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Abstract:  
 

The continuous monitoring and transmission of electrocardiogram (ECG) data are 

essential for the proactive and responsive management of cardiovascular health, 

particularly in remote and connected healthcare systems. However, ensuring the secure 

and efficient transmission of this highly sensitive data over Wireless Sensor Networks 

(WSNs) remains a significant challenge due to the risks of data interception and the need 

for low-latency processing. This research introduces a novel architecture, the Fog-Based 

Secured Chaotic Wireless Sensor Network (WSN), specifically designed to address these 

challenges by integrating fog computing with chaotic encryption methods to enhance data 

security and efficiency. In this system, fog nodes positioned at the network’s edge serve 

as intermediary processors, performing pre-processing, data encryption, and storage 

functions before the data is transmitted to central servers. This approach reduces reliance 

on cloud infrastructure and minimizes data transmission time, which is critical for real-

time applications. The results reveal that the proposed framework enhances data 

transmission security and achieves a 30% latency reduction examined to conventional 

cloud-based systems. This fog-based chaotic WSN framework provides a scalable, 

secure, and efficient solution for ECG data transmission, meeting the evolving demands 

of connected healthcare and real-time patient monitoring applications. 

 

1. Introduction 
 

The rapid advancement of wireless sensor networks 

(WSNs) has significantly transformed healthcare 

monitoring, enabling real-time data collection and 

analysis of vital signs, like heart activity through 

electrocardiograms (ECG). These networks, 

consisting of distributed sensors that communicate 

wirelessly, allow healthcare professionals to monitor 

patients remotely, offering particular benefits in 

critical care scenarios and chronic disease 

management. Given the increasing prevalence of 
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cardiovascular diseases worldwide, the ability to 

continuously track heart activity has become 

essential for ensuring timely interventions and 

improving patient outcomes. Recent reports indicate 

a staggering rise in healthcare data breaches, with 

over 50 million patient records exposed globally in 

2022. These incidents highlight the critical 

importance of developing robust security measures 

to safeguard sensitive medical data [1].  

Telemedicine is driving the need for remote 

healthcare by enabling real-time monitoring and 

personalized care. Technologies like AI and cloud 

computing play a crucial role in its growth. 

However, complexities like data privacy, security, 

and network reliability persist.  As the demand for 

continuous health monitoring increases, the secure 

transmission of ECG data has become a critical 

concern. The sensitivity of medical data necessitates 

robust protective measures to prevent unauthorized 

access and potential breaches of information. 

Reports highlight that data privacy and security are 

major concerns in telemedicine, where patient 

information is often transmitted over public 

networks. The consequences of inadequate security 

can be severe, including identity theft, unauthorized 

treatments, and a general erosion of trust in 

healthcare systems. This issue is further 

compounded by the growing number of cyberattacks 

targeting healthcare institutions, underscoring the 

need for effective security protocols designed to 

meet the specific requirements of medical data 

transmission [2]. 

Traditional cloud-based systems, while providing 

substantial data storage and processing capabilities, 

often face challenges such as high latency, 

bandwidth limitations, and vulnerabilities to cyber 

threats. These issues become particularly critical in 

scenarios requiring real-time data processing and 

transmission, as reliance on distant cloud servers can 

introduce delays that impede timely medical 

responses. For example, when an ECG sensor 

detects arrhythmia, immediate action is essential; 

any delay in data transmission could lead to severe 

health consequences for the patient. Additionally, 

dependence on cloud infrastructure raises concerns 

about data sovereignty and compliance with 

regulations such as the Health Insurance Portability 

and Accountability Act (HIPAA) in the United 

States, which mandates stringent measures to protect 

health information [3]. 

To address these challenges, this study presents an 

innovative methodology that integrates fog 

computing and chaotic encryption techniques within 

a WSN specifically designed for ECG data 

transmission. Fog computing, an extension of cloud 

computing, facilitates data processing closer to the 

data source—at the network edge. This architecture 

reduces latency by enabling real-time data analysis 

and decision-making, which is crucial for healthcare 

applications requiring immediate feedback. By 

positioning computing resources at the edge of the 

network, fog computing not only decreases the 

volume of data transmitted to the cloud but also 

enhances the system's overall efficiency and 

responsiveness [4]. 

