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Abstract:  
 

Growing Neural Gas (GNG) algorithm is an unsupervised learning algorithm which 

belongs to the competitive learning family. Since then, GNG has been a subject to vaious 

developments and implementations found in the literatures for two main reasons: first, 

the number of neurons (i.e., nodes) is adaptive. Meaning, it is periodically changed 

through adding new neurons and removing old neurons accordingly in order to find the 

best network which captures the topological structure of the given data, and to reduce the 

overall error in that representation. Second, GNG algorithm has no restrictions when 

compared to other competitive learning algorithms, as it is both free in the space and the 

number of the neurons. In this paper, we propose and implement an evolutionary based 

approach, namely PTGNG, to tune GNG algorithm parameters for dealing with data in 

multiple dimensional space, namely, 2D, 3D, and 4D. The idea basically relies on finding 

the optimum set of parameter values for any given problem to be solved using GNG 

algorithm. The evolutionary algorithm by its nature searches a vast space of applicable 

solutions and evaluates each solution individually. When we implemented our approach 

of parameters tuning, we can note that GNG captured datasets topological structure with 

a smaller number of neurons and with a better accuracy. It also showed that the same 

results appeared when working on datasets with three and four dimensions. 

 

1. Introduction 
 

The Growing Neural Gas (GNG) is an unsupervised 

learning neural network algorithm which was 

proposed by Bernd Fritzke [1]. It is one of the 

competitive learning algorithms such that their 

common aim is to represent any data distribution in 

multidimensional space using lower number of 

neurons (nodes) [2].  GNG is a popularization from 

the Growing Cell Structure (GCS) [3], and it is based 

on the Neural Gas (NG) algorithm [4]. 

There are two alternatives of GNG algorithm. The 

first one, Robust Growing Neural Gas algorithm 

(RGNG) which was proposed in 2004 to make the 

GNG algorithm more robust than the original 

algorithm by adding parameters to enhance the GNG 

algorithm and the optimal numbers of nodes 

(neurons) is determined dynamically during the 

execution time [5]. The second one, Merge Growing 

Neural Gas (MGNG) algorithm was proposed in 

2009 and it is a combination between Merge Neural 

Gas (MNG) algorithm and GNG algorithm [6]. The 

above mentioned algorithms are based and derived 

from self-organizing map algorithm (SOM) which is 

an unsupervised algorithm that is able to represent 

high dimensional data in a fixed network 

dimensionality namely, two-dimensional grid [7].  

The NG algorithm was proposed to find the best data 

representation that based on the feature vectors. The 

NG algorithm is able to represent data in any 

dimension such that the reference vectors (neurons) 

are adapted without any fixed topology and there are 

two variants of the NG algorithm. First one, Enhance 

Neural Gas Algorithm (ENG) was proposed in 2005 
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to make the NG algorithm more stable than the 

previous algorithm by sorting the position and inputs 

of NG algorithm parameters [8]. The second one, 

Merge Neural Gas Algorithm (MNG) is comparable 

to NG algorithm, but it is work by three steps 

(initialization, sampling and matching and the last 

one is adoption), In the MNG algorithm they merge 

second and third steps of the ENG algorithm in one 

step [9]. 

The main advantage of GNG as compared to the 

other competitive learning algorithms is that the 

number of neurons increases periodically according 

to the distribution of the input data. The mechanism 

of changing the number of neurons during the 

learning process overcomes the problem of finding 

an appropriate number of neurons generated for 

reducing the error in the data representations. 

Unfortunately, GNG algorithm, is like the other 

competitive algorithms, such that it has a lot of 

parameters that should be set correctly at the 

beginning of the learning process. Setting these 

parameters for a given data distribution is usually 

done experimentally [10]. Inappropriate tuning of 

these parameters may lead to represent poorly the 

data and also may stuck in deleting and adding 

neurons during the learning process [11]. The result 

provided by GNG gives more appropriate 

representation of 2 dimensional data than SOM and 

NG due to the original tuning of GNG parameters for 

representing two dimensional data [2] 

The tuning of GNG parameters is usually done 

experimentally for each given data distribution. 

Therefore, tuning GNG parameters is time 

consuming. However, several parameter tuning 

algorithms such as, Evolutionary Algorithm (EA) 

[12], Relevance Estimation and Value Calibration of 

Parameter (REVAC) [13], F-Race [14] and Design 

of Experiments (DoE) [15] can be used for 

optimizing GNG parameters. The idea of REVAC is 

to find an optimal vector of parameters by estimation 

the distribution of promising values on the domain 

of each parameter and creation vectors based on 

values from this distribution. In F-Race algorithm, 

combinations of predefined parameter are examined, 

and the ones that perform poorly are discarded as 

soon as any relevance emerges. Design of 

Experiments (DoE) tries to reduce the number of 

required experiments for an analysis, while reserving 

high quality results. Experiments are considered to 

have input variables and output variables. It aims to 

optimize the input variables by comparing and 

evaluating the quality of the output variables. 

