

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 9-No.2 (2023) pp. 91-101
http://dergipark.org.tr/en/pub/ijcesen

ISSN: 2149-9144

 Research Article

PTGNG: An Evolutionary Approach for Parameter Optimization in the Growing

Neural Gas Algorithm

Mohanad ALALKAWI1, Shadi AL SHEHABI2*, Meltem Y. IMAMOGLU3

1Directorate General of Education in Diyala Govgovernorate, 32001, Diyala-Iraq

Email: mohanadalalkawi@gmail.com - ORCID: 0000-0002-1181-3053

2University of Turkish Aeronautical Association, Faculty of Engineering, Departmant of Computer Engineering, 06790,

Ankara-Turkey

* Corresponding Author : Email: salshehabi@thk.edu.tr - ORCID: 0000-0003-0545-9104

3University of Turkish Aeronautical Association, Faculty of Engineering, Departmant of Computer Engineering, 06790,

Ankara- Turkey

Email: meltemyi@gmail.com - ORCID: 0000-0002-8574-4097

Article Info:

DOI: 10.22399/ijcesen.1282146

Received : 12 April 2023

Accepted : 07 June 2023

Keywords

Growing Neural Gas

Parameter tuning

Evolutionary algorithm

Abstract:

Growing Neural Gas (GNG) algorithm is an unsupervised learning algorithm which

belongs to the competitive learning family. Since then, GNG has been a subject to vaious

developments and implementations found in the literatures for two main reasons: first,

the number of neurons (i.e., nodes) is adaptive. Meaning, it is periodically changed

through adding new neurons and removing old neurons accordingly in order to find the

best network which captures the topological structure of the given data, and to reduce the

overall error in that representation. Second, GNG algorithm has no restrictions when

compared to other competitive learning algorithms, as it is both free in the space and the

number of the neurons. In this paper, we propose and implement an evolutionary based

approach, namely PTGNG, to tune GNG algorithm parameters for dealing with data in

multiple dimensional space, namely, 2D, 3D, and 4D. The idea basically relies on finding

the optimum set of parameter values for any given problem to be solved using GNG

algorithm. The evolutionary algorithm by its nature searches a vast space of applicable

solutions and evaluates each solution individually. When we implemented our approach

of parameters tuning, we can note that GNG captured datasets topological structure with

a smaller number of neurons and with a better accuracy. It also showed that the same

results appeared when working on datasets with three and four dimensions.

1. Introduction

The Growing Neural Gas (GNG) is an unsupervised

learning neural network algorithm which was

proposed by Bernd Fritzke [1]. It is one of the

competitive learning algorithms such that their

common aim is to represent any data distribution in

multidimensional space using lower number of

neurons (nodes) [2]. GNG is a popularization from

the Growing Cell Structure (GCS) [3], and it is based

on the Neural Gas (NG) algorithm [4].

There are two alternatives of GNG algorithm. The

first one, Robust Growing Neural Gas algorithm

(RGNG) which was proposed in 2004 to make the

GNG algorithm more robust than the original

algorithm by adding parameters to enhance the GNG

algorithm and the optimal numbers of nodes

(neurons) is determined dynamically during the

execution time [5]. The second one, Merge Growing

Neural Gas (MGNG) algorithm was proposed in

2009 and it is a combination between Merge Neural

Gas (MNG) algorithm and GNG algorithm [6]. The

above mentioned algorithms are based and derived

from self-organizing map algorithm (SOM) which is

an unsupervised algorithm that is able to represent

high dimensional data in a fixed network

dimensionality namely, two-dimensional grid [7].

The NG algorithm was proposed to find the best data

representation that based on the feature vectors. The

NG algorithm is able to represent data in any

dimension such that the reference vectors (neurons)

are adapted without any fixed topology and there are

two variants of the NG algorithm. First one, Enhance

Neural Gas Algorithm (ENG) was proposed in 2005

http://dergipark.org.tr/en/pub/ijcesen
http://dergipark.ulakbim.gov.tr/ijcesen
mailto:mohanadalalkawi@gmail.com
https://orcid.org/0000-0003-0545-9104
mailto:meltemyi@gmail.com

Mohanad ALALKAWI, Shadi AL SHEHABI, Meltem Y. IMAMOGLU / IJCESEN 9-2(2023)91-101

92

to make the NG algorithm more stable than the

previous algorithm by sorting the position and inputs

of NG algorithm parameters [8]. The second one,

Merge Neural Gas Algorithm (MNG) is comparable

to NG algorithm, but it is work by three steps

(initialization, sampling and matching and the last

one is adoption), In the MNG algorithm they merge

second and third steps of the ENG algorithm in one

step [9].