The incorporation of chaotic encryption algorithms 

within this framework serves a dual purpose: 

ensuring the security and integrity of ECG data 

while maintaining low computational overhead. 

Chaotic encryption is notable for its ability to 

generate highly sensitive and unpredictable 

encrypted data, making it extremely challenging for 

unauthorized parties to decipher [5]. This technique 

is particularly beneficial for healthcare applications, 

as it provides a robust security solution capable of 

adapting to the dynamic nature of wireless 

communication environments. By utilizing chaotic 

encryption, the proposed framework effectively 

secures sensitive ECG data during transmission, 

significantly reducing the risk of interception and 

unauthorized access [6]. 

The objectives of this study are threefold: first, to 

develop a fog-based architecture that enables local 

data processing, thereby reducing latency and 

improving the speed of ECG data transmission; 

second, to implement chaotic encryption algorithms 

to assure the security and reliability of the 

transmitted ECG data; and third, to examine the 

effectiveness of the recommended framework in 

terms of performance metrics and security outcomes. 

By achieving these goals, this study strives to deliver 

a holistic remedy to the critical challenges of data 

security and latency in ECG monitoring [7-9]. 

This research enhances patient care by ensuring 

timely access to secure ECG data, addressing the 

growing need for efficient and safe data transmission 

in telemedicine. The proposed fog-based system 

improves data handling and security for sensitive 

health information. It supports advanced healthcare 

technologies by prioritizing security, efficiency, and 

real-time processing [10]. 

Moreover, this study extends its relevance beyond 

immediate healthcare applications, addressing the 

critical intersection of technology and healthcare in 

an increasingly connected world. With the 

proliferation of Internet of Things (IoT) devices in 

medical settings, elevating the security and 

efficiency of data transmission is paramount [11]. 

By leveraging fog computing and chaotic 

encryption, the proposed framework not only 

enhances the capabilities of current healthcare 

systems but also lays the groundwork for future 

innovations in secure medical data transmission. In 

conclusion, this research strives to enrich the 
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academic discourse in healthcare informatics by 

offering a practical solution to the challenges 

associated with ECG data transmission, driving 

improvements in patient care and more effective 

healthcare delivery. 

2. Related Work 
 

Amalraj et al. (2024) [12] emphasize the importance 

of securing patient health records within 

heterogeneous networks to ensure data security, 

privacy, integrity, and confidentiality. The authors 

highlight the vulnerabilities of critical data in such 

networks and the potential consequences of 

unauthorized access, including job loss and mental 

distress for patients. To address the risks associated 

with existing security techniques, the paper gives 

Secure Secret Key Sharing-based Strong 

Cryptography (S4C) algorithm. The study evaluates 

the encryption and decryption times during 

transmission using Electronic Code Book (ECB) and 

Cipher Block Chaining (CBC) modes, aiming to 

enhance the overall security of medical data 

exchange between networks. 

Masdari et al. (2024) [13] provide a comprehensive 

survey on ECG signals-based security and 

steganography approaches in Wireless Body Area 

Networks (WBANs), highlighting their critical role 

in e-healthcare systems. The authors emphasize the 

importance of securing medical data to maintain 

patient privacy and confidentiality, particularly 

focusing on the utilization of Electrocardiogram 

(ECG) signals in enhancing the security and 

reliability of these networks. The survey categorizes 

contemporary ECG-based security schemes into 

three key domains: (1) schemes that leverage ECG 

signals for cryptographic operations, including key 

generation, agreement, management, and 

authentication; (2) steganography techniques that 

use ECG signals to conceal sensitive medical data; 

and (3) methods aimed at enhancing the security of 

ECG signals during data transmission. The authors 

further provide insights into datasets, simulation 

environments, evaluation metrics, and the 

advantages and limitations of each framework, 

ultimately proposing future research directions to 

advance ECG-based security paradigms in WBANs 

Said et al. (2024) [14] states the complexity of 

optimizing data transmission and storage in IoT-

enabled sensors within resource-limited 

environments. The study highlights how overlapping 

sensor coverage results in redundant data 

transmission, which imposes unnecessary 

communication and storage costs. Existing 

approaches, such as Asymmetric Extremum (AE) 

