increase the nucleon size will increase; a 

‘‘swelling’’ of the nucleon in the nuclear medium. 

This means that the K+-N interaction inside a 

nucleus will differ from the free space. The local 

optical potential can serve as a reliable model for 

kaon-nucleus scattering. 

 

Lukyanov [5] used the derived microscopic optical 

potential in calculation of the differential elastic-

scattering cross sections for the interaction of K+ 

mesons with 12C and 40Ca nuclei at energies 635, 

715, and 800 MeV.  It is determined by the 

amplitude for kaon–nucleon scattering and the 

density distribution of point like nucleons of the 

target nucleus. The results obtained by calculating 

optical potentials depend on the density 

distributions of point like neutrons and protons in 

the ground state of the nucleus. It turns out that, in 

this model, there is no need for including nonlocal 

terms in the potential, in contrast to what is done in 

the Kisslinger model, or for employing 

phenomenological optical-model potentials 

involving a large number of free parameters.  

 

Originally, the eikonal approximation has taken a 

considerable attention after the work of Glauber 

[13] who obtained a Fourier-Bessel representation 

of the scattering amplitude which justified for all 

angles on general grounds of analyticity in the 

momentum transfer. Glauber extended it by using a 

frozen target approximation to convert the many 

body scattering problem into a potential scattering 

problem in which the potential depends on the 

coordinates of the target.Wallace [14] proposed a 

sequence of four approximations to the exact 

impact parameter of the scatterin matrix. In eikonal 

propagation picture, the accelerated projectile 

propagates through a frozen target without 

changing its transverse position but picking up an 

eikonal phase [15].  

 

The present study of the K+ scattering is focused on 

eikonal approximation with its first and second 

corrections. This interest has been particularly 

motivated by a hope to explain well the K+-nucleus 

elastic scattering data. We give a simple physical 

description to the quantum mechanical formulation 

of the eikonal propagation which has been 

extensively used in hadronic interaction problems 

in dense (nuclear) environment at high energy. This 

is illustrated that by calculating the differential 

cross sections with the first and second order 

eikonal corrections [15]. For the first time the local 

potential of Johnson and Satchler [4], together with 

the eikonal approximation with 2nd order 

corrections were used to analyze the angular 

distributions of elastically scattered K+ from 6Li, 
12C, and 40Ca at kaon lab momenta ranging from 

635-800 MeV/c. Satisfactory agreement with the 

measured angular distributions and the local optical 

potential calculation is obtained at forward angles. 

MATLAB CODE is used for all calculations and 

formulas. The present work is precisely an attempt 

to understand the range of validity and limits of the 

applicability of the eikonal approximation by using 

local Kisslinger optical potential. In Sec.II the basic 

formulas of the potential equations and an explicit 

quantum mechanical description of the eikonal 

approximation are given. Sec. III is devoted to the 

results and discussions followed by conclusion in 

Sec. IV. 

 

2. Formalism 

 
Meson-nucleus elastic scattering data are analyzed 

using an optical potential of the Kisslinger form [3].  

By using the Krell-Ericson transformation [16] and 

solving of the Klein-Gordon equation. The basic 

equation of the phenomenological local optical 

potential will be 

𝑈(𝑟) =
(ℏ𝑐)2

2𝜔
(

𝑞(𝑟)

1−𝛼(𝑟)
−

𝑘2𝛼(𝑟)

1−𝛼(𝑟)
− (

1

2
∇2𝛼(𝑟)

1−𝛼(𝑟)
+

(
1

2
∇𝛼(𝑟)

1−𝛼(𝑟)
)

2

)) +
𝛼(𝑟)𝑉𝑐−(

𝑉𝑐
2

2𝜔
)

1−𝛼(𝑟)
              (1) 

which introduced as potential without sharp edge. 