The main advantage of GNG as compared to the

other competitive learning algorithms is that the

number of neurons increases periodically according

to the distribution of the input data. The mechanism

of changing the number of neurons during the

learning process overcomes the problem of finding

an appropriate number of neurons generated for

reducing the error in the data representations.

Unfortunately, GNG algorithm, is like the other

competitive algorithms, such that it has a lot of

parameters that should be set correctly at the

beginning of the learning process. Setting these

parameters for a given data distribution is usually

done experimentally [10]. Inappropriate tuning of

these parameters may lead to represent poorly the

data and also may stuck in deleting and adding

neurons during the learning process [11]. The result

provided by GNG gives more appropriate

representation of 2 dimensional data than SOM and

NG due to the original tuning of GNG parameters for

representing two dimensional data [2]

The tuning of GNG parameters is usually done

experimentally for each given data distribution.

Therefore, tuning GNG parameters is time

consuming. However, several parameter tuning

algorithms such as, Evolutionary Algorithm (EA)

[12], Relevance Estimation and Value Calibration of

Parameter (REVAC) [13], F-Race [14] and Design

of Experiments (DoE) [15] can be used for

optimizing GNG parameters. The idea of REVAC is

to find an optimal vector of parameters by estimation

the distribution of promising values on the domain

of each parameter and creation vectors based on

values from this distribution. In F-Race algorithm,

combinations of predefined parameter are examined,

and the ones that perform poorly are discarded as

soon as any relevance emerges. Design of

Experiments (DoE) tries to reduce the number of

required experiments for an analysis, while reserving

high quality results. Experiments are considered to

have input variables and output variables. It aims to

optimize the input variables by comparing and

evaluating the quality of the output variables.

Genetic algorithms are evolutionary algorithms

(EA) that optimize functions by modeling biological

processes, they are known to be very effective

methods to solve combinatorial optimization

problems [16]. In [17] it shows that GA is more

consistent than REVAC and F-Race, it shows also

that GA is much faster than DoE and gives better

solution quality. Therefore, we propose and

implement an evolutionary based approach, namely

PTGNG, to tune the GNG parameters for dealing

with data described in multiple dimensional space.

2. Literature Review

2.1 Growing Neural Gas (GNG)

This model was proposed in 1995 by Fritzke [1] as

an unsupervised learning model. GNG also belongs

to the competitive learning family and it is a

popularization of the GCS algorithm and based on

the NG algorithm. What make this algorithm special

from the other models is that its number of neurons

changes periodically according to the need of these

node for representing the data distribution.

Unfortunately, this model works well when two

dimensional data is present but it doesn’t work

properly if multidimensional data is present. This is

done because of the inappropriate tuning of the

parameters for data described in more than two

dimensions [11].

GNG algorithm behaviour is controlled by six main

parameters, the maximum connection age

(AGEMAX), Cycle interval between nodes

insertions (λ), Error reduction factor upon insertion

(α), Wining node adaption factor (εb), Wining node

neighbour adaption factor (εn) and the Error

reduction factor for each cycle (β) [2]. These

parameters must be carefully tuned if an accurate

result is required either by applying prior knowledge

about the nature of the presented problem to be

solved or by setting them empirically. However,

tuning these parameters based on the nature of one

particular problem doesn’t necessarily ensure the

optimum results. Also, the empirical tuning of these

parameters values for each case can be both

extensive and time consuming [10].

2.2 Related Studies

In [18], Ventocilla, Elio, et al. suggested two

methods for improving GNG in order to visualize the

cluster patterns in large-scale and high-dimensional

datasets. The first is to provide more precise and

relevant 2D visual representations of cluster patterns

in high-dimensional datasets, by avoiding

connections that generate high-dimensional graphs

that result in overplotting and clutter. The second

one reduces the execution times of the learning

phase by modeling and merging seperate parts of a

big dataset.

In [19], Mendes, Carlos Augusto Teixeira, et al.

suggested a new algorithm called the Fast Growing

Mohanad ALALKAWI, Shadi AL SHEHABI, Meltem Y. IMAMOGLU / IJCESEN 9-2(2023)91-101

93

Neural Gas (FGNG) algorithm such that some

modifications were done on some steps in the GNG

algorithm. They proposed the adoption of a set of

techniques and suitable data structures to reduce the

time complexity order, without changing the original

GNG semantics. R-tree technique, which is a tree

data structures, is used for spatial access methods.