and Rapid Asymmetric Maximum (RAM), use fixed 

and variable-sized windows for chunking but 

struggle with selecting index values for variable 

window sizes, often leading to inadequate 

deduplication, which maintains variable-sized 

windows within a set threshold to improve 

deduplication efficiency. The algorithm ensures that 

the index value for the threshold is always greater 

than half of the fixed window size and includes an 

upper limit offset to prevent excessively large 

window sizes that would incur high computation 

costs. Extensive simulations, executed on Azure 

cloud using Windows Communication Foundation 

services, validate CCIA's superior performance in 

comparison to AE and RAM across several 

parameters, including chunk number, chunk size, 

and cut point identification. CCIA demonstrates 

improvements in total chunk count average chunk 

count and minimum chunk size (153%, 190%), 

underscoring its potential to enhance resource 

utilization and reduce operational costs in IoT 

systems. 

Mishra et al. (2023) [15] proposed a secure 

transmission model for ECG data in wireless body 

sensor networks (WBSN) to protect against potential 

security breaches during data transmission. The 

model focuses on enhancing the encryption and 

security of ECG signal transmission using an 

innovative combination of Pity Beetle Swarm 

Optimization Algorithm (PBOA) and Elliptic Galois 

Cryptography (EGC) with a Chaotic Neural 

Network. The PBOA algorithm optimally selects the 

private key, which strengthens the encryption 

framework. The Chaotic Neural Network further 

augments the security by generating chaotic 

sequences that act as cipher data. Experimental 

results demonstrate that this proposed cryptography 

technique achieves superior encryption time, 

decryption time, throughput, and signal-to-noise 

ratio (SNR) compared to traditional cryptographic 

methods, making it a promising approach for secure 

ECG data transmission in WBSNs. 

Das and Inuwa (2023) [16] provide an extensive 

review of fog computing, emphasizing its ability to 

enhance service quality by combining benefits from 

cloud and edge computing. Fog computing, also 

known as fog networking or fogging, aims to reduce 

latency and support mobility while offering multi-

tenancy and other critical features essential for 

modern computing environments. The authors 

outline fog computing's progression from earlier 

paradigms, like cloud computing, mobile cloud 

computing, and mobile edge computing, which were 

all developed to improve service quality between 

end devices and the cloud. Through a detailed 

taxonomy relied on contemporary research, the 

paper addresses various security, operational, and 

data management issues pertinent to fog computing, 

along with significant challenges and applications. 
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Key challenges include security, privacy, 

application-specific, and communication issues, 

which are frequently highlighted by scholars in the 

field. The paper also identifies several potential 

applications for fog computing, notably in 

healthcare, smart city infrastructure, and agriculture, 

underscoring its relevance and versatility in diverse 

sectors. Mishra et al. (2023) [17] focus on enhancing 

the secure transmission of electrocardiogram (ECG) 

signals in wireless body sensor networks (WBSN). 

They highlight the vulnerability of ECG data 

collected from sensor nodes, which can be 

intercepted and misused by adversaries during 

transmission. The private key generation process in 

Elliptic Curve Cryptography (ECC) over a Galois 

field. Furthermore, the chaotic neural network 

enhances the encryption process by generating 

chaotic sequences for cipher data. Their results 

demonstrate that the proposed cryptographic 

algorithm outperforms conventional methods in 

terms of encryption time, decryption time, 

throughput, and signal-to-noise ratio (SNR). 

Elhadad et al. (2022) [18] explore the integration of 

fog computing services into healthcare monitoring 

systems, emphasizing their potential to reduce 

latency in real-time notification frameworks. The 

study proposes a fog-based architecture for 

monitoring vital parameters like body temperature, 

heart rate, and blood pressure via wearable sensors. 

The system utilizes machine learning algorithms to 

alert caregivers or patients about deviations from 

normal thresholds, ensuring timely interventions. 

Additionally, the framework stores large datasets in 

the cloud for future reference, catering to both 

clinical and research needs. The study underscores 

the role of fog computing in delivering rapid 

healthcare responses by reducing reliance on distant 

cloud servers. Idrees and Al-Qurabat (2021) [19] 

propose an Energy-efficient Data Transmission and 

Aggregation Protocol (EDaTAP) specifically 

designed for Periodic Sensor Networks (PSNs) 

based on fog computing to address the energy 

challenges in Internet of Things (IoT) applications. 