Genetic algorithms are evolutionary algorithms 

(EA) that optimize functions by modeling biological 

processes, they are known to be very effective 

methods to solve combinatorial optimization 

problems [16]. In [17] it shows that GA is more 

consistent than REVAC and F-Race, it shows also 

that GA is much faster than DoE and gives better 

solution quality. Therefore, we propose and 

implement an evolutionary based approach, namely 

PTGNG, to tune the GNG parameters for dealing 

with data described in multiple dimensional space. 
 

2. Literature Review 

 
2.1 Growing Neural Gas (GNG) 

 

This model was proposed in 1995 by Fritzke [1] as 

an unsupervised learning model. GNG also belongs 

to the competitive learning family and it is a 

popularization of the GCS algorithm and based on 

the NG algorithm. What make this algorithm special 

from the other models is that its number of neurons 

changes periodically according to the need of these 

node for representing the data distribution. 

Unfortunately, this model works well when two 

dimensional data is present but it doesn’t work 

properly if multidimensional data is present. This is 

done because of the inappropriate tuning of the 

parameters for data described in more than two 

dimensions [11]. 

GNG algorithm behaviour is controlled by six main 

parameters, the maximum connection age 

(AGEMAX), Cycle interval between nodes 

insertions (λ), Error reduction factor upon insertion 

(α), Wining node adaption factor (εb), Wining node 

neighbour adaption factor (εn) and the Error 

reduction factor for each cycle (β) [2]. These 

parameters must be carefully tuned if an accurate 

result is required either by applying prior knowledge 

about the nature of the presented problem to be 

solved or by setting them empirically. However, 

tuning these parameters based on the nature of one 

particular problem doesn’t necessarily ensure the 

optimum results. Also, the empirical tuning of these 

parameters values for each case can be both 

extensive and time consuming [10]. 

 
2.2 Related Studies 

 

In [18], Ventocilla, Elio, et al. suggested two 

methods for improving GNG in order to visualize the 

cluster patterns in large-scale and high-dimensional 

datasets. The first is to provide more precise and 

relevant 2D visual representations of cluster patterns 

in high-dimensional datasets, by avoiding 

connections that generate high-dimensional graphs 

that result in overplotting and clutter. The second 

one reduces the execution times of the learning 

phase by modeling and merging seperate parts of a 

big dataset. 

In [19], Mendes, Carlos Augusto Teixeira, et al. 

suggested a new algorithm called the Fast Growing 
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Neural Gas (FGNG) algorithm such that some 

modifications were done on some steps in the GNG 

algorithm. They proposed the adoption of a set of 

techniques and suitable data structures to reduce the 

time complexity order, without changing the original 

GNG semantics. R-tree technique, which is a tree 

data structures, is used for spatial access methods. 

The experiment was done on 2, 4, 6 and 8. The result 

of applying the FGNG and GNG on 8 dimension was 

not good; so, they tested the proposed method for 2 

dimensional data and that what the results of this 

paper approve it. The aims of this paper is to enhance 

the time execution of GNG algorithm for 2 

dimensional data. 

In [20], Fišer, Daniel, et al. suggested two techniques 

for optimizing GNG; the first one is done to enhance 

the nearest neighbour search and the second one is 

done to handle node errors for accelerating the GNG 

algorithm. However, these two optimization 

techniques focus only on the efficient execution of 

the GNG algorithm. They focus on the internal 

structure of the GNG algorithm instead of modifying 

the original GNG algorithm. The suggested 

techniques keep all characteristics of GNG 

algorithm and make it appropriate to be used on a 

huge problem. 

In [21], García-Rodríguez, José, et al. suggested a 

fast autonomous growing neural gas (FAGNG) 

algorithm by modifying the original GNG algorithm. 

The aim of FAGNG algorithm is to accelerate the 

GNG algorithm for supporting application of time 

constraint. 

In [22], Guillermo S, et al. suggested to use the 

evolutionary algorithms (EA) to optimize the 

parameters of the GNG algorithm when the GNG 

algorithm deals with 2D image recognition problem. 