The quantities 𝑞(𝑟) and 𝛼(𝑟) can be expressed in 

terms of meson-nucleon scattering amplitudes and 

the target nucleus density distributions with their 
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gradients. The quantities 𝑞(𝑟) and 𝛼(𝑟) are complex 

quantities depend on energy and target densities 

(proton and neutron densities). They defined as 

fellows  
  𝑞(𝑟) = 𝑞0(𝑟) + ∆𝑞(𝑟)       (2) 

𝛼(𝑟) =
𝛼1(𝑟)

1+
1

3 
𝜁𝛼1(𝑟)

+ 𝛼2(𝑟)                                  (3) 

where, 𝑞0(𝑟) = −4𝜋𝑝1(𝑏0𝜌(𝑟) − 𝑏1∆𝜌(𝑟))     (4)                                                                                                                                  

  ∆𝑞(𝑟) = −
1

2
𝜀∇2 (𝛼1(𝑟) +

1

2
𝛼2(𝑟))                 (5) 

𝛼1 = 4𝜋
(𝑐°𝜌(𝑟)−𝑐1∆𝜌(𝑟))

1+(𝜔 𝑀𝑐2⁄ )
                                       (6) 

𝛼2 = 4𝜋
(𝐶°𝜌𝑛𝑝(𝑟)−𝐶1𝜌(𝑟)∆𝜌(𝑟))

1+(𝜔 2 𝑀𝑐2⁄ )
                            (7)

 

and 

                𝜌(𝑟) = 𝜌𝑛(𝑟) + 𝜌𝑝(r)                              (8)                                    

                ∆𝜌(𝑟) = 𝜌𝑛(𝑟) − 𝜌𝑝(r)                            (9)                                          

                 𝜌𝑛𝑝(𝑟) = 4𝜌𝑛(𝑟)𝜌𝑝(𝑟)                          (10)                                          

 

where 𝜌𝑝(𝑟) and 𝜌𝑛(𝑟) are proton and neutron 

density distributions of target nucleus, respectively. 

We use p1 and p2 as kinematic constants which 

depend on meson energy. M is the mass of a 

nucleon and ω is the total energy of meson in the 

centre of mass [17]. ζ is the Ericson-Ericson 

Lorentz-Lorentz (EELL) parameter which 

parameterizes the polarization of the nuclear 

medium [18]. The ζ parameter isn’t exactly known 

because its determination requires taking into 

account all the effects together which make the 

calculation unreliable [19]. This parameter has a 

small effect above the Δ-resonance in the 

calculations compared to its effect in the resonance 

energy. The quantities bi and ci (𝑖 = 0,1) are 

referred to the first order amplitude parameters, 

while the complex amplitude second-order 

parameters Bi and Ci (𝑖 = 0,1) describe the pion 

absorption. Different formulas of the radial density 

distribution for the considered nuclei are used. The 

formulas are the charge distribution density (CH), 

the harmonic oscillator (HO) model, the two 

parameter Fermi (2PF) model, and the three 

parameter Fermi (3PF) model, all are used to clarify 

the general changes in the radial variations of the 

density from one nucleus to another. CH density 

model gives information about the charge density 

and hence primarily about the proton distribution 

and it takes the form [10] 
 

  𝜌𝑐ℎ(𝑟) =  
𝑍

8𝜋3 2⁄ [
1

𝑎3  𝑒𝑥𝑝 (
−𝑟2

4𝑎2) −
𝑐2(6𝑏2−𝑟2)

4𝑏7  𝑒𝑥𝑝 (
−𝑟2

4𝑏2)]   

                                                                                     (11)    

where 𝑎, 𝑎𝑛𝑑 𝑏 are adjustable parameters, Z is the 

atomic number and extended to be taken for 

neutron density form, its domain of use for light 

nuclei and it will be named CH model. The 

Harmonic Oscillator (HO) is defined as [4]: 

       𝜌(𝑟) = 𝜌𝑜 [1 + 𝛼 ( 
𝑟

𝑐
 )

2

] exp  [− ( 
𝑟

𝑐
 )

2

]               

