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Abstract:  
 

Diseases or damage to the retina that cause adverse effects are one of the most 

common reasons people lose their sight at an early age. Today, machine learning 

techniques, which give high accuracy results in a short time, have been used for 

disease detection in the biomedical field. Optical coherence tomography is an 

advanced tool for the analysis, detection and treatment of retinal diseases by imaging 

the retinal layers. The aim of this study is to detect eight retinal diseases that can 

occur in the eye and cause permanent damage as a result, using machine learning 

from eye tomography images. For this purpose, hyperparameter settings were applied 

to six deep learning models, training was performed on the OCT-C8 dataset and 

performance analyzes were made. The performance of these hyperparameter-tuned 

models was also compared with previous eye disease detection studies in the 

literature, and it was seen that the classification success of the hyperparameter-tuned 

DenseNet121 model presented in this study was higher than the success of the other 

models discussed. The fine-tuned DenseNet121 classifier achieved 97.79% accuracy, 

97.69% sensitivity, and 97.79% precision for the OCT-C8 dataset. 

 

1. Introduction 
 

One of the five sense organs, which has a very 

important place in human life, is the eye. The retina, 

on the other hand, is an important layer of the eye 

consisting of color and light-sensitive cells and nerve 

fibers that provide vision directly related to the brain. 

In order to make sense of the perceived visual 

signals, it is transferred to the brain to complete the 

visual event [1]. Diseases that occur in the retina 

often cause blindness and severe vision loss. Early 

detection of the disease is of great importance in 

order to avoid incurable eye damage caused by these 

diseases [2]. Many imaging modalities are used to 

evaluate and monitor retinal abnormalities. Optical 

coherence tomography (OCT) and Fundus imaging 

are widely used. 

Recently, artificial intelligence has taken an 

important place in disease detection and diagnosis in 

the biomedical field. Artificial intelligence 

applications provide great convenience in disease 

diagnosis by performing classification processes that 

take a long time and are tiring for experts [3], [4]. 

Machine learning is a subfield of artificial 

intelligence designed to mimic human intelligence 

by learning from data [5]. Deep learning, on the 

other hand, is a subset of machine learning based on 

artificial neural networks architecture. In general, 

artificial neural networks consist of input layer, 

several hidden layers and output layers. Techniques 

based on machine learning have shown success in 

many industries, including finance, pattern 

recognition, entertainment, biomedical and medical 

applications. Liu et al. [6] in estimation of stock 

price, Sarkar et al. [7] and Tripathi  in the 

recommendation system of music  and Sharma  [8]  

in diagnosis of brain tumor and skin cancer used 

machine learning methods. In the literature, machine 

learning models trained with retinal images obtained 

from different imaging techniques have achieved a 

high success rate in the diagnosis of retinal diseases. 

Kermany et al. [1] applied the transfer learning 

model to a dataset of OCT images. The model's 

success in classifying diabetic macular edema and 

age-related macular degeneration demonstrated 

comparable performance to ophthalmologists. 
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Islam et al. [9] examined how to use deep transfer 

learning using OCT images to detect diabetic 

retinopathy. In their study, they explored how to 

optimize the models by retraining existing deep 

learning models. The proposed method 

outperformed existing methods in terms of accuracy 

and training time. Tayal et al. [10] presented a deep 

learning framework for the classification of four 

different retinal diseases. In their study, multiple eye 

deformity estimation was performed using three 

different convolutional neural network models. 

Noise removal, retinal layer removal and brightness 

enhancement preprocesses were applied to OCT 

images. With this study, classification accuracy was 

96.5%, sensitivity 96% and specificity 98.6%. Lu et 

al. [11] developed a new intelligent model for retinal 

disease detection based on deep learning from OCT 

images. In the proposed system, sensitivity was 

94%, specificity was 97.3%, and average accuracy 

was 95.9%. In the presented study, Subramanian et 

al. The OCT-C8 dataset [12], which is openly 

published on Kaggle and consists of 8 different 

classes, was used by [13]. These classes include 

central serous retinopathy (CSR), age-related 

macular degeneration (AMD), choroidal 

neovascularization (CNV), diabetic macular edema 

(DME), diabeticretinopathy (DR), drusen and 

macular hole (MH) diseases and their normal 

appearance. Six different deep learning models with 

hyperparameter tuning were applied on the dataset. 

The performances of the models discussed are 

compared with each other and with other studies in 

the literature, and the results are presented. The 

materials and methods used in this study are 

described in Section 2. The performances of the 

machine learning models discussed in Section 3 are 

examined. The general results of the study are given 

in Section 4. 