 

3. Methodology 
 

3.1. Evolutionary Algorithms 

 
Evolutionary or Genetic Algorithms are a class of 

optimization algorithms which are based on the 

principles of Darwinian evolution. Such algorithms 

are capable of improving/optimizing the solution of 

a certain problems for which a fitness value can be 

defined. When several populations are generated 

which comprised of several individuals (i.e. several 

possible solutions), the fitness value for each 

individual (i.e. solution) indicates the suitability of 

that solution to the subset problem, hence, influences 

its survival to the next generations. For our 

implementation of Genetic Algorithm, we used 

GALIB [23], a C++ based Genetic Algorithm 

library. GALIB was developed by MIT and it 

contains a wide range of different types of genomes, 

configurable genetic operators such as crossover, 

mutation, selection algorithms, and several 

terminations conditions. 

 

 
 

Figure 1. The flowchart of proposed method PTGNG 
 

The premise of using the Genetic Algorithm in this 

study is to tune the parameters of GNG algorithm for 

making it enable to work properly on multiple 

dimensions (i.e. 2D, 3D, and 4D). However, GNG 

algorithm by default uses six main parameters which 

are:  

1. LAMBDA: represents the steps between nodes 

creation 

2. EPSILON_B: defines the adaptation factor for 

the winning node 

3. EPSILON_N: defines the adaptation factor for 

neighbours of the winning node 

4. AGEMAX: sets the maximum age for edges 

5. ALPHA: error decrements factor after node 

insertion 

6. BETA: defines the aging factor for nodes 

These parameters must be carefully tuned from its 

default values if an accurate result is required either 

by applying prior knowledge about the nature of the 

presented problem to be solved, or by setting them 

empirically. However, tuning these parameters 

based on the nature of one particular problem 

doesn’t necessarily ensure the optimum results. 

Also, the empirical tuning of these parameters values 

Dataset 

Generate initial random population 

For each individual, run GNG and calculate RMSE 

Perform Crossover and generate offspring 

For each offspring, run GNG and calculate RMSE 

Perform Rank Selection 

Rounds = Generations 

Pick the best individual 

No 

Yes 
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for each problem can be both extensive and time 

consuming. 

The use of evolutionary optimization algorithm will 

ensure that these parameters are optimally tuned for 

any given problem, since it continuously searches 

and optimizes a vast space of applicable solutions 

until it reaches to one final good solution. Second, it 

requires no prior knowledge about the problem 

itself, therefore it is field or problem independent 
 

3.2 Implementation of the Evolutionary 

Algorithm for Parameter Optimization 
 

Our proposed PTGNG algorithm is summarized in 

Fig. 1 such that the evolution cycle starts through 

randomly generating the values (i.e. genes) for each 

individual, the random generation function takes two 

inputs, a minimum value and a maximum value for 

each individual parameter. 

Table 1 describes the minimum and maximum value 

of each GNG parameter [1,24,25]. 

 
Table 1. The minimum and maximum values of GNG 

parameters 

Parameter Name Default value Min Max 

LAMBDA 30 20 70 

EPSILON_B 0.0500 0.0010 1 

EPSILON_N 0.0006 0.0001 1 

AGEMAX 88 1 1000 

ALPHA 0.5000 0 1 

BETA 0.0005 0 1.0 

 

Then, for each individual which is an array of real 

numbers (i.e. chromosome composed of six genes, 

one gene per-parameter), GNG is tested and the 

fitness value for that particular chromosome is 

evaluated and returned. 

In this paper Root Mean Square Error (RMSE) is 

used as a fitness function to evaluate each 

chromosome/solution. The equation of the RMSE 

showing below: 

 

𝑅𝑀𝑆𝐸 = √
𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑒𝑟𝑟𝑜𝑟

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠
 (1) 

 

The returned values are encoded in each 

chromosome and used later by the Genetic 

Algorithm, the fitness value represents the base by 

which individuals are selected/survive onto the next 

generation. Then, the Genetic Algorithm performs 

crossover operation and evaluate the offspring using 

the same procedure described above, and then the 

best of these offspring are picked using the defined 

selector for the next round of evolution. Special 

consideration must be given on how and why the 

stop condition of the evolutionary algorithm is 

defined. Two ways can be used as stop conditions: 

 By defining a network error threshold (i.e. the 

minimum fitness value). 

 By defining the number of generations the 

evolutionary algorithm performs. 

In our implementation, the second way is used 

because of three reasons; the first reason is that its 

simplicity as compare to the first way where network 

error threshold is hard to be determined, the second 

reason is that the execution time is lower, the third 

reason is that, through our experiments on the tested 

datasets we found that our proposed method doesn’t 

give better solutions after 50 generations. 