(12)  

 

where c is a parameter related to root mean square 

radius, α is the oscillator constant and ρ0 is the 

density of nuclear matter at r = 0.  The two-

parameter Fermi (2PF) is defined as [4]: 

                    𝜌𝑖(𝑟) =
𝜌𝑜𝑖

1+exp  (
𝑟−𝑐𝑖

𝑎𝑖
)
                  (13) 

where 𝑖 = 𝑛 𝑜𝑟 𝑝 for proton or neutron, and c is the 

half density radius, 𝑎 is the diffuseness parameter 

(a measure of the thickness of the surface layer of 

nucleus) and ρ0 is the central density parameter.  

The three-parameter Fermi (3PF) is defined as [18]: 

                   𝜌𝑖(𝑟) =
𝜌𝑜𝑖 (1+

𝜔𝑖 𝑟2

𝑐𝑖
2 )

1+exp  (
𝑟−𝑐𝑖

𝑎𝑖
)
                   (14) 

where 𝑖 = 𝑛 𝑜𝑟 𝑝 for proton or neutron 

respectively, and ci is the half density radius, 𝑎𝑖 is 

the diffuseness, ρ0 is the central density parameter  

and 𝜔𝑖 is an adjustable parameter. All the density 

forms of neutrons and protons are subjected to the 

normalization condition: 
             ∫ 𝜌𝑖 (�̅�) 𝑑�̅� =  (𝐴 − 𝑍) 𝑜𝑟 𝑍           (15)     

where Z  is the atomic number of the nucleus and 

in particular it leads for 3PF and 2PF density 

models. The nuclear density is taken as                                                                                                    
                 𝜌(𝑟) =  𝜌𝑛(𝑟) + 𝜌𝑝(𝑟)              (16) 

All the parameters of these three types of densities 

are listed in Table 1 and 2. 

 
Table 1:  The ground-state density distributions 

parameters and the densities of nuclear matter for the 

charged density, the harmonic oscillator, 2PF, and 3PF 

models (𝑝 for protons). 

Nucleus Model 𝒄𝒑 𝒂𝒑 𝒘𝒑 
𝝆𝟎𝒑 Ref 

6Li 

3PF 1.55 0.07 0.015 0.08 * 

2PF 2.063 0.096 0 0.08 * 
12C 3PF 2.002 0.5 0.2595 0.08 [20] 

2PF 2.5 0.37 0 0.075 [21] 
40Ca 3PF 3.68 0.546 -0.1 0.0743 [22] 

2PF 3.42 0.55 0 0.0951 [22] 

Nucleus Model 𝒂 

b 

and 

𝜶 

C 𝝆𝟎𝒑 Ref 

6Li CH 0.928 1.26 0.48 0.51262 [10] 

HO 1.727 4.5  0.08994 * 
12C CH 0.928 1.26 0.48 0.1538 * 

HO 1.516 2.234  0.0711 [10] 
40Ca CH 0.928 1.26 0.48 0.51262 * 

HO 1.727 4.5  0.08994 * 
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* The values stated in all tables are satisfying the 

root mean square radius for each nucleus. 

Table 2:  The ground-state density distributions 

parameters and the densities of nuclear matter for the 

charged density, the harmonic oscillator, 2PF, and 3PF 

models ( 𝑛 for protons). 

Nucleus Model 𝒄𝒏 𝒂𝒏 𝒘𝒏 
𝝆𝟎𝒏 

Ref 

6Li 

3PF 1.55 0.07 0.015 0.08 * 

2PF 2.063 
0.09

6 
0 0.08 * 

12C 
3PF 2.002 0.5 0.2595 0.08 [20] 

2PF 2.5 0.37 0 0.075 [21] 
40Ca 3PF 3.97 0.42 -0.1 0.0743 [22] 

2PF 3.42 0.55 0 0.0951 [22] 

Nucleus Model    𝝆𝟎𝒏 Ref 
6Li CH    0.51262 [10] 

HO    0.08994 * 
12C CH    0.15380 * 

HO    0.0711 [10] 
40Ca CH    0.51262 * 

HO    0.08994 * 

* The values stated in all tables are satisfying the 

root mean square radius for each nucleus. 

