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Abstract:  
 

Recently, the practice of Chebyshev polynomials in public-key system design has been 

recommended. In fact, they have certain satisfying chaotic features that make them 

appropriate for usage in cryptography. Thereby, various public-key cryptosystem 

employing Chebyshev polynomials has been focused however, the successive analysis 

has revealed its insecurity. In this paper, a novel Chebyshev polynomial based ElGamal 

Encryption with Diffie- Hellman Key Exchange (CPEE-CFGC) is proposed for 

guaranteeing security in various applications. The various steps involve in CPEE-CFGC 

algorithm are key generation, encryption and decryption with secure key exchange 

process. In the key generation process, the private keys are generated using Fuzzy 

Logistic Tent Membership Function (FLMF) for each party engaging in the 

communication. Then, the optimal keys are selected using Greater Cane Rat Algorithm 

(GCRA). The Diffie Hellman key exchange mechanism is exchange the keys in an 

unsecure channel. Further, the encryption and decryption process are carried out using 

chebyshev polynomial based ElGamal encryption (CPEE) algorithm. The simulation of 

CPEE-CFGC algorithm is carried out using python programming language, and the 

performance is evaluated with dissimilar performance indicators. As a result, the CPEE-

CFGC has obtained a better key generation time of 10256.25 ms, encryption time of 

5160.78 ms, decryption time of 230.45 ms and total execution time of 12100.57ms by 

varying the bit size to 2048 bits than the existing algorithms. 

 

1. Introduction 

 
Typically, the design and analysis of cryptography 

is considered as a mathematical approach that is 

closely associated with electronic communication 

and computer technologies in order to ensure secure 

communication via insecure channels. Despite the 

great efficacy of conventional symmetric 

encryption techniques, the confidentiality of 

ciphertext is lost once the key is exposed, and the 

security of ciphertext depends only on the key's 

secrecy in the process of key distribution and 

administration [1-3]. It is challenging to pass the 

key between the sending and receiving ends if they 

are far apart and the key requires to be altered 

frequently. Diffie and Hellman firstly presented the 

idea of public-key cryptography to deal the 

confidentiality issues in symmetric encryption 

systems, mainly in multi-user communication 

networks [4, 5]. 
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The first relatively complete public-key 

cryptography algorithm, RSA was offered by 

Rivest, Shamir, and Adleman in 1977. Since then, 

numerous public-key cryptographic algorithms, 

comprising the ElGamal algorithm, lattice-based 

cryptography, the elliptic curve cryptography 

(ECC), the McEliece algorithm, the Mer-Hellman 

knapsack algorithm, and password-based public-

key cryptography have been introduced based on 

various computational problems [6-8]. One of the 

most effective and well performing public-key 

cryptography algorithm still recognized is ElGamal. 

The difficulty of computing discrete logarithms in a 

finite field is the base of ElGamal encryption. By 

permitting the sender to encrypt a plaintext with the 

public key of receiver and the recipient to decrypt 

the ciphertext with their private key, it guarantees 

confidentiality [9-10]. 

Several ElGamal's encryption techniques have 

become simple to break owing to the rapid 

advancement of computer technology. In order to 

replace or supplement existing public-key 

cryptographic algorithms, a new practical public-

key cryptographic algorithms must be studied since 

the conventional public-key cryptographic 

algorithms are continuously encountering different 

challenges. Meanwhile, the obvious relationship 

between the fundamental properties of chaos 

transformations, such as the mixture, sensitivity to 

parameters and initial values, and cryptography are 

stated because these properties support well with 

the major need for secure encryption system. In 

contrast to block cipher systems and chaotic 

sequences, the study on chaotic public-key 

cryptography is still lacking [11], and there are few 

efficient and practical chaotic encryption 

techniques. Paying attention to favorable properties 

of chaotic mappings and classical cryptology 

principles is still relatively a new field. 

A chebyshev polynomial-based public-key 

encryption technique is stated in [12]. Regretfully, 

it has determined to be insecure owing to its 

vulnerability to specific algebraic attacks and 

inefficient due to its complex calculations. A 

unique key agreement scheme based on classical 

RSA method using chaotic mappings and discrete 

logarithm problems over finite fields [13] is then 

introduced. This method depends on chebyshev 

polynomial value over finite fields and ensures key 

agreement security by evading past active attacks. 

However, it is challenging to ensure consistency as 

well as reliable key generation and exchange. 

Further, an identity-based encryption system with 

chebyshev polynomials [14] has presented but it 

exhibits security flaws.  

Recently, the chaotic public-key cryptography has 

become the new advancements [15-18]. In [19], a 

four-dimensional hyperchaotic map is employed to 

build a chaos-based cryptosystem with effective 

substitution and permutation methods. During the 

substitution stage, the final encrypted image has 

obtained by effectively XORing the key stream 

with scrambled images. Nevertheless, when the 

parameters of chaotic map are not selected 

correctly, they could have major sensitivity issues 

and possible weaknesses. A reliable and effective 

image encryption scheme is suggested in [20] to 

provide significant security for digital images. It is 

based on dynamic DNA encoding and DNA 

operations associated with chaotic maps, such as 

the henon map, thelorenz system, and the logistic 

map, with simple structures and highly chaotic 

behavior. The limitations includes, low 

randomness, low key space, low sensitivity to 

plaintext and keys, and lower execution speed. 

Henceforth, in this paper, an enhanced secure 

communication based on integrating chebyshev 

polynomial based elgamal encryption with diffie-

hellman key exchange is focused. The major 

contributions of the proposed CPEE-CFGC 

algorithm are presented below as follows: 

 To propose a novel Chebyshev polynomial 

based ElGamal Encryption with Diffie- 

Hellman Key Exchange (CPEE-CFGC) for 

securing data with higher confidentiality.  

 To provide Fuzzy Logistic Tent 

Membership Function (FLMF) for 

generating the private keys used for 

encryption.  

 To provide a metaheuristic optimization 

algorithm, Greater Cane Rat Algorithm 

(GCRA) for selecting the optimal keys.  

 To improve the privacy of data, an efficient 

chebyshev polynomial based ElGamal 

encryption (CPEE) is employed. 

 To analyze the performance of proposed 

CPEE-CFGC algorithm by evaluating 

varied metrics and comparing the results 

with other existing methods for proving the 

efficacy. 

The planning of the work is delivered as follows: 

Section 2 offers the literature review of the existing 

works, Section 3 expands on the proposed CPEE-

CFGC algorithm, Section 4 discusses the results 

and analysis of the work and Section 5 

accomplishes the conclusion and future scopes. 