PSNs are a major contributor to big data due to their 

extensive use in real-world applications; however, 

this increase in data volume leads to greater 

communication overhead and consequently depletes 

the limited energy of wireless sensor devices. 

Implemented in the OMNeT++ simulator, EDaTAP 

showed promising results, reducing transmitted data 

by up to 97.4%, saving energy by 81.2%, and 

decreasing data loss by 55.5%. Additionally, the 

protocol detected 6,534 redundant data sets and 

achieved energy consumption of only 0.0186 at the 

fog gateway, outperforming existing approaches. 

Rincon et al. (2020) [20] states an IoT-enabled 

monitoring system for cardiovascular patients, 

integrating fog computing and deep learning. The 

system employs LoRa communication protocol to 

transmit ECG signals to the fog layer, where a deep 

learning algorithm analyzes the data for arrhythmia 

detection, including atrial fibrillation. Using dual 

MobileNet architectures, the proposed framework 

achieves a classification accuracy of 90% on a 

dataset comprising 8,528 single-lead ECG 

recordings. The authors highlight the value of such 

automated systems in complementing physicians' 

diagnoses, enhancing clinical decision-making, and 

improving patient outcomes; 

3. Proposed Architecture  

 
Figure 1 illustrates a Fog Gateway-based 

architecture for ECG data transmission in IoT-

enabled healthcare systems. ECG data is collected 

by WSN-IoT devices, which transmit it wirelessly to 

the Fog Gateway for localized processing. The Fog 

Gateway performs data aggregation, preprocessing, 

and chaotic encryption to ensure data security before 

forwarding it to the cloud. Finally, the encrypted 

data is accessed by authorized users, ensuring 

efficient and secure real-time monitoring. 

3.1 System Overview 

 

As illustrated in Figure 1, the recommended 

infrastructure contains of three significant modules. 

The first module includes embedded 

microcontrollers interfaced with ECG sensors and 

WiFi transceivers, capturing and transmitting ECG 

data securely. The second module involves the 

design of a chaotic wireless sensor network (WSN) 

model to enhance data security and enable efficient 

ECG data processing within the network. Finally, the 

third module deploys this model within the fog layer, 

where the chaotic WSN facilitates collective 

analysis, identifying and classifying different 

arrhythmia levels in patients based on ECG signals. 

Each module is elaborated upon in the pursuing 

segments. 

Data Collection 

The real-time dataset for ECG data classification 

includes 17,300 data points and 120 records, 

designed for accurate detection of patterns in ECG 

signals. This dataset supports real-time insights, 

critical for health monitoring applications, by 

allowing processing as events occur. Its high 

frequency ensures a detailed view of ECG signal 

variations, essential for modeling real-world cardiac 

activities. The 120 records represent individual data 

collection sessions or patients, aggregating readings 

to capture diverse conditions over time. 
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Figure 1. Proposed Architecture for Fog- Based Chaotic WSn Network 

 

Each record contains three key attributes: 

1. Signal Amplitude: Captures the intensity of the 

ECG signal, reflecting the heart's electrical 

activity. Variations in amplitude indicate 

different heart conditions or arrhythmias. 

2. Time or Frequency: Ensures each signal point is 

timestamped or categorized by frequency, 

providing essential temporal context for 

detecting time-sensitive heart events. 

3. Signal Quality or Metadata: Validates the 

integrity of each data point, flagging artifacts like 

noise from sensor dislocation or patient 

movement, ensuring reliability. 

Data Preprocessing 

To ensure accurate analysis, data normalization is 

applied during preprocessing. ECG signals often 

exhibit variations in amplitude due to differences in 

individual physiology or device settings. 

Normalization scales the signal amplitude to a 

standard range, typically between 0 and 1, reducing 

variability and enhancing the approach’s capability 

to generalize across different patients and scenarios. 

This step also mitigates the impact of outliers, 

ensuring that extreme values do not skew the 

model’s predictions. Additionally, noisy signals are 

filtered by utilizing a low-pass filter to remove high-

frequency artifacts caused by movement or electrical 

interference. 