2. Material and Methods 
 

2.1 Dataset 

 

The OCT-C8 dataset [12] consists of 8 classes as 

Normal, CSR, DME, DR, AMD, CNV, DRUSEN, 

and MH. This dataset is divided into three sections, 

Training, Validation, and Testing. The distributions 

are shown in Table 1. The OCT-C8 dataset, which 

was created from images collected from various 

sources such as Open-ICPSR and Kaggle, was 

subjected to data preprocessing. As preprocessing, 

cropping, filling, horizontal rotation and image 

enhancement techniques were used. The number of 

samples in the data set reached 24,000 images after 

image augmentation [13]. Sample images from the 

dataset are shown in Figure 1. 

Table 1. OCT-C8 dataset distribution 

Classes 
Numbe

r of 

Data 

Train 
Validatio

n 
Test 

AMD 3.000 2.300 350 350 

CNV 3.000 2.300 350 350 

CSR 3.000 2.300 350 350 

DME 3.000 2.300 350 350 

DR 3.000 2.300 350 350 

DRUSE

N  
3.000 2.300 350 350 

MH 3.000 2.300 350 350 

Normal 3.000 2.300 350 350 

Total 24.000 18.40

0 
2.800 2.80

0 
 

 
Figure 1. Sample images of the OCT-C8 dataset 

2.2 Convolutional Neural Network (CNN) 

 

CNN is one of the most widely used deep learning 

architectures for efficient training through multiple 

layers [14]. Figure 2 depicts the overall architecture 

of the CNN. The Convolutional, pooling, and fully 

connected layers are the basic layers of the CNN 

architecture. In the convolution layer, a filter is 

moved on the 

 
Figure 2. General architecture of convolutional neural 

network 

given input variables by a user-specified number of 

steps. As a result of the convolution layer, feature 

maps are formed and used as the input of the next 

layer. The pooling layer is used to reduce the size of 

a feature. The output size of the layer is smaller than 

the previous layer. The output of the pooling layer is 

given to the fully connected layer as one-

dimensional input [15]. 
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2.3 DenseNet121 

 

DenseNet121 algorithm proposed by Huang et al. 

[16] is the current architecture of CNN used for 

visual object recognition with fewer parameters. 

DenseNet combines previous layer output with 

subsequent layers with combined point attributes. 

 

2.4 EfficientNetV2S 

 

Tan and Le  [17] proposed a convolutional neural 

network called EfficientNet in May 2019. The 

authors used a multidimensional hybrid model 

method to improve both accuracy and speed of the 

model. EfficientNet improves accuracy and provides 

speed by balancing network width, depth and 

resolution with integrated scaling. EfficientNet is 

seven models modified from the most basic model 

B0 to B7 in terms of channels, layers and resolution. 

 

2.5 InceptionV3 

 

Inception network is a pre-trained ESA model 

introduced by Google in 2014 [18]. This network 

consists of 22 layers with filters of different sizes 

used for maximum pooling and extracting features at 

various scales. Small filters are used to save time in 

calculations. In 2015, Google released the 48-layer 

InceptionV3 [19] to reduce parameters in the 

Inception model. 

 

2.6 MobileNet 

 

MobileNet is a new type of convolutional neural 

network. With its high efficiency and low power 

consumption features, MobileNet provides a high 

accuracy in image classification and recognition. 

MobileNet optimizes the standard convolution layer 

and divides the standard convolution process into 

two parts. These are deep convolution and point 

convolution. Deep convolution applies a single 

convolution kernel to the single input channel of 

each feature map for convolution computation. Point 

convolution is a standard convolution with a 1x1 

convolution kernel [20]. 

 

2.7 VGG16 

 

VGG16 is a neural network based model with 

approximately 138 million parameters and 16 layers. 

ReLU activation at the end of each convolution layer 

and maximum pooling at the end of all blocks are 

used to minimize dimensions [21]. It is among the 

best image classification models of neural networks.  

 

 

 

2.8 Xception 

 

It is a CNN architecture introduced by Chollet [22], 

which consists entirely of deeply separated 

convolution layers. In order to reduce the size of the 

problem in the Xception model, 1×1 convolution and 

deeply separable convolutions, which are a 

combination of deep convolution and point 

convolution, are used. There are approximately 23 

million parameters in the Xception architecture.  

 

2.9 Proposed Hyperparameter Tuned Model 

 

 
Figure 3. Proposed hyperparameter tuned model 

architecture 

In this study, convolutional neural network models 

DenseNet121, EfficientNetV2S, InceptionV3, 

MobileNet, VGG16 and Xception were used. The 

architecture of the proposed hyperparameter tuned 

model is shown in Figure 3. The OCT images 

applied to the input layer of the models are 

224x224x3 in size. Before training on the data set, 

these models were hyperparameter tuned.  