 

2. Related Works 
 

Chunfu Zhang et al. [21] recommended an 

enhanced public key cryptography approach based 

on chebyshev polynomials and RSA. This 

algorithm addressed the drawbacks of earlier 

approaches by utilizing an alternate multiplication 
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coefficients and necessitating participants to 

disclose the specific value selection rules. Higher 

algorithm complexity was accomplished in the key 

generation and encryption/decryption phases by 

engaging more intricate intermediate process, 

which strengthened the method's defense against 

ordinaryattacks. Higher computation time, and 

lower efficacy in case of large prime bit sizes, were 

the shortcomings of this approach.  

Sangjukta Das & Suyel Namasudra et al. [22] 

introduced an encryption strategy exploiting elliptic 

curve cryptography (ECC), advanced encryption 

standard (AES), and Serpentin order to safeguard 

healthcare data in IoT-enabled healthcare 

infrastructure. This hybrid encryption method, 

which had incorporated symmetric and asymmetric 

encryption algorithms, had enhanced the security 

measures of the medical data. Furthermore, an 

elliptic curve-based digital signature utilized in this 

method guaranteed the data integrity. Even with 

enhanced performance, the efficiency was low. 

For secure data transfer, M. Indrasena Reddy et al. 

[23] offered enhanced ECC and chaotic mapping 

with fruitfly optimization (FOA). Todiminish the 

amount of input data, compression wasemgagedif 

the sender's plain text was first received. 

Complicated data was encrypted using the 

improved ECC (IECC) algorithm. The data was 

hidden by shuffling the pixels in the image through 

the usage of Chaotic mapping basedFOA, which 

supported the embedding of encrypted data. 

Consequently, there was diversity in the secret data. 

The limitations of this approach were higher 

encryption and decryption times.  

Further, to progress the security of digital data, 

Mujeeb Ur Rehman [24] suggested a chaotic image 

encryption that was strengthened by means of 

quantum mechanics. By using quantum coding with 

1-D sine-based chaotic maps (1-D SBCM) and 

adjusting the seed values, a random sequence was 

generated initially. Then, an enhanced quantum 

representation (EQR) model wasexploited to 

sensibly design a pseudorandom number generator 

(PRNG). Aquantum right cyclic shiftoperator and a 

quantum XOR operator were also utilized within 

this framework. These operators were essential to 

the formation of particularly durable encrypted 

images.  

Moreover, to address the frequent difficulties with 

chaotic encryption techniques, M. Vijayakumar & 

A. Ahilan [25] presented a new encryption system 

based on chaotic map substitution boxes (S-box) 

and cellular automata (CA). This methodhad 

presented a 4D memristive hyperchaos with a more 

outstanding chaotic range, improved uncertainty, 

and ergodicity as an alternative to the software-

based method, which was fragile and provided 

limited throughput, to resolve the insufficient 

randomness delivered by the 1D chaotic map. This 

couldmake this strategy less susceptible to 

manipulation. 

 

2.1 Problem statement 

 

In recent days, various methods have been 

introduced to address the requirement for strong 

encryption algorithms to defend sensitive data 

transferred through unsecure channels. Even if they 

are efficient, the conventional encryption methods 

mostly rely on the secrecy of shared keys to possess 

information private. Nonetheless, securely 

distributing and storing these keys becomes 

challenging, predominantly or when 

communicating parties are geographically distant or 

when frequent key changes are desirable. The risk 

to data secrecy modelled by symmetric encryption 

systems' exposure to key leakage is considerable. 

Public-key cryptography evolved as a solution to 

these issues and assisted symmetric encryption 

techniques overcome some of their drawbacks. 

RSA, ECC, Chebyshev polynomial based RSA etc., 

are some of the public-key cryptographic algorithm 

that delivers a more secure process of encryption by 

using key pairs, which are composed of a private 

key for decryption and public key for encryption. 

However, the secrecy and integrity of 

communication may still be threatened by potential 

susceptibilities like tampering and man-in-the-

middle attacks, even with the improvements in 

public-key cryptography. Thereby, the goal of the 

research is to use Chebyshev polynomials and 

Elgammal algorithms to improve the dependability 

and security of public key encryption techniques. 

The proposed approach intents to reduce frequent 

attacks and progress the overall security of the 

cryptographic system by encrypting data using 

enhanced Chebyshev polynomials, which are 

distinctive in mathematics. This novel method 

pursues to deliver a more reliable algorithms for 

secure communication in different applications by 

addressing the limitations of existing public-key 

cryptography algorithms. 

 

3. Proposed Methodology 
 

This section combines the potential of Polynomial 

based ElGamal Encryption with Diffie- Hellman 

Key Exchange (CPEE-CFGC) for guaranteeing 

security in various applications. These techniques 

involve the key generation process followed by the 

stages of encryption and decryption and the secure 

key exchange process. The unique feature of 

proposed ElGamal encryption is the utilization of 

Chebyshev polynomials as a part of the encryption 
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process. Chebyshev polynomials are own family of 

orthogonal polynomials that possess potential 

things which make them appropriate for 

cryptographic algorithms. In addition to that Diffie-

Hellman key exchange mechanism specifically 

used to securely create a shared secret key between 

two parties over an insecure channel primarily due 

to the discrete logarithm problem. During the initial 

step private keys are generated using Fuzzy 

Logistic Tent Membership Function (FLMF) for 

each party engaging in the communication, and the 

optimal keys are selected using Greater Cane Rat 

Algorithm (GCRA). In the process of shared secret 

key computation, the Diffie Hellman key exchange 

mechanism uses suitable parameters such as prime 

numbers and generators plus the modular 

exponentiation. In the encryption stage, the sender 

converts the plaintext into a polynomial; the choice 

of which polynomial to use is a random Chebyshev 

polynomial that helps increase security. All these 

components make up a ‘ciphertext polynomial’, 

which also contains a chosen random value. The 

sender then sends this ciphertext polynomial 

together with other parameters of encryption 

After the ciphertext polynomial is received by the 

intended receiver, they decrypt the original 

plaintext message by applying the receiver’s private 

key and the received parameters accordingly. This 

integration of cryptographic techniques improves 

the functionality of communication security by 

combining Diffie-Hellman’s key exchange process 

with the encrypted strength of the Chebyshev 

Polynomial. If the opponent manages to intercept 

the communication and gain access to the public 

keys, it becomes extremely difficult for the 

opponent to decipher messages or extract the shared 

secret without the corresponding private keys, 

which makes the high level of security 

comparatively more achievable.The block diagram 

of the proposed method is given in Figure 1.  