ECG Data Classification 

The primary task associated with this dataset is 

classification. In the context of ECG data, 

classification is crucial for identifying distinct types 

of heart activity, such as normal rhythms versus 

abnormal arrhythmias. This task is particularly 

challenging with real-time data, as the model must 

process a high volume of data points and make swift, 

accurate predictions. Each of the three attributes 

plays a unique role in supporting classification by 

providing vital features to the model. Signal 

amplitude reveals the intensity of each heartbeat, 

time/frequency captures when the activity occurs, 

and signal quality ensures that the data used in 

classification is reliable. By combining these 

features, the model gains a strong foundation for 

distinguishing between different arrhythmic 

conditions in ECG signals. The real-time nature of 

this classification task is essential, as rapid detection 

and accurate categorization of arrhythmias can aid in 

early intervention, potentially saving lives. 

To effectively train and assess the model, the dataset 

is splitted into an 80:20 training-to-testing ratio. This 

split ensures that a substantial portion of data is 

allocated to model training, enabling the model to 

learn and detect patterns across diverse scenarios in 

the ECG data. The remaining 20% is reserved for 

testing, providing a basis to verify the model's 

accuracy and generalizability. In this real-time 

context, the training dataset is designed to help the 
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approach capture a wide range of heart criteria, 

ensuring it recognizes not only common patterns but 

also rare or critical anomalies. The test data serves to 

evaluate the model's performance on previously 

unseen data, which is vital for validating its 

reliability in real-world applications. By assessing 

the model on unseen data, we can better gauge its 

performance in live monitoring scenarios, where 

generalizability and adaptability to diverse cardiac 

conditions are essential. Figure 2 is  ECG Sensors 

with the Three Electrodes used in the Proposed 

research. Figure 3 is Interfacing ECG Sensor with 

the Arduino Board for Measuring the ECG Signals 

and figure 4 is NVIDIA Jetson Nano Board Version-

2 used as the Edge Gateways. Table 1 is the real time 

data Leveraged for the Testing and Evaluation. 

 

Table 1. Real time data Leveraged for the Testing and Evaluation

 

Figure 2.  ECG Sensors with the Three Electrodes used 

in the Proposed research 

 

Figure 3. Interfacing ECG Sensor with the Arduino 

Board for Measuring the ECG Signals 

 
Figure 4.  NVIDIA Jetson Nano Board Version-2 used 

as the Edge Gateways 

3.2 Scroll Chaotic Maps –An Overview 

 

The chaotic encryption process consists of three key 

stages: data permutation, encryption key 

generation, and data encryption. These steps 

collectively ensure secure and efficient transmission 

of sensitive ECG data. 

Step 1: Permutation of Collected Data Using a 

Chaotic Scroll Map 

In the first step, we begin with the permutation of 

collected ECG data using a chaotic scroll map. A 

chaotic scroll map leverages the principles of chaos 

theory, characterized by highly sensitive, 

unpredictable behaviors, to add an extra layer of 

complexity to the data encryption process. This 

permutation step shuffles the collected ECG data 

points, disrupting their original order in a way that 

appears random but follows a defined chaotic 

function. The scroll map algorithm ensures that each 

data point is uniquely mapped to a new position 

based on chaotic trajectories, complicates access for 

unapproved entities to predict or trace the data’s 

original order. This permutation creates a 

randomized, obfuscated dataset, making it resistant 

to attacks that might otherwise analyse data patterns. 

The chaotic map's high sensitivity to initial 

conditions ensures that even the smallest change in 

the initial setup results in a drastically different data 

permutation, enhancing data security. 

Step 2: Generation of Encryption Key 

Once the data is permuted, the next step is the 

generation of an encryption key. This key serves 

as the backbone of the encryption process, 

transforming the permuted data into an encrypted 

form that is unintelligible to unauthorized users. The 

key generation process can also utilize chaos-based 

techniques, such as a chaotic key generator, to 

produce keys that are unique, non-repeating, and 

complex enough to resist brute-force attacks. In this 

Dataset Description Data Count Records Count Attributes Count Associated Tasks 
Training Data 