Fig. 2 – 13 show the results of applying our proposed 

method to the different datasets described in 2D, 3D 

and 4D with a different number of generations and 

populations. Fig. 2 and 3 illustrate the progress of the 

genetic algorithm in optimizing parameters for the 

results obtained from applying the Sphere 2D 

problem. They demonstrate the decreasing RMSE 

from an initial value of 4.01 at generation 25, 

reaching stability at 3.99 beyond generations 35 and 

45, respectively. Furthermore, Fig. 4 reveals that 

with a population size of 20, the algorithm rapidly 

converged to a consistent and optimal solution early 

on, leading to no significant improvements in 

subsequent generations. Similarly, Fig. 5-13 

consistently demonstrate the genetic algorithm's 

effective optimization for the results obtained from 

applying the Tours 2D, Shapes 3D, and Rings 4D 

problems, with decreasing RMSE values followed 

by stable performance. 

 

 
 

Figure 2. The results of applying Sphere 2D data with a 

different number of generations with population=10 

 

 
 

Figure 3. The results of applying Sphere 2D data 

with a different number of generations with 

population=15 
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Figure 4. The results of applying Sphere 2D data with a 

different number of generations with population= 20 

 

 
 

Figure 5. The results of applying Tours 2D data with a 

different number of generations with population=10 

 

 

 

Figure 6. The results of applying Tours 2D data with a 

different number of generations with population= 15 

 

 
 

Figure 7. The results of applying Tours 2D data with a 

different number of generations with population= 20 

 

 
 

Figure 8. The results of applying Shapes 3D data with a 

different number of generations with population= 10 

 

 
 

Figure 9. The results of applying Shapes 3D data with a 

different number of generations with population= 15 

 

 
 

Figure 10. The results of applying Shapes 3D data 

with a different number of generations with 

 population= 20 

 

 
 

Figure 11. The results of applying Four rings 4D data 

with a different number of generations with  

population= 10 
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Figure 12. The results of applying Four rings 4D data 

with a different number of generations  

with population= 15 

 

 

Figure 13. The results of applying Four rings 4D data 

with a different number of generations with population= 

20 

 

4. Experimental Study and Discussions 
 

To test the proposed method, we used the following 

four datasets, four concentric rings, different shapes 

(rectangle, line, circle and triangle), circle, and a 

torus, each of which contains 350 points. Each 

dataset has been drawing by using Excel 2016 as 

shown in Fig. 14. The other 3D and 4D shapes are 

also generated randomly using Excel 2016.  

From our preliminary test of GNG algorithm on the 

aforementioned datasets, we found several cases 

were GNG algorithm goes into an infinite run. In that 

– for example – when we set the desired number of 

neurons to be 80 on a dataset of 65 points, GNG 

algorithm runs infinitely after it reaches a certain 

number of connected neurons. Such situation is 

better explained as “when GNG adds new neurons, 

at the same exact time another neuron in the network 

is expired”, in other words, that specific neuron age 

passed AGEMAX value. Following on the same 

dataset, Table 2 presents the desired number of 

neurons and the correct value of which AGEMAX 

must be set to. Table 2 shows that for each number 

of desired neurons, it needs at least AGEMAX value, 

otherwise the GNG algorithm will not give an 

appropriate results and it may not stop From the 

presented values, a linear relationship between the 

number of desired neurons and AGEMAX value is 

found and a linear regression line (Fig. 15) has the 

following equation: 

  

 
 

 

Figure 14. The four datasets: Shapes, Circle, 4-Rings 

and Torus 

 

Table 2. The desired number of neurons and the 

correct value of which AGEMAX must be set to. 

Number of Desired 

Neurons (x) 

Correct AGEMAX 

Value (y) 

30 >=60 

40 >=80 

50 >=120 

60 >=140 

70 >=160 

80 >=180 

90 >=220 

100 >=240 

110 >=270 

 

 
𝐴𝐺𝐸𝑀 = 2.6000 𝑁𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑑𝑒𝑠𝑖𝑟𝑒𝑑_𝑛𝑒𝑢𝑟𝑜𝑛𝑠

− 18.667 
(2) 

 

 
 

Figure 15. Liner relationship trend-line between number 

of desired neurons and AGEMAX values 

 

With such relation exists between the two variables, 

we excluded the AGEMAX from the evolutionary 

cycle and the chromosome length changed from 

seven to six genes only. However, AGEMAX is still 

passed on to GNG algorithm since it is still a 

requirement, but as a variable derived from the 

number of desired neurons according to the linear 

equation. The previous algorithm work with seven 
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parameters (number of desired neurons, Eb, En, 

AGEMAX. In the proposed method PTGNG by 

depending on the linear relationship between the 

AGEMAX and number of desired neurons, we 

excluded AGEMAX from the set of parameters. Fig. 

16 shows the new chromosome after excluding 

AGEMAX. 