 

3.1 Private Key generation 

 

In CPEE-CFGC algorithm, a unique key generation 

method, fuzzy logistic tent membership function 

(FLMF) that uses chaotic maps is engagedto 

generate keys for secure communication. The main 

intension of FLMFis to make intricate for the 

attackers to decode the encrypted information with 

no secret key understanding.The fuzzy logistic tent 

map, which is created by combining fuzzy 

triangular tent and logistic maps, produces a 

random series of numbers that can be employed as 

secure encryption keys. Here, a fuzzy triangle 

function is utilized to introduce an adaptation of the 

traditional tent map. The created key is used during 

the encryption process to improve the security and 

confidentiality of the data. As a result, by applying 

a variety of mathematical ideas, the space of 

potential secret keys is increased, building the 

system more resistant to attacks. The block diagram 

of FLMF for private key generation is provided in 

Figure 2. 

 

Input data

Private key generation 

using Fuzzy Logistic Tent 

Membership Function

Data encryption using 

chebyshev polynomial based 

ElGamal encryption

Performance 

analysis

Optimal key selection using 

Greater Cane Rat Algorithm 

 
Figure 1. Block diagram of proposed CPEE-

CFGCmethod 

 

Apply 

logistic map

Apply tent 

map

Fuzzy tent 

map

Key 

generation

Generated 

key

Combine 

fuzzy 

numbers

XOR 

operation

 
Figure 2. Block diagram of FLMFfor private key generation  
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3.1.1 Logistic Map 

 

A one-dimensional chaotic map with exceptional 

chaotic properties is termed as logistic map. The 

following describes the logistic map's numerical 

expression:  

 
𝑧(𝑘)(𝑙𝑜𝑔 𝑗) = 𝑤1 × 𝑧(𝑘−1) × (1 − 𝑧(𝑘−1))           (1) 

 

where, 𝑤1suggests the control parameter and its 

value range is [0,4]. The logistic map is 

exceptionally sensitive to initial condition 𝑧(𝑘), 

which range from (0,1).  

 

3.1.2 Tent map 

 

The tent map shows chaotic behavior since it is a 

nonlinear dynamical system and is sensitive to 

parameter values and initial conditions. During 

encryption, the tent map can be utilized to generate 

pseudorandom number sequences that are engaged 

as encryption keys. The tent map's numerical 

equationis provided below: 

 

𝑎(𝑗) = {
𝑣2 × 𝑎(𝑘−1), 𝑖𝑓0 ≤ 𝑎(𝑗−1) <

1

2

𝑣2 × (1 − 𝑎(𝑗−1)), 𝑖𝑓
1

2
≤ 𝑎(𝑗−1) ≤ 1

            (2) 

 

where, 𝑣2 ∈ (0.5,2) implies the parameter and its 

initial value range is (0,1). 

 

3.1.3 Fuzzy number 

 

Fuzzy numbers are one kind of mathematical model 

that is used to characterize imprecision and 

uncertainty in data. They are signified by a 

membership function that disperses a membership 

degree to each element in the discourse universe. 

The membership degree is a number that varies 

from0 to1, where 1 signifies full membership 

and0designates no membership. In the triangular 

fuzzy membership function, three parameters such 

as the lowest value (𝑐), middle value (𝑑) and 

maximum value (𝑒) that are located at the triangle 

peak are used to govern inputs. However, 𝑐 and 𝑒 

are placed at the bottom of the triangle, by this 

means 𝑐 ≤ 𝑑 ≤ 𝑒. Now, the equation of triangular 

membership function is delivered as follows: 

 

𝑓(𝑧, 𝑐, 𝑑, 𝑒) = 𝑀𝑎𝑥𝑖 (𝑀𝑖𝑛𝑖 (
𝑧−𝑐

𝑑−𝑐
,
𝑒−𝑧

𝑒−𝑑
) , 0)            (3) 

 

By using the triangular membership function, the 

tent map and triangle membership values are joined 

to form the fuzzy tent map. This produces an 

arbitrary, complex sequence number that is utilized 

as a secret key during the encryption process. 

Furthermore, an addtional random sequence 

numbers that function as secret keys are created 

using a logistic map. Additionally, the parameters 

producedby means of the triangle membership 

function are used to modify the original keys map 

equations. This amalgamation can be used to 

generate optimal keys for data encryption. 

 

3.1.4 Fuzzy tent map 

 

Fuzzy mathematics concepts are extensivelyused to 

create extremely chaotic systems for 

encryptionprocessas tent maps can exhibit complex 

and unpredictable behavior. As a result, the CPEE-

CFGC algorithm incorporates tent mapping with 

the fuzzy mathematics idea. During secure 

communication, the data is safely encrypted using 

the intricate behavior exhibited by the map. Using 

the advantages of both ideas, the CPEE-CFGC 

algorithm aims to provide more security. The 

following is the present implementation of fuzzy 

numbers to tent maps: 

 

𝑧(𝑘+1) = {
𝑤2 × 𝑓𝑡𝑟𝑖 × 𝑏(𝑘−1), 𝑖𝑓0 ≤ 𝑏(𝑘−1) <

1

2

𝑤2 × 𝑓𝑡𝑟𝑖 × (1 − 𝑏(𝑘−1)), 𝑖𝑓
1

2
≤ 𝑏(𝑘−1) ≤ 1

            

(4) 
 

where, 𝑓𝑡𝑟𝑖suggests the fuzzy triangular.  

 

3.1.5 Fuzzy logistic tent membership function 

 

The secure keys for encryption is a sequence of 

random numbers created using a hybrid map and 

fuzzy concept. In order to enhance the security and 

confidentiality of data during the encryption 

process, the logistic map is reflected and utilized as 

a key. Fuzzy mathematics is used to provide values 

that affect initial keys in each iteration and produce 

new cipher text. To get the final key in FLMF, the 

keys created in the first phase using the logistic 

map and fuzzy tent map are combined using an 

XOR operation. Now, the final key generation 

expression is stated as follows: 

 
𝐸𝐾𝑒𝑦 = 𝑧(𝑘)(𝑙𝑜𝑔 𝑗) ⊕ 𝑧(𝑘+1)            (5) 

 

After generating the secret/private key, the optimal 

keys are selected and through the metaheuristic 

optimization algorithm.  

 

3.2 Optimal key selection 

 

After generating the private and public keys, the 

proposed CPEE-CFGC algorithm chooses the 

optimal keys using greater cane rat algorithm 

(GCRA).GCRA is one of the recent metaheuristic 
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approach employed for solving optimization issues. 