/Testing 

Real Time Datasets 17,300 120 03 Classification 80;20 
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case, the chaotic key generator might use a 

mathematical model based on chaotic systems, such 

as the Lorenz or Logistic map, which are known for 

producing random-like sequences that are 

deterministic yet difficult to predict without 

knowing the initial conditions. The initial parameters 

used in the chaotic model ensure that each key 

generated is unique, making it practically impossible 

for unauthorized users to reproduce the same key 

without access to the precise initial conditions. This 

encryption key will be protected and solely 

accessible to authorized parties involved in the ECG 

data evaluation, assuring that data, if captured during 

transfer, stays encrypted without the appropriate key 

Step 3: Data Encryption Using the Generated Key 

With the encryption key ready, we proceed to 

encrypt the permuted data. In this step, each 

permuted data point is combined with the chaotic 

encryption key in a process such as XOR (Exclusive 

OR) operation, or any other suitable encryption 

algorithm, to generate the final encrypted form of the 

ECG data. XOR is a common technique in 

encryption because it is straightforward to 

implement and, when used with a robust key, it 

produces highly secure encrypted output. Each data 

point, once XOR-ed with a corresponding part of the 

chaotic key, transforms into an encrypted value, 

ensuring that the original ECG data cannot be 

recovered without both the key and knowledge of the 

permutation sequence applied in Step 1. This 

encryption makes the data highly resistant to 

eavesdropping and unauthorized access during 

transmission, as any intercepted data will appear as 

random noise without the decryption key. The final 

encrypted dataset is now ready for transmission over 

the network, where it can be safely sent to the fog or 

cloud layer for further processing or storage. Once 

received, authorized users with access to the original 

permutation function and encryption key can decrypt 

and reconstruct the original ECG data, ensuring that 

patient information remains secure and confidential. 

Dynamical systems that possess multiscroll 

attractors can reveal more complicated dynamics 

than conventional chaotic systems with single-scroll 

attractors. The state space equation for an automated 

chaotic system is defined as 

�̇�1 = −𝑎𝑥1 + 𝑏𝑥2𝑥3                                               (1) 
�̇�2 = −𝑐𝑥2

3 + 𝑑𝑥1𝑥3                                                   (2) 
�̇�3 = 𝑒𝑥3 − 𝑓𝑥1𝑥2                                                            (3) 

The above equation(1),(2),(3) can be modified by the 

adding the hyperbolic equation 𝑝1 𝑡𝑎𝑛ℎ( 𝑥2 + 𝑔) 
which is given in  eqn 

�̇�1 = −𝑎𝑥1 + 𝑏𝑥2𝑥3                                 (4) 
�̇�2 = −𝑐𝑥2

3 + 𝑑𝑥1𝑥3                                                 (5) 
�̇�3 = 𝑒𝑥3 − 𝑓𝑥1𝑥2 + 𝑝1 𝑡𝑎𝑛ℎ( 𝑥2 + 𝑔)                 (6) 

Chaotic attractor is obtained when 𝑎 = 2, 𝑏 = 6, 

𝑐 = 6, 𝑑 = 3, 𝑒 = 3, 𝑓 = 1, 𝑝1 = 1, 𝑔 = 2and the 

chosen initial criteria are [𝑥1(0), 𝑥2(0), 𝑥3(0)] =
[0.1,0.1,0.6].  

When the hyperbolic function is commenced in first 

state with the parameter 𝑔 = −3and for the initial 

criteria [0.1, −0.1,−0.6] it BWOws double scroll 

attractor which is BWOwn in Figure 5.When 

commenced in the second state, with  

parameters𝑝1 = −1, 𝑔 = 3and initial criteria 
[0.1,−0.1,−0.6] it BWOws four scroll which is 

BWOwn in Figure 5. 

 

 (a) 

 

       (b) 
 

Figure 5. Fractional Bifurcation Diagrams for the 

preferred Multi Scroll Chaotic Systems 
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3.3 Fog Gateway 

 

The Fog Gateway plays a key role in ECG data 

transmission, serving as a bridge among edge IoT 

devices and the cloud. Located near data sources, it 

processes data locally to reduce latency and improve 

response times, essential for real-time healthcare 

tasks like detecting arrhythmias. This setup also 

optimizes bandwidth by handling tasks typically 

done in the cloud. The gateway collects ECG data 

from multiple devices, managing large volumes 

from various patients or continuous readings. It 

preprocesses the data by removing noise and 

artifacts, ensuring quality. By performing these tasks 

locally, it reduces the cloud's workload and 

streamlines data transmission.When comparing fog-

based and cloud-based security models, the 

suitability of fog-based security for real-time 

healthcare becomes evident. Fog-based models 

enable encryption at the edge, closer to the data 

source, which minimizes latency and enhances data 

integrity before transmission. In contrast, cloud-

based models rely on centralized encryption and 

security protocols that often introduce delays, 

making them less suitable for time-sensitive 

healthcare scenarios. By processing data locally, 

fog-based models reduce the risk of exposure during 

transmission and are better equipped to handle the 

dynamic requirements of real-time patient 

monitoring. 