 
# neurons Eb En AGEMAX   α Β 

(a) 
                                           

# neurons Eb En   α Β 

(b) 

 

Figure 16. (a) previous chromosome, (b) new 

chromosome after applying linear relationship 

 

For identifying the clustering method with better 

results, Purity is also used to evaluate the quality of 

resulting clusters for each of the datasets [26]. It 

measures how much the cluster has the data of a class 

(or a cluster in an optimal model). A perfect 

clustering solution will be the one that leads to 

clusters that contain data from only a single class (or 

cluster in an optimal model). The larger the values 

of Purity, the better the clustering solution is. Purity 

is defined as: 

 

𝑃𝑢𝑟𝑖𝑡𝑦 =  
1

𝑛
∑ 𝑚𝑎𝑥𝑗(𝑛𝑖𝑗)

𝑖

 (3) 

 

Where n is the number of elements in the dataset, nij 

represents the number of elements of class j (or a 

cluster j in an optimal model) in cluster i. 

In our experiment, the clusters of an optimal model 

(or class) can be found by generating several 

clustering models with different number of clusters 

using K-means algorithm then the extended contrast 

index (EC) measure is used to evaluate and select the 

optimal model [27].    

Tables 3, 4, 5, 6, 7 and 8 show the accuracy results, 

using RMSE and Purity, obtained by applying GNG 

algorithm to each dataset with number of desired 

neurons being set to 350, and the proposed method 

PTGNG along with an optimal number of desired 

neurons, and the optimized parameters for 2D, 3D 

and 4D data. 
 

Table 3. 2D datasets: (a) RMSE, (b) Purity, (c) default 

and optimized parameter values for each dataset. 

Dataset  GNG  PTGNG  

Shapes 5.7640 4.0537 

Circle 6.2694 3.9415 

Four Concerentic Rings 9.0498 7.1466 

Tours 6.8910 6.4171 

(a) 
 

Dataset  GNG  PTGNG  

Shapes 0.9029 0.9686 

Circle 0.6057 0.6571 

Four Concerentic Rings 0.5971 0.5857 

Tours 0.6314 0.6743 

(b) 
 

Dataset  Default 

parameters 

PTGNG 

Optimized 

Parameters 

Shapes # neurons:350 

Eb: 0.05 

En: 0.0006 

Age: 895 

Lambda: 30 

Alpha: 0.5 

Beta: 0.0005 

# neurons:55 

Eb: 0.3457 

En: 0.5138 

Age: 207 

Lambda: 21 

Alpha: 0.5353 

Beta: 0.2355 

Circle # neurons:350 

Eb: 0.05 

En: 0.0006 

Age: 895 

Lambda: 30 

Alpha: 0.5 

Beta: 0.0005 

# neurons:185 

Eb: 0.8106 

En: 0.2485 

Age: 463 

Lambda: 28 

Alpha: 0.0010 

Beta: 0.0640 

Four 

concentric 

Rings 

# neurons:350 

Eb: 0.05 

En: 0.0006 

Age: 895 

Lambda: 30 

Alpha: 0.5 

Beta: 0.0005 

# neurons: 227 

Eb: 0.7099 

En: 0.6092 

Age: 573 

Lambda: 31 

Alpha: 0.0010 

Beta: 0.4956 

Torus # neurons:350 

Eb: 0.05 

En: 0.0006 

Age: 895 

Lambda: 30 

Alpha: 0.5 

Beta: 0.0005 

# neurons: 236 

Eb: 0.6987 

En: 0.9368 

Age: 595 

Lambda: 44 

Alpha: 0.8468 

Beta: 0.2939 

(c) 
 

Table 4. 3D datasets: (a) RMSE, (b) Purity, (c) default 

and optimized parameter values for each dataset. 

Dataset GNG  PTGNG  

Shapes 4.0695 4.0440 

Circle 7.0349 6.5702 

Four Concerentic Rings 8.6143 7.1652 

Tours 7.7065 6.1692 

(a) 
 

Dataset  GNG  PTGNG  

Shapes3D 0.8657 0.9886 

Circle 0.8114 0.8286 

Four Concerentic Rings 0.5914 0.6314 

Tours 0.5143 0.7200 

(b) 
 

 

Dataset  Default 

parameters 

PTGNG Optimized 

Parameters 

Shapes # neurons:350 

Eb: 0.05 

En: 0.0006 

Age: 895 

Lambda: 30 

Alpha: 0.5 

Beta: 0.0005 

# neurons: 181 

Eb: 0.7842 

En: 0.6258 

Age: 450 

Lambda: 58 

Alpha:0.1158 

Beta: 0.4250 
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Circle # neurons:350 