The clever foraging practices ofgreater cane rats 

(GCR) during and after mating season served as the 

inspiration for GCRA. GCRs are nocturnal and 

intelligent enough to leave trails in the grass and 

reeds where they forage. These trails would finally 

lead to sources of water, food, and shelter. The 

exploration stage will beginif theyleave from 

several shelters scattered around their area for 

foraging and leaving trails. It is presumed that the 

dominant male rodent keeps track of these routes, 

and other rats alter their position based on this 

information. Further, the males separate from the 

group if they identify the breeding season. The 

foraging activities are concentrated in areas with a 

surplus of food sources after the group separation, 

and facilitating exploitation. Consequently, to 

portray the design of GCRA and perform the 

optimization objectives, the incisive foraging paths 

and behaviors during the mating season are 

mathematically modeled. In addition, a 

comprehensive analysis of convergence and 

computational outcomes proved the effectiveness 

and stability of GCRA. Besides, the GCRA 

outperformed competing optimization algorithms 

by creating optimal or nearly optimal solutions and 

evading the trap of local minima. Due to these 

advantages, the proposed CPEE-CFGC algorithm 

has selected GCRA for optimal key selection. Like 

other optimization algorithms, GCRA generate the 

initial population of GCR, which means the keys 

are generated using the below equation. 

 

𝑌 =

[
 
 
 
𝑦1,1𝑦1,2 ⋯𝑦1,𝑑−1𝑦1,𝑑

𝑦2,1𝑦2,2 ⋯𝑦2,𝑑−1𝑦2,𝑑

⋮⋮ 𝑦𝑗,𝑘 ⋮⋮

𝑦𝑝,1𝑦𝑝,2 ⋯ 𝑦𝑝,𝑑−1𝑦𝑝,𝑑]
 
 
 

           (6) 

 

where, 𝑌 indicates the complete GCR population, 𝑑 

and 𝑝 resemble the dimension of problem and the 

size of the population. Now, the below equation is 

utilized to randomly produce the individual rat 

(𝑦𝑗,𝑘) of𝑗𝑡ℎposition in 𝑘𝑡ℎdimension.  

 
𝑦𝑗,𝑘 = 𝑅𝑎𝑛𝑑(𝑈𝑏𝑘 − 𝐿𝑏𝑘) + 𝐿𝑏𝑘            (7) 

 

where, 𝐿𝑏𝑘 and 𝑈𝑏𝑘 designate the lower and upper 

bound in 𝑘𝑡ℎ dimension, and𝑅𝑎𝑛𝑑 represents the 

random number between 0 and 1.  

A variable that controls whether or not it is a rainy 

season is specified as 𝜗. Depending on this 𝜗 value, 

the GCRA enters either the exploitation or the 

exploration stage. The 𝜗value is sensibly chosen to 

strike a balance between exploration and 

exploitation. After a thorough parametric analysis, 

the 𝜗 value is carefully adjusted to 0.5.  

𝑦𝑗,𝑘
𝑁𝑒𝑤 = 0.7 ∗

(𝑦𝑗,𝑘+𝑦𝑙,𝑘)

2
           (8) 

 

where,𝑦𝑙,𝑘represents the dominant male in 𝑘𝑡ℎ 

dimension, 𝑦𝑗,𝑘 designates the current position of 

GCR, and 𝑦𝑗,𝑘
𝑁𝑒𝑤indicates the new position of GCR. 

 

3.2.1 Fitness computation 

 

Forming a fitness function to measure each 

solution's performance is indispensable in order to 

estimate the fitness of solution. The below equation 

presents the formulation of fitness function utilized 

for optimal key selection. 

 
𝐹𝐹 = 𝑀𝑎𝑥𝑖(𝑘𝑏𝑡)            (9) 

 

where,𝑘𝑏𝑡 indicates the key breaking time, 𝐹𝐹 

represents the objective function that yields the 

maximum key breaking timeas an optimal solution. 

Because of this, GCR solutions compute the key 

breaking time for each data matrix solution. If the 

solution accomplishes optimal fitness, it is 

terminated; if not, it uses the GCRA to update the 

public and private keys. 

 

3.2.2 Exploration stage 

 

The GCR construct their burrows/nest, which are 

shallow tunnels around their territory. When GCRs 

leave the different shelters to go foraging, they 

either scavenge for new food sources, or they 

follow trails to previous food sources and leave 

trails.The below equation shows how the 

dominating male's position defines a new position 

for the remaining rat population in the search area. 

 
𝑦𝑗,𝑘

𝑁𝑒𝑤 = 𝑦𝑗,𝑘 + 𝐷 × (𝑦𝑙,𝑘 − 𝑠 × 𝑦𝑗,𝑘)            (10) 

 

where, 𝑦𝑙,𝑘 represents the dominant male in 

𝑘𝑡ℎdimension,𝐷 indicates the random number 

defined within the problem space boundaries, 

pretending the dispersed food sources and shelter.  

During this stage of GCR motion simulation, the 

fittest rat is updated and the location of the other 

rats are altered in accordance with the newly 

compute fittest rat when the fitness of another rat 

exceeds the fittest rat. If not, it leaves from the 

position of fittest rat. This movement technique of 

GCR is expressed in the below equation. 

 

𝑌𝑗 = {
𝑦𝑗,𝑘 + 𝐷 × (𝑦𝑗,𝑘 − 𝛽 × 𝑦𝑙,𝑘), 𝐹𝑗

𝑁𝑒𝑤 < 𝐹𝑗

𝑦𝑗,𝑘 + 𝐷 × (𝑦𝑛,𝑘 − 𝜒 × 𝑦𝑙,𝑘), 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
          (11) 

 

where, 𝑌𝑗 represents the upcoming or new state of 

the 𝑗𝑡ℎ GCR, 𝐹𝑦𝑙
specifies the value of dominant 
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male's fitness function,𝐹𝑦𝑗
specifies the current 

value of the fitness function. 𝑠 mimics the influence 

of an abundant food source that tends to increased 

exploitation. 

 

𝑠 = 𝐹𝑦𝑙
− 𝐷𝑖𝑡𝑒𝑟 × (

𝐹𝑦𝑙

𝑀𝑎𝑥𝑖𝑖𝑡𝑒𝑟
)            (12) 

 

A coefficient that mimics a dwindling food source 

and forces the search for new food or shelter is 

given as 𝛽 . 

 
𝛽 = 2 × 𝑠 × 𝑅𝑎𝑛𝑑 − 𝑠            (13) 

 

A coefficient that forces the GCR to relocate to 

other available plentiful food sources within the 

breeding space is specified as 𝜒. 

 
𝜒 = 2 × 𝑠 × 𝜛 − 𝑠            (14) 

 

where, 𝐷𝑖𝑡𝑒𝑟 resembles the current iteration, and 

𝑀𝑎𝑥𝑖𝑖𝑡𝑒𝑟 represents the maximum iteration.  

 

3.2.3 Exploitation stage 

 

The breeding season generally happens during the 

wet season, and varies according on the habitat. 

During the breeding season, the males are well-

known to scatter from the group. It is supposed that 

after group separation, the foraging activities will 

focus in regions with plentiful food sources. 