According to Wallace, the expansion of the 

phase shift function 𝜒(𝑏), as a power series in the 

strength of the scattering potential and its 

derivatives [6] 

    𝜒𝑖(𝑏) =  ∑ 𝜒(𝑛)𝑗
𝑛=0 (𝑏)   (18)                                            

where      

𝜒(𝑛)(𝑏) = −
𝑘[𝜇 (ℏ𝑘)2⁄ ]

(𝑛+1)! 𝑏2𝑛  [𝑏2 (1 + 𝑏
𝑑

𝑑𝑏
)]

𝑛

∫ 𝑈𝑛+1∞

0
[(𝑏2 +

𝑧2)1 2⁄ ] 𝑑𝑧                                                                    (19)           

The zero order term in Eqn. (19) gives the eikonal 

phase shift        

𝜒(0)(𝑏) = −
𝜇

ℏ2𝑘
∫ 𝑈 ((𝑏2 + 𝑧2)

1

2) 𝑑𝑧
∞

0
                       

(20) 

For local potential the first and second order 

corrections are given, respectively, by                                  

𝜒(1)(𝑏) = −
𝜇2

2ℏ4𝑘3 (1 + 𝑏
𝑑

𝑑𝑏
) ∫ 𝑈2 ((𝑏2 + 𝑧2)

1

2) 𝑑𝑧
∞

0
                                                

                                                                                   (21) 

𝜒(2)(𝑏) = −
𝜇3

6ℏ6𝑘5 (3 + 5𝑏
𝑑

𝑑𝑏
+ 𝑏2 𝑑2

𝑑𝑏2) ∫ 𝑈3 ((𝑏2 +
∞

0

𝑧2)
1

2) 𝑑𝑧                                                                   (22) 

where U is the optical potential, b is the impact 

parameter, 𝜇 is the reduced mass, and 𝑘 is 

momentum in the centre of mass system. The S 

matrix is expressed as  

𝑆𝑙 = exp(2𝑖𝛿𝑙) ,    𝑎𝑛𝑑  𝛿𝑙 =
1

2
𝜒(𝑏)                        (23)                                               

The general expression for the elastic scattering 

amplitude between the spin 0 kaon and the target 

nucleus is given by 

𝑓(𝜃) =  𝑓𝑐(𝜃) + (2𝑖𝑘)−1 ∑ (2𝑙 + 1)𝑖 exp(2𝑖𝜂𝑙) (𝑆𝑙 −
1) 𝑃𝑙 (cos 𝜃)                                                                (24) 

where 𝑓𝑐(𝜃) is the Coulomb scattering amplitude, k 

is the centre of mass momentum, and 𝜂𝑙 is the 

Coulomb phase shift [23]. The differential cross 

section is given by 

     
𝑑𝜎

𝑑Ω
= |𝑓(θ, Ω)|2                                                             

(25) 

 