Beyond encryption, the fog gateway supports real-

time analysis by performing lightweight data 

processing on-site. While more complex analytics 

are reserved for the cloud, the gateway can run 

preliminary analysis algorithms to monitor for 

potential issues in real-time. For example, it can 

identify irregular ECG patterns, such as arrhythmias, 

and generate alerts for healthcare providers. This 

real-time analysis capability enables the fog gateway 

to actively contribute to patient monitoring, allowing 

for rapid intervention in critical situations, rather 

than merely acting as a passive data relay. After data 

encryption and any preliminary analysis are 

complete, the fog gateway transmits the processed 

ECG data to the cloud for long-term storage and 

comprehensive analysis. 

The encrypted format assures that even if 

intercepted, the data remains secure and inaccessible 

to unauthorized users. Additionally, the gateway 

may employ data compression techniques to reduce 

transmission times and optimize bandwidth, further 

enhancing the efficiency of data flow. By balancing 

local processing with secure cloud integration, the 

fog gateway maintains a seamless data pipeline from 

IoT devices to healthcare providers, ensuring that 

ECG data is managed efficiently, securely, and in 

real time. In essence, the fog gateway is a critical 

component of this architecture, facilitating data 

preprocessing, encryption, real-time analysis, and 

secure cloud integration. Its strategic positioning and 

functionalities help reduce latency, increase data 

security, and improve response times, making it a 

robust solution for managing sensitive, time-

sensitive ECG data in healthcare. This 

comprehensive approach meets the rigorous 

demands of medical data handling, offering a 

privacy-compliant and reliable framework for real-

time patient monitoring. 

4. Experimental Evaluation 
 

The outcomes were achieved using a PC workstation 

equipped using the subsequent specifications: Intel 

i7 CPU, 16GB RAM, Windows 11 operating system 

with a clock speed of 3.2 GHz. 

4.1 Packet Delivery Ratio  

 

 

Figure 6. Average Packet Delivery Performance of the 

different routing algorithms in WBSN routing 

 

PDR is a vital benchmark, denoting the percentage 

of packets delivered successfully to their destination 

relative to the overall packets sent from the source. 

A higher PDR denotes reduced data loss in the 

transmission process. Figure 6 illustrates the results 

obtained from the APDR from the different 

optimization algorithm. From Table 2, the proposed 

model exhibits the 99% to95% APDR with the 

increasing number of rounds when assessed with 

residing schemes like PSO (APDR=65% to 80%), 

ACO (APDR=68% to82%) FFO (APDR=70% 

to80%), HBO (APDR=75% to87%) and TT-SHO 

(APDR=80% to 87%) respectively. Thus, the put 

forward model is viewed as exceptionally suitable 

for a larger number of rounds with optimal data 

transmission. 
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Table 2. Comparative Analysis of APDR Across 

Different Models and Schemes 

Model APDR Range 

(%) 

PSO 65% to 80% 

ACO 68% to 82% 

FFO 70% to 80% 

HBO 75% to 87% 

TT-SHO 80% to 87% 

Proposed 

Model 

95% to 99% 

 

4.2 Throughput Analysis 

 

The total number of packets successfully delivered 

from the source to the destination in the network is 

referred to as throughput. The results from the 

throughput analysis are presented in Figure 7. Upon 

analyzing the outcomes, the recommended structure 

demonstrates superior throughput across all 

iterations. Even at the 1500th iteration, the 

throughput of the recommended structure is 95%, 

while the average throughput for the current model 

remains below 70%. Based on this analysis, the 

recommended model is more suitable for effective 

data transmission. 