Thisstage is simulated initially by choosing a 

female 𝑛 at random such that 𝑛 ≠ 𝑙 (the dominant 

male). The intensification happens near the chosen 

female since breeding takes place near abundant 

foods sources. The modeling of the process is 

provided in below equation. 

 
𝑦𝑗,𝑘

𝑁𝑒𝑤 = 𝑦𝑗,𝑘 + 𝐷 × (𝑦𝑙,𝑘 − 𝜛 × 𝑦𝑛,𝑘)            (15) 

 

where, 𝑦𝑛,𝑘 designates the location of randomly 

chosen female in 𝑘𝑡ℎ dimension and 𝜛randomly 

selects values between 1 and 4, imitating the 

number of offspring producedannually by each 

female GCR. The newly computed location for 

GCR takes precedence over the previous position if 

it maximizes the value of target function, as 

represented by equation (1).During the iterations, 

better exploration and exploitation are instigated by 

the parameters 𝐷, 𝑠,𝜛, 𝜗, 𝛽, and 𝜒.The pseudocode 

of GCRA for optimal key selection is provided in 

Algorithm 1.  

 

 

 

 

 

Algorithm 1: Pseudocode of GCRA for optimal 

key selection 

Input:Population of GCR, 𝜗, maximum iteration 

Output: Optimal search outcome 

Start  

Initialize the size of population, and other 

parameters 

Compute the fitness of each GCR 

Choose the fittest GCR as the dominant male 𝑌𝑙 

Update the global best solution 

Update the enduring GCR depending on the 

location of 𝑌𝑙For𝑖𝑡𝑒𝑟 = 1:𝑀𝑎𝑥𝑖𝑖𝑡𝑒𝑟 

 Evaluate 𝐷, 𝑠,𝜛, 𝛽, 𝜒 

If𝑅𝑎𝑛𝑑 < 𝜗 
 Exploration: 

Update the position of current search agent  

Check boundary constraints 

Else 

 Exploitation: 

 Update the position of current search agent 

 Check boundary constraints 

End if 

 Compute the fitness of each GCR depending on the 

new location 

 Update search agent  

 Update global best 

 Choose a new dominant male 𝑌𝑙 

 End for 

Return global best solution 

End 

 

3.3 Data encryption and decryption 

 

3.3.1 General public key cryptography 

algorithm 

 

 Every user produces a key pair, 𝐾𝑒 =
(𝐾𝑒𝑑 , 𝐾𝑒𝑒), in which 𝐾𝑒𝑒 signifies the 

public key and 𝐾𝑒𝑑 resembles the private 

key. Theoretically, 𝐾𝑒𝑑 must be calculated 

from𝐾𝑒𝑒 for public key cryptography 

technique but in practice this is not possible 

because of greater computational 

complexity. 

 The information sender utilized the 

information receiver's publicly avalikable 

key, 𝐾𝑒𝑒, to encrypt the plaintext as 

follows: 𝐸(𝑝𝑙, 𝐾𝑒𝑒) = 𝐶𝑖, where 𝑝𝑙 
indicates the plaintext and 𝐶𝑖 specifies the 

encrypted ciphertext. 

 The information receiver uses their own 

privately held secret key, 𝐾𝑒𝑑, to decode 

the data: 𝐾𝑒𝑑: 𝐷(𝐶𝑖, 𝐾𝑒𝑑) = 𝑝𝑙. 
 

3.3.2 Chebyshev polynomials with their 

properties 
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Let 𝐶𝑖[−1,−1] be a vector space comprising of 

every continuous real-valued functions on[−1,1], 

then {𝑐𝑜𝑠( 𝑝 𝑐𝑜𝑠−1( 𝑦))}𝑝=0
𝑝=∞

 is a set of bases on 

𝐶𝑖[−1,1]. Let 

 
𝑈𝑝 = 𝑐𝑜𝑠( 𝑝 𝑐𝑜𝑠−1( 𝑦))            (16) 

 

then, 𝑈𝑝 is termed as 𝑝 order Chebyshev 

polynomial of first kind. It partakes the following 

properties: 

 First, 

 
𝑈0 = 1, 𝑈1 = 𝑦, and 𝑈𝑝+2(𝑦) = 2𝑦𝑈𝑝+1(𝑦) − 𝑈𝑝(𝑦)            

(17) 
 

 Secondly, the mapping 𝜌𝑝: 𝑦 → 𝑈𝑝 on 

[−1,1] is defined and then holds the 

following semi-group property. 

 
𝜌𝑚𝑝(𝑦) = 𝜌𝑚(𝜌𝑝(𝑦)) = 𝜌𝑝(𝜌𝑚(𝑦)).           (18) 

 

The properties are required to be extended to 

clearly state the design concept of chaotic key 

scheme.  

Theorem 1. The semi-group property of Chebyshev 

polynomials is valid on the interval (−∞, +∞); 
Theorem 2. If 𝑛 is an odd prime number and 𝑦 is a 

positive integer, then 

 
𝑈𝑛(𝑦) ≡ 𝑦(𝑚𝑜𝑑 𝑛);            (19) 

 

Theorem 3: Assume that 𝑦 and 𝑒 are positive 

integers and 𝑛 and 𝑞 are relatively prime. When 

𝑈𝑒(𝑦) ≡ 𝑦(𝑚𝑜𝑑 𝑛) and 𝑈𝑒(𝑦) ≡ 𝑦(𝑚𝑜𝑑 𝑞), then 𝑦 

 
𝑈𝑒(𝑦) ≡ 𝑦(𝑚𝑜𝑑 𝑛 𝑞)            (20) 

 

Proof. Since (𝑛, 𝑞) = 1, there exist integers 𝑡 and 𝑢 

such that 𝑡𝑛 + 𝑢𝑞 = 1, thereby, 𝑈𝑒(𝑦) =
𝑡𝑛𝑈𝑒(𝑦) + 𝑢𝑞𝑈𝑒(𝑦) ≡ 𝑡𝑛𝑦 + 𝑢𝑞𝑦 ≡ 𝑦(𝑚𝑜𝑑 𝑛 𝑞). 

Corollary 1. When 𝑈𝑒(𝑦) ≡ 1 for every 𝑦, and 

there are positive integers 𝑑 and 𝑒 satisfying 𝑒𝑑 ≡
1(𝑚𝑜𝑑 𝜙), then 

 
𝑈𝑒𝑑(𝑦) ≡ 𝑦(𝑚𝑜𝑑 𝑛 𝑞)            (21) 

 

where, 𝑛 and 𝑞 are coprime primes.  

 

3.3.3 Elgamal cryptosystem 

 

Assume that 𝑃 and 𝑄 are the two parties 

communicating with each other through an 

unsecured channel, with 𝑃 serving as the sender 

and 𝑄 as the receiver. 