3. Results and Discussion  
A. The Eikonal Phase Shift with Wallace 

corrections 

The eikonal phase shifts with Wallace corrections 

up to 2nd order have been used to calculate the 

elastic scattering differential cross section of K+-

nucleus as shown in figures (1-3). All these 

calculations have been done for  𝜁 = 1 (the 

polarization parameter). Fig. 1 shows with the 

reaction K+-6Li at energy 715 MeV using 2PF 

nuclear density model. Fig. 2 shows with the 

reaction K+-12C at a) energy 635 MeV using CH 

nuclear density model, b) at energy 715 MeV using 

HO model for the target density. From what 

proceeds, it can be seen that calculation with 

different corrections up to 2nd order of the eikonal 

expansion has no effect on the calculated elastic 

scattering differential cross section. The Figures 1-2 

show no effect of higher order corrections on the 

results of the elastic cross section, since the 

relatively small kaon mass to its momentum ratio, 

converges the eikonal expansion rapidly. The 

eikonal phase shift corrected up to second order 

term is calculated using the same scattering 

amplitude parameters of Ebrahim [24,25]. Figures 3 

shows the calculations of the elastic scattering 

differential cross section of K+-nucleus depending 

on these parameters for the reactions 𝐾+ + 6Li at 

energy 715 MeV, and 𝐾+ + 12C at energy 635 

MeV. It presents that the result doesn’t agree well 

with the experimental data although it comes close 

for lower target masses and incident energies. The 
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eikonal model didn’t come very well with these 

taken amplitude parameters [24,25]. Such approach 

with previously used scattering amplitude 

parameters didn’t fit properly the data and 

eventually get a limited success. In the case of the 

eikonal approach, since the parameters of the 

scattering amplitudes are based on the free kaon- 

nucleon scattering. This keeping structural frame of 

the scattering amplitudes to get the best possible 

values to fit different targets and energies with 

different models of nuclear densities to obtain the 

best possible fit with the eikonal approach for 

scattering. The resulting best fit scattering 

amplitude parameters used in the present work for 

K+- nucleus are shown in Tables 3, 4, and 5. The 

difference in the two approximations, the partial 

wave impulse approximation, in which the binding 

forces are ignored during collision, and the eikonal 

approximations sticks to the straight line path as a 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. The elastic scattering cross sections for 𝐾+ +
 6Li with 2PF density model by using the zero, first and 

the second-order terms of the eikonal phase shifts at 715 

MeV. The experimental data is taken from Ref.[26]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. The elastic scattering cross sections for 𝐾+ +
 12C using the zero, first and the second-order terms of 

the eikonal phase shifts (a) CH model at 635 MeV, (b) 

HO model at 715 MeV. The experimental data is taken 

from Ref.[26].   

Table 3:  First-order amplitude parameters used in the 

present work with K+ as a projectile and ( 6Li ,40Ca) as 

targets. Note: in each case the upper row is the real part 

and the lower row is the imaginary part for each target. 
 6Li  40Ca  

Tπ  (MeV) 715 800 

k (fm-1) 4.66 5.86 

p1 2.11 2.34 

p2 1.56 1.67 

b0 (fm) 0.07892 2.0165 

 0.034847 1.121890 

b1 (fm) 0.03622 0.03567 

 0.1155600 0.0353200 

c0 (fm3) 0.005949 -0.05047 

 0.1153390 0.090000 

c1 (fm3) 0.01502 0.01352 

 -0.0447327 0.0143100 

 

Table 4:  First-order amplitude parameters used in the 

present work with K+ as a projectile and 12C as target. 

Note: in each case the upper row is the real part and the 

lower row is the imaginary part for each target. 

 12C  12C  12C  

Tπ  (MeV) 635 715 800 

k (fm-1) 4.688 5.066 5.456 

p1 2.12 2.2 2.26 

p2 1.56 1.6 1.63 

b0 (fm) 2.232501 2.3658 2.116427 

 1.021470 2.648000 -0.167816 

b1 (fm) 0.026355 -0.0593 0.033963 

 -0.041603 0.0536000 0.0648988 

c0 (fm3) -0.09629 0.00212 -0.051 

 0.1937890 0.1673000 0.3724900 

c1 (fm3) -0.03406 0.006173 -0.01464 

 -0.0144586 -0.0491000 0.0008428 

 

Table 5:  Second-order amplitude parameters used in 

the present work with K+ as a projectile. Note: in each 

case the upper row is the real part and the lower row is 

the imaginary part for each target. 