Eb: 0.05 

En: 0.0006 

Age: 895 

Lambda: 30 

Alpha: 0.5 

Beta: 0.0005 

# neurons: 77 

Eb: 0.4316 

En: 0.7367 

Age: 182 

Lambda: 35 

Alpha:0.2123 

Beta: 0.6312 

Four 

concentric 

Rings 

# neurons:350 

Eb: 0.05 

En: 0.0006 

Age: 895 

Lambda: 30 

Alpha: 0.5 

Beta: 0.0005 

# neurons: 266 

Eb: 1 

En: 0.0901 

Age: 674 

Lambda: 40 

Alpha: 0.6034 

Beta: 0.3895 

 

Torus 

# neurons:350 

Eb: 0.05 

En: 0.0006 

Age: 895 

Lambda: 30 

Alpha: 0.5 

Beta: 0.0005 

# neurons: 37 

Eb: 0.0774 

En: 0.5617 

Age: 79 

Lambda: 43 

Alpha: 0.6440 

Beta: 0.1357 

(c) 
 

Table 5. 4D datasets: (a) RMSE, (b) Purity, (c) default 

and optimized parameters for each dataset. 

Dataset  GNG  PTGNG  

Shapes 5.8721 4.0477 

Circle 7.1254 6.7734 

Four Concerentic Rings 8.7718 6.6763 

Tours 6.5536 5.7802 

(a) 

 

Dataset  GNG  PTGNG  

Shapes4D 0.9114 0.8771 

Circle 0.6114 0.7143 

Four Concerentic Rings 0.6771 0.7829 

Tours 0.5571 0.8800 

(b) 

 

Dataset  Default 

parameters 

PTGNG 

Optimized 

Parameters 

Shapes # neurons:350 

Eb: 0.05 

En: 0.0006 

Age: 895 

Lambda: 30 

Alpha: 0.5 

Beta: 0.0005 

# neurons: 347 

Eb: 0.9439 

En: 0.2040 

Age: 884 

Lambda: 27 

Alpha:0.1342 

Beta: 0.4871 

Hyper 

sphere 

# neurons:350 

Eb: 0.05 

En: 0.0006 

Age: 895 

Lambda: 30 

Alpha: 0.5 

Beta: 0.0005 

# neurons: 118 

Eb: 1.0000 

En: 0.0969 

Age: 289 

Lambda: 42 

Alpha:0.8717 

Beta: 0.5854 

Four 

concentric 

Rings 

# neurons:350 

Eb: 0.05 

En: 0.0006 

Age: 895 

Lambda: 30 

Alpha: 0.5 

Beta: 0.0005 

# neurons: 52 

Eb: 0.9712 

En: 0.6639 

Age: 119 

Lambda: 58 

Alpha: 0.4892 

Beta: 0.3840 

 

Torus 

# neurons:350 

Eb: 0.05 

En: 0.0006 

Age: 895 

Lambda: 30 

Alpha: 0.5 

Beta: 0.0005 

# neurons: 16 

Eb: 0.3073 

En: 0.6819 

Age: 25 

Lambda: 38 

Alpha: 0.2028 

Beta: 0.2297 

(c) 
 

Table 6. 2D datasets: (a) RMSE with Flip mutation, (b) 

Purity, (c) default and optimized parameters for each 

dataset with Flip mutation. 

Dataset  GNG PTGNG with 

Flip mutation 

Shapes 5.7640 3.8443 

Circle 6.2694 3.9762 

Four Concerentic Rings 9.0498 7.1631 

Tours 6.8910 6.4171 

(a) 
 

Dataset GNG PTGNG with 

Flip mutation 

Shapes 0.9029 0.9057 

Circle 0.6057 0.7486 

Four Concerentic Rings 0.5971 0.6429 

Tours 0.6314 0.6629 

(b) 
 

Dataset  Default 

parameters 

PTGNG 

Optimized 

Parameters with 

Flip mutation 

Shapes # neurons:350 

Eb: 0.05 

En: 0.0006 

Age: 895 

Lambda: 30 

Alpha: 0.5 

Beta: 0.0005 

# neurons: 122 

Eb: 0.8080 

En: 0.7589 

Age: 298.3333 

Lambda: 40 

Alpha:0.9712 

Beta: 0.0707 

Hyper 

sphere 

# neurons:350 

Eb: 0.05 

En: 0.0006 

Age: 895 

Lambda: 30 

Alpha: 0.5 

Beta: 0.0005 

# neurons: 110 

Eb: 0.4456 

En: 0.3734 

Age: 296.3333 

Lambda: 53 

Alpha:0.9609 

Beta: 0.1804 

Four 

concentric 

Rings 

# neurons:350 

Eb: 0.05 

En: 0.0006 

Age: 895 

Lambda: 30 

Alpha: 0.5 

Beta: 0.0005 

# neurons: 157 

Eb: 0.7257 

En: 0.6800 

Age: 389.3333 

Lambda: 20 

Alpha:0.4945 

Beta: 0.7722 

 

Torus 

# neurons:350 

Eb: 0.05 

En: 0.0006 

Age: 895 

Lambda: 30 

Alpha: 0.5 

Beta: 0.0005 

# neurons: 295 

Eb: 0.5796 

En: 0.3734 

Age: 748.3333 

Lambda: 21 

Alpha: 0.9609 

Beta: 0.1804 

(c) 

 

Table 7. 3D datasets: (a) RMSE with Flip mutation, (b) 

Purity, (c) default and optimized parameters for each 

dataset with Flip mutation. 