Key generation: At first 𝑄 defines the primitive 

root 𝑔 modulo 𝑛 by choosing a large prime number, 

𝑚. ElGamal proposes that to ensure system 

security, 𝑛 should be selected so that 𝑛 − 1has at 

least one large prime factor. Let 𝑦(1 ≤ 𝑦 ≤ 𝑛 − 2) 

be the secret decryption key of 𝑄 and 𝑧(1 ≤ 𝑧 ≤
𝑛 − 2) be the secret encryption key of 𝑃. Now, 𝑄 

publishes 𝑚,𝑔, and 𝑎 after computing 𝑎 ≡
𝑔𝑦(𝑚𝑜𝑑 𝑛). 

Private keys: 𝑦, 𝑧 

Public keys: 𝑛, 𝑔, 𝑎 

Encryption:Now, the plain text 𝑚 encrypted by 𝑃 

as follows. 

 
𝑏 ≡ 𝑔𝑧(𝑚𝑜𝑑 𝑛)            (22) 

 
𝑐 ≡ 𝑚. 𝑎𝑧(𝑚𝑜𝑑 𝑛)            (23) 

 

Share 𝑏 and 𝑐 with 𝑄. 

Decryption: After receiving 𝑏 and 𝑐, 𝑄 recovers 𝑚. 

 
𝑏𝑦 ≡ 𝑎𝑧(𝑚𝑜𝑑 𝑛)            (24) 

 

𝑚 ≡ 𝑐. (𝑎𝑧)(𝑚𝑜𝑑 𝑛)            (25) 
 

where, (𝑎𝑧) represents the inverse of 𝑎𝑧 under 

modulo 𝑛.  

 

3.3.4 Chebyshev Polynomial based ElGamal 

Encryption 

 

The diffie-hellman key exchange (DHKE) is the 

basis of public-key cryptosystem well-known as 

ElGamal encryption algorithm. Discrete logarithms 

and modular exponentiation are utilized for both 

encryption and decryption processes. The 

chebyshev polynomial based ElGamal encryption 

(CPEE) can offer improved security features in 

combination with Chebyshev polynomials and 

other multiplication factors. The ElGamal 

encryption scheme using Chebyshev polynomials 

and alternative multiplication factors is described 

below as follows: 

 Key generation:Using generator 𝑔, a 

cyclic group 𝐺 of order 𝑛 is created. It 

is practicable to create every group 

element in a cyclic group with the 

powers of one of its own elements. 

Next, ℎ = 𝑔𝑦 is determined for 

randomly selected 𝑦 ∈ 𝛧𝑛
∗. Eventually, 

the public key is (𝐺, 𝑛, 𝑔, ℎ) and secret 

key is resembled as𝑥. Here, the public 

key is determined through the 

Chebyshev polynomial.  

 Encryption:The message 𝑀is 

encrypted by utilizing 𝑔 and 𝑥, which 

is selected through GCRA. The 
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encryption procedure outputs a pair of 

ciphertexts, (𝑐 = (𝑐1, 𝑐2)): 

 
𝑐 = 𝐸(𝑀) = (𝑔𝑥 , 𝑀ℎ𝑥) = (𝑔𝑥 , 𝑀𝑔𝑥𝑦) = (𝑐1, 𝑐2)            

(26) 
 

 Decryption: First, compute 𝑠 = 𝑐1
𝑦, 

where 𝑦 represents the secret key, is 

computed in order to decipher the 

ciphertext 𝑐. The decoding algorithm 

then functions as follows: 

 
𝑐2. 𝑠

−1 = 𝑀𝑔𝑥𝑦 . 𝑔−𝑥𝑦 = 𝑀            (27) 
 

3.4 Diffie-hellman key exchange 

 

The DHKE algorithm is a key exchange algorithm 

that is used in the proposed CPEE-CFGC algorithm 

to securely exchange the encrypted keys. The 

DHKE techniqueis an important constituent of 

modern cryptography. Itpermits two parties to 

securely exchange keys for encryption across an 

unstable communication channel. A huge prime 

integer and a primitive root are the two public 

parameters for the DHKE approach that both 

parties agree upon. Each party produces a private 

key for the both parties. Each party states its public 

key conforming to these specifications by raising 

the primitive root to the power of its private key 

modulo. These private keys are kept confidential. 

The publicly generated keys are exchanged by the 

parties and are produced significantly. Each party 

individuallycalculates the shared secret key by 

expanding the attained public key to modulo of its 

own private key after obtaining the public key of 

the other party.This shared secret key serves as the 

encryption key for their communication and is 

obtained by merging the public key of one party 

with the private key of other. Furthermore, an 

attacker cannot compute obtain the shared secret 

key from the exchanged public keys because of the 

discrete logarithm problem. In the event that 

communication is intercepted, this offers DHKE 

security. Accordingly, parties can exchange keys 

securely while maintaining the confidentiality and 

integrity of their communications using DHKE. 

The structure of DHKE algorithm for key exchange 

is provided in Figure 3. The following provides the 

steps that involved in DHKE algorithm for 

exchanging keys. 

 

 

Party A Party B

1. Party A and 

party B agree 

on the shared 

key publicly 

2. Party A associates 

secret key with shared 

key and transmit the 

outcome (D) to Party B 

4. Party A 

associates (E) with 

her secret key 

3. Party B associates 

his secret key with 

shared key as well as 

forwards the outcome 

(E) to Party A 

5. Party B 

associates (E) with 

his secret key 

6. Party A and 

Party B contain a 

shared secret key 

Public channel

 
Figure 3. DHKE algorithm for key exchange 
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Parameter setup: Two public parameters, 

specifically a large prime integer 𝑞 and a primitive 

root ℎ modulo 𝑞, are agreed by both parties.These 

parameters can knowby both partieseven if they are 

not secret. Moreover, each party produces their own 

set of private keys. These keys are symbolized to 𝑏 

for party 𝑃, and 𝑐for party 𝑄. These private keys 

are not exposed to any parties and are kept 

confidential. 

Computation of public key:Party 𝑃 computes its 

public keyby exploiting the primitive root ℎ to the 

power of its private key a modulo 𝑞. In 

mathematical expressions, it is stated as 𝑃 =
ℎ𝑏 𝑚𝑜𝑑 𝑞. Likewise, to computed its public key, 

party 𝑄exploits the primitive root ℎupraised to the 

power of its private key 𝐶 modulo 𝑞. Statistically, it 

is quantified as 𝑄 = ℎ𝑐 𝑚𝑜𝑑 𝑞. Next, the public 

keys 𝑃 and 𝑄 are exchanged by both parties 

through the unsecure communication channel. 