 6Li  12C  12C  12C  40Ca  

Tπ  (MeV) 715 635 715 800 800 

C0  (fm3) 0 0 0 -2.8 -3.6 

 0 0 0 -3.6 1.0 

C1  (fm3) 0 0 0 0 0 

 0 0 0 0 0 

 

special direction which makes a stringent 

semiclassical limit. These conceptual differences 

reflect on the different values of the amplitude 

parameters for fitting the experimental data at each 

method. So, with eikonal model, it is possible to get 

the agreement with data only with the variation of 

the amplitude parameters freely and isn’t possible 

to get it with previously calculated parameters. This 

makes the problem more complicated and pushes 

the way to find The difference in the two 

approximations, the partial wave impulse 

approximation, in which the binding forces are 

ignored during collision, and the eikonal 

approximations sticks to the straight line path as a 
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special direction which makes a stringent 

semiclassical limit. These conceptual differences 

reflect on the different values of the amplitude 

parameters for fitting the experimental data at each 

method. So, with eikonal model, it is possible to get 

the agreement with data only with the variation of 

the amplitude parameters freely and isn’t possible 

to get it with previously calculated parameters. This 

makes the problem more complicated and pushes 

the way to find a more systematic way to the 

correlation between the scattering amplitudes 

calculated before and those obtained at best 

possible fit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. The elastic scattering cross sections (a) for 

𝐾+ + 6Li with 2PF density model at 715, (b) for 𝐾+ +
 12C with 2PF density model at 635 MeV. The scattering 

amplitude parameters are from Ref.[24,25]. The 

experimental data is taken from Ref.[26]. 

 

B. Effect of the target density model 

The local potential terms depend on the target 

nuclear density distribution. To study this factor, 

four different models of the nuclear densities which 

describe the shape of the target nucleus, all are used 

to clarify the general changes in the radial 

variations of the density from one nucleus to 

another. The values of ζ = 1, has been used in all 

calculations. The fitted scattering amplitude 

parameters of Table 2 have been used in all the 

following calculations of the elastic scattering 

differential cross section of K+-nucleus.   

K+-6Li: Figures (4-5) show our calculation of K+-

6Li using different types of target density model 

(CH, HO, 2PF, 3PF) compared with experimental 

data. 

 
 

 

 

 

 

 

 

 

 

 

Figure 4. The elastic scattering of 𝐾+ + 6Li by using 

CH and HO density model with ζ=1 at energy 715 MeV. 

The experimental data is taken from Ref.[26].  

 
 

 

 

 

 

 

 

 

 

 

Figure 5. The elastic scattering of 𝐾+ + 6Li and by 

using 2PF and 3PF density model with ζ=1 at energy 

715 MeV. The experimental data is taken from Ref.[26]. 

 

Clearly, the best fitting obtained among the target’s 

densities is the 2PF model with the eikonal 

approach. The core density plays an important part 

at large scattering angles. 

K+-12C: Similarly, by applying calculation of K+-

12C using different types of target density model 

(CH, HO, 2PF, 3PF), it is found the 2PF and 3PF 

models of density have limited agreement and 

produce a minimum moves to smaller angles with 

increasing the energy. The best fitting obtained 

among the target’s densities is the CH model with 

the eikonal approach as shown in Figure (6). 

K+-40Ca: Figure (7) shows our calculation of K+-

40Ca using different types of target density model 

(2PF, 3PF) compared with the experimental data. 

The 2PF and 3PF distributions are shown for 40Ca. 

These two models have been only used because the 
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635 MeV

CH and HO failed to describe the heavier nuclei. It 

could be seen that the calculations with the 2PF 

model for the density of the target nucleus 40Ca 

gives the best results at small angles as shown in 

figures. The following Table 6 shows all the best 

density models with each target and energy, which 

summaries the present work results of K+ with 6Li, 
12C, and 40Ca 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6. The elastic scattering of  𝐾+ + 12C by using 

CH density model with ζ=1 at energies; 635 MeV, 715 

MeV, and 800 MeV. The experimental data is taken from 

Ref.[26,27]. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 7. The elastic scattering of 𝐾+ + 40Ca by using 

2PF and 3PF density model with ζ=1 at energy 800 

MeV. The experimental data is taken from Ref.[26].   