The experiment was done on 2, 4, 6 and 8. The result

of applying the FGNG and GNG on 8 dimension was

not good; so, they tested the proposed method for 2

dimensional data and that what the results of this

paper approve it. The aims of this paper is to enhance

the time execution of GNG algorithm for 2

dimensional data.

In [20], Fišer, Daniel, et al. suggested two techniques

for optimizing GNG; the first one is done to enhance

the nearest neighbour search and the second one is

done to handle node errors for accelerating the GNG

algorithm. However, these two optimization

techniques focus only on the efficient execution of

the GNG algorithm. They focus on the internal

structure of the GNG algorithm instead of modifying

the original GNG algorithm. The suggested

techniques keep all characteristics of GNG

algorithm and make it appropriate to be used on a

huge problem.

In [21], García-Rodríguez, José, et al. suggested a

fast autonomous growing neural gas (FAGNG)

algorithm by modifying the original GNG algorithm.

The aim of FAGNG algorithm is to accelerate the

GNG algorithm for supporting application of time

constraint.

In [22], Guillermo S, et al. suggested to use the

evolutionary algorithms (EA) to optimize the

parameters of the GNG algorithm when the GNG

algorithm deals with 2D image recognition problem.

3. Methodology

3.1. Evolutionary Algorithms

Evolutionary or Genetic Algorithms are a class of

optimization algorithms which are based on the

principles of Darwinian evolution. Such algorithms

are capable of improving/optimizing the solution of

a certain problems for which a fitness value can be

defined. When several populations are generated

which comprised of several individuals (i.e. several

possible solutions), the fitness value for each

individual (i.e. solution) indicates the suitability of

that solution to the subset problem, hence, influences

its survival to the next generations. For our

implementation of Genetic Algorithm, we used

GALIB [23], a C++ based Genetic Algorithm

library. GALIB was developed by MIT and it

contains a wide range of different types of genomes,

configurable genetic operators such as crossover,

mutation, selection algorithms, and several

terminations conditions.

Figure 1. The flowchart of proposed method PTGNG

The premise of using the Genetic Algorithm in this

study is to tune the parameters of GNG algorithm for

making it enable to work properly on multiple

dimensions (i.e. 2D, 3D, and 4D). However, GNG

algorithm by default uses six main parameters which

are:

1. LAMBDA: represents the steps between nodes

creation

2. EPSILON_B: defines the adaptation factor for

the winning node

3. EPSILON_N: defines the adaptation factor for

neighbours of the winning node

4. AGEMAX: sets the maximum age for edges

5. ALPHA: error decrements factor after node

insertion

6. BETA: defines the aging factor for nodes

These parameters must be carefully tuned from its

default values if an accurate result is required either

by applying prior knowledge about the nature of the

presented problem to be solved, or by setting them

empirically. However, tuning these parameters

based on the nature of one particular problem

doesn’t necessarily ensure the optimum results.

Also, the empirical tuning of these parameters values

Dataset

Generate initial random population

For each individual, run GNG and calculate RMSE

Perform Crossover and generate offspring

For each offspring, run GNG and calculate RMSE

Perform Rank Selection

Rounds = Generations

Pick the best individual

No

Yes

Mohanad ALALKAWI, Shadi AL SHEHABI, Meltem Y. IMAMOGLU / IJCESEN 9-2(2023)91-101

94

for each problem can be both extensive and time

consuming.

The use of evolutionary optimization algorithm will

ensure that these parameters are optimally tuned for

any given problem, since it continuously searches

and optimizes a vast space of applicable solutions

until it reaches to one final good solution. Second, it

requires no prior knowledge about the problem

itself, therefore it is field or problem independent

3.2 Implementation of the Evolutionary

Algorithm for Parameter Optimization

Our proposed PTGNG algorithm is summarized in

Fig. 1 such that the evolution cycle starts through

randomly generating the values (i.e. genes) for each

individual, the random generation function takes two

inputs, a minimum value and a maximum value for

each individual parameter.

Table 1 describes the minimum and maximum value

of each GNG parameter [1,24,25].

Table 1. The minimum and maximum values of GNG

parameters

Parameter Name Default value Min Max

LAMBDA 30 20 70

EPSILON_B 0.0500 0.0010 1

EPSILON_N 0.0006 0.0001 1

AGEMAX 88 1 1000

ALPHA 0.5000 0 1

BETA 0.0005 0 1.0

Then, for each individual which is an array of real

numbers (i.e. chromosome composed of six genes,

one gene per-parameter), GNG is tested and the

fitness value for that particular chromosome is

evaluated and returned.