Dataset  GNG  PTGNG with 

Flip mutation 
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Shapes 4.0695 3.8967 

Circle 7.0349 6.0591 

Four Concerentic Rings 8.6143 5.6651 

Tours 7.7065 6.3903 

(a) 
 

Dataset  GNG  PTGNG with 

Flip mutation 

Shapes 0.8657 0.9000 

Circle 0.8114 0.8714 

Four Concerentic Rings 0.5914 0.7314 

Tours 0.5143 0.6086 

(b) 
 

Dataset  Default 

parameters 

PTGNG Optimized 

Parameters with 

Flip mutation 

Shapes # neurons:350 

Eb: 0.05 

En: 0.0006 

Age: 895 

Lambda: 30 

Alpha: 0.5 

Beta: 0.0005 

# neurons: 254 

Eb: 0.7355 

En: 0.9438 

Age: 642.3333 

Lambda: 60 

Alpha:0.0561 

Beta: 0.3773 

Hyper 

sphere 

# neurons:350 

Eb: 0.05 

En: 0.0006 

Age: 895 

Lambda: 30 

Alpha: 0.5 

Beta: 0.0005 

# neurons: 26 

Eb: 0.4284 

En: 0.7529 

Age: 51.3333 

Lambda: 21 

Alpha:0.0561 

Beta: 0.0707 

Four 

concentric 

Rings 

# neurons:350 

Eb: 0.05 

En: 0.0006 

Age: 895 

Lambda: 30 

Alpha: 0.5 

Beta: 0.0005 

# neurons: 26 

Eb: 0.5796 

En: 0.8279 

Age: 51.3333 

Lambda: 36 

Alpha:0.0742 

Beta: 0.0398 

 

Torus 

# neurons:350 

Eb: 0.05 

En: 0.0006 

Age: 895 

Lambda: 30 

Alpha: 0.5 

Beta: 0.0005 

# neurons: 215 

Eb: 0.0979 

En: 0.7529 

Age: 540.3333 

Lambda: 40 

Alpha: 0.9712 

Beta: 0.7067 

(c) 

 

Table 8. 4D datasets: (a) RMSE with Flip mutation, (b) 

Purity, (c) default and optimized parameters for each 

dataset with Flip mutation. 

Dataset  GNG PTGNG with 

Flip mutation 

Shapes 5.8721 3.9361 

Circle 7.1254 6.7735 

Four Concerentic Rings 8.7718 6.6763 

Tours 6.5536 5.7802 

(a) 
 

Dataset  GNG PTGNG with 

Flip mutation 

Shapes 0.9114 0.8943 

Circle 0.6114 0.8343 

Four Concerentic Rings 0.6771 0.7829 

Tours 0.5571 0.8400 

(b) 

 

Dataset  Default 

parameters 

PTGNG 

Optimized 

Parameters with 

Flip mutation 

Shapes # neurons:350 

Eb: 0.05 

En: 0.0006 

Age: 895 

Lambda: 30 

Alpha: 0.5 

Beta: 0.0005 

# neurons: 260 

Eb: 0.2923 

En: 0.7529 

Age: 657.3333 

Lambda: 40 

Alpha: 0.3719 

Beta: 0.2988 

Hyper 

sphere 

# neurons:350 

Eb: 0.05 

En: 0.0006 

Age: 895 

Lambda: 30 

Alpha: 0.5 

Beta: 0.0005 

# neurons: 118 

Eb: 1.0000 

En: 0.0969 

Age: 289 

Lambda: 42 

Alpha: 0.8717 

Beta: 0.5854 

Four 

concentric 

Rings 

# neurons:350 

Eb: 0.05 

En: 0.0006 

Age: 895 

Lambda: 30 

Alpha: 0.5 

Beta: 0.0005 

# neurons: 52 

Eb: 0.9713 

En: 0.6639 

Age: 119 

Lambda: 58 

Alpha:0.4892 

Beta: 0.3840 

 

Torus 

# neurons:350 

Eb: 0.05 

En: 0.0006 

Age: 895 

Lambda: 30 

Alpha: 0.5 

Beta: 0.0005 

# neurons: 16 

Eb: 0.3073 

En: 0.6819 

Age: 26 

Lambda: 38 

Alpha: 0.2028 

Beta: 0.2297 

(c) 

 

Each chromosome in PTGNG consists of six genes, 

and each gene’s value is represented by a real value. 