 

 

Table 6:  the scattering angle range of agreement for the 

elastic differential cross sections of K+ with different 

targets with their best density model at different 

energies.  

Projectile 
Energy 

(MeV) 
Target 

Best 

Density 

Model 

Agreement 

Range 

K+ 

 

715  6Li 2PF 10o to 33o 

635  12C CH 10o to 50o  

715  12C CH 10o to 40o 

800  12C HO 10o to 30o 

800  40Ca 2PF 10o to 15o 

 

4. Conclusion 
We have studied the angular distributions of the 

elastic scattering differential cross sections for K+ 

on 6Li, 12C, and 40Ca at energies 635, 715, and 

800 MeV. Where we show how well the eikonal 

approximation model and local form of Kisslinger 

were able to reproduce the experimental data. To 

this purpose we have used the eikonal model by 

considering the first and the second-order 

correction terms to the eikonal phase shifts. Also, 

the local Kisslinger optical potential depends on 

different sets of free adjustable parameters; the type 

of density model, the amplitude parameters, and the 

EELL parameters. It seems clear that a full analysis 

of these parameters will be required if a detailed 

comparison is to be made with the experimental 

results. The accuracy of the agreement with 

experimental data can be improved by changing 

these parameters to reach the best fit.  

 

The higher order corrections would clarify the 

relationship between the eikonal expansion and the 

impact parameter b. Corrections, which are 

incorporated to the eikonal expansion, have nearly 

no effect on the results because of the massive 

projectile and its large momentum. The correlation 

parameter ζ parameterizes the polarization of the 

nuclear medium. 

 

 The availability of change the EELL parameter 

gave nearly no change on the calculated elastic 

scattering cross sections in the experimental range 

of angles. In order to check for possible density-

dependent effects, the four sets of density models 

are applied. For the nuclear density distributions, it 

was assumed that the proton and neutron densities 

were similar. From the comparison with the 

experimental data, the 2PF model of density gives 

satisfactory results with the most cases of 

interactions. The CH model of nuclear density 

predictions was suitable with 12C and the 2PF 

nuclear density model predicted well the calculated 

results for 6Li and 40Ca. 3PF model was the worst 

in most cases of study. 
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In deriving the amplitudes parameters, it is 

necessary to transform the kaon-nucleon scattering 

amplitude from the two-body centre of mass system 

to the kaon-nucleus centre of mass system. The 

most significant difference between the free 

nucleon cases and fitted parameters are that the 

fitted magnitude of Re (bo), Im (bo), Re (co), and 

Im (co). In addition, adding values for the second-

order amplitudes parameters Re (Co) contributes to 

give the best fitting. The present elastic scattering 

data can be well reproduced by local form of 

Kisslinger potential with adjustable parameters 

which rather different than the free kaon-nucleon 

values. We note that the regularization of the local 

Kisslinger optical potential used in this work by the 

introduction of the fitting parameters can serve as a 

tool to obtain a best agreement with the 

experimental data.   

 

After having made an adjustment of the potential 

parameters, and using the suitable model of density, 

we have deduced a set of potential parameters 

which describe the elastic scattering cross sections 

for nuclei under examination. It is found also that 

the effective potential parameters slightly change 

from nucleus to nucleus.  

 

The local Kisslinger model with the eikonal model 

was found to be successful for all types of 

interactions in the present work. The close 

agreement between theory and experiment is 

mainly for the forward angles less than 40o and in 

fair agreement with 40𝑜 < 𝜃 < 50𝑜. As a whole 

the eikonal model description is quite successful as 

a framework for a description of K+- nucleus 

scattering. In addition to being a study of the 

eikonal model, this work also provided a systematic 

and comprehensive local Kisslinger potential model 

analysis of mesons-nucleus scattering. The 

calculated cross sections reproduced the 

experimental data quite well for the considered 

nuclei.  
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