Calculation of shared secrets: Following the party 

𝑄′𝑠 public key distribution to Party 𝑃, it computes 

the shared secret key, 𝑆 by maximizing𝑄 to the 

power of its private key, 𝑏modulo 𝑞. It is 

scientificallyuttered as: 𝑆 = 𝑄𝑏 𝑚𝑜𝑑 𝑞. 

Correspondingly, upon finding party 𝑃′𝑠public key, 

𝑃, party 𝑄analyses the shared secret key, 𝑆by 

exploiting𝑃 to the power of its private key, 𝑐 

modulo 𝑞. In mathematical viewpoint, it is 

quantified as 𝑆 = 𝑃𝑐 𝑚𝑜𝑑 𝑞. Now, both the parties 

have the identical secret key, 𝑆, which is used for 

asymmetric encryption as well as decryption. 

Key Exchange:Both the party 𝑃 and party 𝑄contain 

the shared secret key. The shared secret key is the 

identical for both parties for the reason that it is 

independentlycreated by each party based on their 

private and the public key of the other party. Parties 

𝑃 and 𝑄 can remain communicating using this 

shared secret key as the assymmetric encryption 

key. Accordingly, in proposed method, DHKE 

delivers a secure method for exchanging keys over 

an unstable communication channel between two 

parties.  

 

4. Results and Discussion 
 

The proposed CPEE-CFGC performed the security 

examination on the enhanced public key encryption 

algorithm. Rendering to the theoretical evaluation, 

the CPEE-CFGC algorithm is a public key 

cryptosystem based on Elgammal algorithm with 

optimal key selection and chebyshev polynomials 

that deliberates both of their security aids and is 

capable of withstanding common attacks. 

Moreover, the attackers cannot exploit the 

Chebyshev polynomials’ periodicity to break it 

since the cosine representation of Chebyshev 

polynomials specified on the interval (−∞, +∞)is 

invalid. It can also endure popular modular attacks. 

The linear independence between plaintexts cannot 

be preserved after encryption transformation and 

this makesCPEE-CFGC resistant to low exponent 

attacks. The execution of proposed CPEE-CFGC 

algorithm is made using the python programming 

language. The analysis and implementation of 

CPEE-CFGC algorithm are carried out on Intel® 

core™ i5-10210U CPU @ 1.60GHz 2.11 GHz 8 

GB (7.79 GB usable), with windows 10 operating 

system.  

 

4.1 Performance Evaluation  

 

In this section, the outcome of the proposed CPEE-

CFGC algorithm is tested and compared with 

existing methods to determine the superiority of 

providing securing in data communication. 

Different evaluation metrics such as key generation 

time, encryption time, decryption time and total 

execution time are used in CPEE-CFGC algorithm 

and they are examined on dissimilar bit sizes of 

initial primes, varying from 64 to 2048. Key 

generation time is considered as a significant 

metrics that influence the practicability and 

efficiency of CPEE-CFGC algorithm. Figure 4 

describes the comparative analysis of key 

generation time with proposed CPEE-CFGC and 

other existing algorithms for varying bit sizes of 64, 

128, 256, 512, 1024 and 2048.  

 

 
Figure 4. Analysis of key generation time 

 

In contrast to existing techniques, the proposed 

CPEE-CFGC algorithm shows better enhancement 

in key generation time for varying number of bit 

sizes. The outcomes of this comparative analysis 

illustrate that the efficiency of CPEE-CFGC 

algorithm maximizes with bit size. Among the 

existing algorithms like elliptic curve cryptography 

(ECC), Elgammal, and hybrid elliptic curve 

elgammal (HECE),HECE work reasonably well for 
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varying bit sizes, with key generation time falling 

within reasonable bounds. However, the key 

generation time for this existing technique 

significantly increases if the bit size reaches to 

2048 bits and beyond, often ensuing in delays and 

lessened performance in the perspective of secure 

communications. Conversely, the GCRA in 

proposed CPEE-CFGC algorithm has produced 

keys more quickly even with maximizes bit sizes 

because it uses the sophisticated mathematical 

formulas and efficient computation methods. 

 

 
Figure 5. Analysis of encryption time 

 

Another important criterion for evaluating the 

efficacy of proposed CPEE-CFGC algorithm is 

encryption time. The encryption time has a direct 

impact on models responsiveness and data 

processing efficiency in the perspective of secure 

communication. Figure 5 compares the encryption 

times with CPEE-CFGC and existing algorithms by 

changing the bit size. In the graphical 

representation, it is noticed that the encryption time 

of CPEE-CFGC is lower for varying bit sizes. By 

utilizing FLMF and enhanced chebyshev 

polynomial-based Elgammal’s computational 

efficiency, the proposed CPEE-CFGC algorithm 

upheld robust security measures while decreasing 

encryption time compared to existing approaches 

such as ECC, HECE, and Elgammal. The CPEE-

CFGC algorithm effectively created cryptographic 

keys, which are essential for guarding data by 

applying FLMF with GCRA for key generation. 

FLMF with GCRA generates keys speedily and 

with little computer overhead through the usage of 

relatively simple mathematical processes. 

Accordingly, adding chebyshev polynomial-based 

Elgammal for encryption further increases the 

efficiency. Moreover, this allows for faster 

encryption times without losing security. Overall, 

CPEE-CFGC algorithmgreatly declines encryption 

time by optimizing keys and encryption with 

chebyshev polynomial-based ElGamal.  

 
Figure 6. Analysis of decryption time 

 

Like encryption time, the decryption time is also a 

fundamental performance indicator. The efficacy 

and response time of the proposed CPEE-CFGC 

algorithm are directly impacted by the decryption 

time. The strength of CPEE-CFGC algorithm for 

data encryption is accomplished by incorporating 

ElGamal and chebyshev polynomial to provide 

strong security with the least amount of 

computational overhead. The success of chosen 

CPEE-CFGC algorithm is crucial in terms of 

decryption time. Figure 6 designates the 

comparison of decryption time with proposed 

CPEE-CFGC and exiting algorithm by varying the 

prime size in bits. In contrast to the prevailing 

encryption methods, the proposed CPEE-CFGC 

algorithm allows for faster decryption owing to its 

better key selection and computing efficiency. 

 

 
Figure 7. Analysis of total execution time 

 

Figure 7 specifies the performance comparison of 

total execution time by varying the bit sizes. In the 

graphical demonstration, it is witnessed that when 

the size of bits maximizes, the execution time also 

upsurges. Nevertheless, the total execution time 

taken to 1024 and 2048 are significantly less. The 

proposed CPEE-CFGC algorithmhas utilized an 
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execution time of 35.48 ms, 55.24 ms, 110.56 ms, 

195.45 ms, 1300.56 ms and 12100.56 ms, while 

processing 64 bits, 128 bits, 256 bits, 512 bits, 1024 

bits and 2048 bits. Moreover, this analysis 

demonstrates that the proposed CPEE-CFGC 

algorithm consistently outperforms conventional 

algorithms. Table 1 designates the comparative 

outcomes of the proposed CPEE-CFGC algorithm 

and existing methods by changing the bit sizes.  