Model trainings were conducted during 20 epochs. 

While the learning rate was 0.001 at the beginning 

of the training, the learning rate was halved as the 

number of epochs increased. The reason we do this 

is that if the learning rate is too small at the 

beginning, it may get stuck at the optimum local 

value and cause the optimum global value to never 

be reached. In the last layer, OCT images were 

classified using the softmax function. 

 

3. Results and Discussions 
 

3.1 Confusion Matrix 

 

The confusion matrix is used to measure the 

performance of a model. As seen in Table 2, in the 

confusion matrix, the rows show the actual sample 

numbers in the test set, and the columns show the 

sample numbers predicted by the model. 

 
Table 2. Confusion Matrix 

 
Predicted Class 

correct incorrect 

Actual 

Class 

correct 
True Positive - 

[TP] 

False Negative - 

[FN] 

incorrect 
False Positive - 

[FP] 

True Negative - 

[TN] 
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Accuracy 

It is the ratio of the number of correct and incorrect 

samples found to be correct to the total number of 

samples. 

Accuracy = (TP+TN) / (TP+TN+FP+FN) (1) 

Sensitivity 

It is the rate at which samples in the real class are 

guessed correctly. 

          Sensitivity = (TP) / (TP+FN)          (2) 

Precision 

It is the ratio of the number of correctly predicted 

samples to the number of samples that are actually 

correct. 

Precision  = (TP) / (TP+FP)  (3)    

The accuracy, sensitivity and precision metric values 

of the CNN learning models are shown in Table 3. 

Compared to other learning models used in this 

study, the DenseNet121 model has the best 

performance with an overall accuracy rate of 

97.79%. Among the ESA learning models, the 

lowest performing models were VGG16 with an 

overall accuracy of 96.14%. 

 
Table 3. Performance metric values of hyperparameter-

tuned deep learning models 

Models 
Accuracy 

(%) 

Precision  

(%) 

Sensitivity 

(%) 

DenseNet121 97.79 97.79 97.69 

EfficientNetV2S  97.57 97.57 97.57 

InceptionV3 97.71 97.71 97.60 

MobileNet 96.36 96.42 96.32 

VGG16  96.14 96.24 96.04 

Xception 97.39 97.38 97.30 

 

The resulting confusion matrix for the DenseNet121 

model is shown in Figure 4. The diagonal elements 

of the confusion matrix represent the correct 

classifications. The remaining items are 

misclassifications. The rows show the predicted 

classes, the columns the actual classes. Accuracy, 

precision, and sensitivity class criteria are 

determined using the confusion matrix. Table 4 

shows the comparison of the best performing 

hyperparameter tuned DenseNet121 model in our 

study with the performance of other studies in the 

literature. When Table 4 is examined, it is seen that 

our model is classified with the highest 

 
Figure 4. Confusion matrix of the DenseNet121 model 

 

Table 4. Comparison results of Hyperparameter tuned 

DenseNet121 model with performances of other studies 

Study Model 

Number 

of 

Classes 

Accuracy 
(%) 

Kermany et al. [1] InceptionV3 4 96.60 

Islam et al. [9] 
DenseNet 

201 
4 98.66 

Tayal et al. [10] DL-CNN 4 96.54 

Lu et al. [11] ResNet 4 95.90 

Subramanian et al. 

[13] 
VGG16 8 97.21 

Hyperparameter-Tuned 

DenseNet121  
8 97.79 

 

performance of 8-class data. At the same time, our 

model performed better than most models that 

classify 4-class data. The high success of our 

proposed model is the result of changing the 

hyperparameter setting of existing deep learning 

models. 

 

4. Conclusions 
 

In this period when retinal diseases increase and 

negatively affect human life, we propose new results 

in deep learning models to classify retinal patients 

into eight classes using OCT images. Six 

hyperparameter-tuned deep learning models were 

used to classify AMD, CSR, CNV, DR, DME, 

DRUSEN, and MH patients and healthy individuals. 

It has been observed that the hyperparameter tuned 

deep learning models have good performances on 

the OCT dataset. The classification success of the 

hyperparameter tuned DenseNet121 model is 

97.79%. This result demonstrates the effectiveness 
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of the deep learning approach in detecting retinal 

diseases. 

Within the scope of this study, applications can be 

made that can be used by ophthalmologists in the 

future and can give ideas to the experts. In addition, 

mobile applications can be developed to help 

physicians in the detection of retinal diseases. 
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