 

Figure 7. Throughput Analysis for the Different 

Optimization Models used in WBSN routing mechanism 

4.3 Packet Overhead Analysis 

 

To ensure the uninterrupted control packets and 

retaining the outcomes to control the packet 

overhead are presented in Figure 8.  The evaluation 

of packet overhead is presented in Figure 8. Trial 

analyses demonstrate that the recommended model 

reliably produces the least packet overhead as the 

cluster head is selected for an efficient transmission 

of the data which minimizes the overhead recorded 

by the recommended scheme. In the 1500th round of 

iterations, packet overhead recorded is 42% which is 

comparatively lower than the other existing models. 

 
Figure 8. Packet Overhead Analysis of the Different 

Optimization Models used in the WBSN Experimentation 

4.4 Encryption Time Analysis 

 

Our proposed framework for ECG data transmission 

significantly reduces encryption time compared to 

traditional algorithms, which often introduce latency 

that can hinder real-time processing. By utilizing 

advanced chaotic encryption techniques, our 

framework achieves an encryption time of only 

milliseconds. This efficiency is crucial in healthcare 

settings, where timely leverage to data of the patient 

can influence medical decision-making and patient 

outcomes. In contrast, conventional algorithms 

typically exhibit lower encryption times as shown in 

Figure 9 to Figure 10. By minimizing latency  

 
Figure 9. Comparative Analysis of Encryption Speed for 

Existing Algorithms with Varying Data Sizes (10 

Attributes) 
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Figure 10. Comparative Analysis of Encryption Speed 

for Existing Algorithms with Varying Data Sizes (10 

Attributes) 

without compromising security, our framework 

ensures that sensitive health information is 

transmitted swiftly and securely. This advancement 

highlights the framework's potential to enhance the 

effectiveness of IoT-enabled healthcare systems, 

enabling prompt interventions and improving patient 

care. 

 
4.5 Decryption Time Analysis 

 

The decryption performance of our proposed 

framework for ECG data transmission is a key factor 

in its overall effectiveness in real-time healthcare 

applications. By utilizing efficient chaotic 

decryption algorithms. This rapid decryption 

capability ensures that healthcare professionals can  

 
Figure 11. Comparative Analysis of Decryption Speed 

for Existing Algorithms with Varying Data Sizes (15 

Attributes) 

 
Figure 12. Comparative Analysis of Decryption Speed 

for Existing Algorithms with Varying Data Sizes (10 

Attributes) 

 

quickly access sensitive patient data, enabling timely 

decision-making and interventions during critical 

moments. The swift response time significantly 

reduces potential delays that could arise from 

traditional decryption methods, which often take 

considerably longer, averaging between Figure 11 to 

Figure 12. 

Wireless Sensor Networks and AI has been well 

studied and it has been reported in the literature [21-

33]. 

 

5. Conclusion 
 

The integration of a fog gateway in healthcare IoT 

systems for ECG data transmission offers an 

effective solution to meet the demands of real-time 

patient monitoring. By positioning the gateway close 

to IoT devices, this architecture significantly reduces 

latency and improves response times, enabling 

localized data processing essential for immediate 

medical decision-making. The proposed model 

demonstrates that the fog gateway can perform data 

aggregation, preprocessing, and chaotic encryption, 

ensuring that sensitive health information remains 

secure during transmission and complies with 

stringent privacy and regulatory requirements. The 

encryption and decryption times achieved by this 

method are highly efficient, with optimized 

performance tailored for real-time applications. This 

highlights the fog gateway's capability to handle 

large volumes of ECG data while maintaining robust 

security. Additionally, the gateway's ability to 

perform preliminary analysis facilitates early 

detection of irregularities, providing timely alerts 

that enable prompt medical intervention—a critical 

feature in urgent healthcare scenarios where every 
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second counts. Overall, the fog-based architecture 

delivers a robust, efficient, and secure framework for 

managing ECG data, contributing to enhanced 

healthcare delivery and improved patient outcomes 

in IoT-enabled medical environments. Future work 

could explore adapting the proposed model for other 

types of medical data, such as MRI images, glucose 

levels, or blood pressure readings, to expand its 

applicability in IoT-enabled healthcare systems. By 

addressing variations in data size and structure, the 

model could provide a versatile solution for the 

secure and efficient transmission of diverse medical 

information. 
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