 

 
Table 1. Comparative analysis of CPEE-CFGC and existing methods by changing the bit sizes 

Methods 
Key generation time (ms) 

64 bits 128 bits 256 bits 512 bits 1024 bits 2048 bits 

ECC 70.12 96.41 200.31 400.54 3600.35 30010.25 

Elgammal 60.14 81.21 150.47 290.54 3003.24 18005.79 

HECE 65.12 73.4 120.65 270.98 2000.25 15890.12 

Proposed 35.14 53.14 92.69 130.45 980.56 10256.25 

Methods 
Encryption time (ms) 

64 bits 128 bits 256 bits 512 bits 1024 bits 2048 bits 

ECC 0.93 2.54 5.86 15.56 65.49 3000.54 

Elgammal 0.78 1.54 4.95 10.32 58.71 2000.56 

HECE 0.95 1.45 6.65 12.45 50.45 680.47 

Proposed 0.55 0.98 2.46 8.347 20.87 160.78 

Methods 
Decryption time (ms) 

64 bits 128 bits 256 bits 512 bits 1024 bits 2048 bits 

ECC 0.78 1.65 4.93 12.45 60.65 450.89 

Elgammal 0.7 1.56 6.82 9.24 50.34 560.11 

HECE 1.26 2.65 4.65 18.32 75.69 1350.55 

Proposed 0.52 0.93 2.13 8.79 38.75 230.45 

Methods 
Total execution time (ms) 

64 bits 128 bits 256 bits 512 bits 1024 bits 2048 bits 

ECC 69.12 92.45 203.45 400.8 3856.23 25000.25 

Elgammal 55.35 86.45 140.56 310.54 2501.56 18324.55 

HECE 52.65 70.58 128.65 300.45 1900.45 12530.57 

Proposed 35.48 55.24 110.56 195.45 1300.56 12100.57 

 
Table 2. Comparative analysis of CPEE-CFGC and other state-of-the-art methods by changing the bit sizes 

Model 

Length of 

primes (in 

bits) 

Key generation 

time (in ms) 

Encryption time 

(in ms) 

Decryption time 

(in ms) 

Total execution 

time (in ms) 

RSA 

64 20.27 0.26 0.22 20.75 

128 25.47 0.37 0.33 26.17 

256 40.5 0.97 0.85 42.32 

512 76.55 1.75 1.68 79.99 

1024 820.14 15.28 14.54 849.96 

2048 4575.03 52.26 37.39 4664.67 

XRSA 

64 32 0.57 0.54 33.11 

128 47.61 1.3 1.05 49.95 

256 93.54 2.02 2.01 97.56 

512 188.91 10.53 9.56 209.00 

1024 922.81 39.68 36.06 998.56 

2048 8706.22 185.98 221.41 9113.61 

CRPKC-Ki 

64 35.02 0.65 0.64 36.32 

128 54.19 1.29 1.08 56.57 

256 105.99 3.12 3.09 112.19 

512 177.18 10.93 10.01 198.12 

1024 1250.09 39.87 39.24 1329.19 

2048 10,036.74 1896.98 235.31 12,169.03 

Proposed 

64 35.14 0.55 0.52 35.48 

128 53.14 0.98 0.93 55.24 

256 92.69 2.46 2.13 110.56 

512 130.45 8.347 8.79 195.45 

1024 980.56 20.87 38.75 1300.56 

2048 10256.25 160.78 230.45 12100.57 
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4.2 Comparison with other state-of-the-art 

methods 

 

In this section, the results of the proposed CPEE-

CFGC algorithm is compared with other state-of-

the-art methods such as effective and enhance RSA 

(XRSA) [1], modified and secure RSA-based 

model (MRSA) [2],enhanced and secured RSA key 

generation scheme (ESRKGS) and Chebyshev-

RSA public key cryptography with multiplication 

factor (CRPKC-Ki). In [1], the RSA method has 

enhanced in order to generate a more complex key 

pair such as a public and private key such that an 

adversary could never be capable to identify the 

private key using the public key. Here, the public 

and private key pairs are generated using four 

randomly chosen large prime integers. During the 

key-generation, encryption and decryption stages, 

this method also employed XOR operation in 

conjunction with a more intricate intermediate step 

to maximize algorithm complexity. MRSA 

algorithm based on a separate prime number of "n" 

has presented in [2]. Here, the algorithm's 

complexity has maximized due to the presence of 

prime integer "n" that make it harder to factor the 

variable "N”. By utilizing a double encryption-

decryption process, MRSA generated two distinct 

public keys and a private key from the huge factor 

of the variable "N," offering maximized security. 

Similarly, in [3], an ESRKGS that depend on a 

separate prime number of "n" hasintroduced. Here, 

the decryption and encryption keys are based on the 

product of four large prime numbers and the public 

key component is considered as the product of two 

large prime numbers to maximize the security. In 

[4], CRPKC has offered by employing an 

alternative multiplication coefficient to forge 

ciphertext. Moreover, this method has assisted to 

resist common attacks. Table 2 designates the 

comparative outcomes of the proposed CPEE-

CFGC algorithm and other state-of-the-art methods 

by changing the bit sizes. 

 

5. Conclusion 
 

This papers contributes a novel CPEE-CFGC for 

guaranteeing security in various applications. Key 

generation, encryption and decryption with secure 

key exchange process are the various steps involve 

in CPEE-CFGC algorithm. During key generation, 

the private keys are generated using Fuzzy Logistic 

Tent Membership Function (FLMF) for each party 

engaging in the communication. Then, to select the 

optimal keys Greater Cane Rat Algorithm (GCRA) 

has utilized. The Diffie Hellman key exchange 

mechanism is exchange the keys in an unsecure 

channel. Further, chebyshev polynomial based 

ElGamal encryption (CPEE) is used for the process 

of encryption. The simulation of CPEE-CFGC 

algorithm is done through python programming 

language, and the performance is evaluated with 

significant performance indicators. Accordingly, 

the CPEE-CFGC has attained a better key 

generation time of 10256.25 ms, encryption time of 

5160.78 ms, decryption time of 230.45 ms and total 

execution time of 12100.57ms by varying the bit 

size to 2048 bits than the existing algorithms. In 

future, the proposed method will be extended by 

utilizing hybrid encryption strategies with enhanced 

optimization strategy. Besides, considering into the 

addition of extra security measures, such as multi-

factor authentication, can support the system's 

protection against possible attacks. 
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