Using real genome in Genetic Algorithms only 

permits the use of two mutation types, Flip Mutation 

and Swap Mutation. The first type randomly picks 

two genes and flip all 0’s to 1’s, and vice versa. This 

type of mutation is usually used in the binary 

application or encoding. The second type, however, 

swaps the values of the two randomly selected genes. 

To perform the swap mutation, two alleles are 

chosen randomly and exchange their locations. 

Testing Swap Mutation failed to produce any results 

due to the reason that swapping genes caused the 

assignments of gene to a value which beyond the 

predefined Min and Max value for that particular 

gene (i.e. parameter), hence, GNG failed to build the 

topological network. However, testing Flip Mutation 

showed noticeable improvements when compared to 

previous results. Tables 6, 7 and 8 summarize the 

obtained results after applying the Flip mutation on 

the different datasets 2D, 3D and 4D. 

 

 5. Results 

 
From the results we obtained from testing the 

proposed approach, and from comparing the 
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proposed method to what we found in the literatures, 

we can conclude the following findings: 

 From the approach proposed in [22], we found 

that the suggested method in this research article 

covers the optimization of GNG algorithm for 

multiple dimensions if compared to only two 

dimensional data. Second, our approach can work 

on any dataset described in multiple dimensions.  

 The execution time for all experiments were 

between 10s and 2m. However, two of 3D 

datasets took more than 3m. 

 During testing the proposed approach on the 

aforementioned datasets, we found quite often 

that there are no better results can be achieved 

after fifty generations.  

 When using two-point crossover approach 

instead of one point, we only observed few cases 

of improvements. Also the same occurred when 

changing the crossover ratio value. Also, using 

Flip Mutation combined with Single Point 

crossover showed a noticeable improvement in 

solution accuracy, but with a huge increase of 

execution time. We observed a minimum of 

~10m and a maximum of ~35m compared to ~15s 

to 1m. 

 From the proposed approach, namely FGNG, 

presented in 2014 [19], the researchers were 

interested in optimizing GNG execution time 

compared to other four published approaches. 

Our proposed approach in this paper 

demonstrates relatively fast execution time but 

still slower when compared to the FGNG. 

However, reducing the number of generations 

and populations in the propose method can 

guarantee a good execution time, but it will be on 

the cost of producing less optimized results 

which is beyond the scope of this paper. 

 We found a linear relationship between the 

number of desired neurons and AGEMAX 

parameters. We used such relationship to derive 

the value of AGEMAX from the number of 

desired neurons, hence, excluding AGEMAX 

from evolution cycle can reduce the occurrence 

of GNG local optima problem. In our 

implementation, it was reduced to 10 and 

sometimes to 16 for every complete evolution 

cycle. 

 

6. Conclusions 

 
The GNG algorithm is an unsupervised learning 

algorithm which belongs to the competitive learning 

algorithms. It was proposed in 1995 by Fritzke as 

unsupervised learning model and it is a 

popularization of the GCS algorithm and based on 

the NG algorithm. What makes such algorithm 

special from other learning models is that nodes 

(neurons) are periodically change (adding and 

removing) according to the need of presented data 

and to reduce the overall representation error. GNG 

algorithm has no restrictions if compared to SOM 

model. 

In this paper we proposed and implemented an 

evolutionary based approach, namely PTGNG, to 

improve the performance of GNG algorithm by 

tuning its parameters when it works in multiple 

dimensional space. Root Mean Square Error 

(RMSE) is used as a fitness function to evaluate each 

chromosome/solution. The returned values are 

encoded in each chromosome and used later by the 

Genetic Algorithm, the fitness value represents the 

base by which individuals are selected/survive onto 

the next generation. At that time, the Genetic 

Algorithm performs crossover operation and 

evaluate the offspring using the same procedure 

described above, and then the best of these offspring 

are picked using the defined selector for the next 

round of evolution. Special consideration must be 

given on how and why the stop condition of the 

evolutionary algorithm is defined. The idea basically 

relies on finding the optimum set of parameter 

values for any given problem to be solved using 

GNG algorithm. The evolutionary algorithm by its 

nature searches a vast space of applicable solutions 

and evaluate each solution individually. The results 

showed that, after applying our proposed algorithm 

by tuning the set of GNG parameter values, GNG 

can represent and capture the structure of data 

described in multiple dimensional space with a small 

number of neurons and with a better accuracy. 
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