In this paper Root Mean Square Error (RMSE) is

used as a fitness function to evaluate each

chromosome/solution. The equation of the RMSE

showing below:

𝑅𝑀𝑆𝐸 = √
𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑒𝑟𝑟𝑜𝑟

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠
 (1)

The returned values are encoded in each

chromosome and used later by the Genetic

Algorithm, the fitness value represents the base by

which individuals are selected/survive onto the next

generation. Then, the Genetic Algorithm performs

crossover operation and evaluate the offspring using

the same procedure described above, and then the

best of these offspring are picked using the defined

selector for the next round of evolution. Special

consideration must be given on how and why the

stop condition of the evolutionary algorithm is

defined. Two ways can be used as stop conditions:

 By defining a network error threshold (i.e. the

minimum fitness value).

 By defining the number of generations the

evolutionary algorithm performs.

In our implementation, the second way is used

because of three reasons; the first reason is that its

simplicity as compare to the first way where network

error threshold is hard to be determined, the second

reason is that the execution time is lower, the third

reason is that, through our experiments on the tested

datasets we found that our proposed method doesn’t

give better solutions after 50 generations.

Fig. 2 – 13 show the results of applying our proposed

method to the different datasets described in 2D, 3D

and 4D with a different number of generations and

populations. Fig. 2 and 3 illustrate the progress of the

genetic algorithm in optimizing parameters for the

results obtained from applying the Sphere 2D

problem. They demonstrate the decreasing RMSE

from an initial value of 4.01 at generation 25,

reaching stability at 3.99 beyond generations 35 and

45, respectively. Furthermore, Fig. 4 reveals that

with a population size of 20, the algorithm rapidly

converged to a consistent and optimal solution early

on, leading to no significant improvements in

subsequent generations. Similarly, Fig. 5-13

consistently demonstrate the genetic algorithm's

effective optimization for the results obtained from

applying the Tours 2D, Shapes 3D, and Rings 4D

problems, with decreasing RMSE values followed

by stable performance.

Figure 2. The results of applying Sphere 2D data with a

different number of generations with population=10

Figure 3. The results of applying Sphere 2D data

with a different number of generations with

population=15

3,95

4

4,05

25 35 45 55 65

R
M

S
E

3,96

3,98

4

4,02

25 35 45 55 65

R
M

S
E

Mohanad ALALKAWI, Shadi AL SHEHABI, Meltem Y. IMAMOGLU / IJCESEN 9-2(2023)91-101

95

Figure 4. The results of applying Sphere 2D data with a

different number of generations with population= 20

Figure 5. The results of applying Tours 2D data with a

different number of generations with population=10

Figure 6. The results of applying Tours 2D data with a

different number of generations with population= 15

Figure 7. The results of applying Tours 2D data with a

different number of generations with population= 20

Figure 8. The results of applying Shapes 3D data with a

different number of generations with population= 10

Figure 9. The results of applying Shapes 3D data with a

different number of generations with population= 15

Figure 10. The results of applying Shapes 3D data

with a different number of generations with

 population= 20

Figure 11. The results of applying Four rings 4D data

with a different number of generations with

population= 10

0

1

2

3

4

5

25 35 45 55 65

R
M

S
E

6,25

6,3

6,35

6,4

25 35 45 55 65

R
M

S
E

6,3

6,35

6,4

6,45

6,5

6,55

6,6

25 35 45 55 65

0

2

4

6

8

25 35 45 55 65

R
M

S
E

3,8

4

4,2

4,4

25 35 45 55 65

Population = 10

3,9

4

4,1

4,2

25 35 45 55 65

Population = 15

3,97

3,975

3,98

3,985

3,99

25 35 45 55 65

Population = 20

0

5

10

25 35 45 55 65

Population = 10

Mohanad ALALKAWI, Shadi AL SHEHABI, Meltem Y. IMAMOGLU / IJCESEN 9-2(2023)91-101

96

Figure 12. The results of applying Four rings 4D data

with a different number of generations

with population= 15

Figure 13. The results of applying Four rings 4D data

with a different number of generations with population=

20

4. Experimental Study and Discussions

To test the proposed method, we used the following

four datasets, four concentric rings, different shapes

(rectangle, line, circle and triangle), circle, and a

torus, each of which contains 350 points. Each

dataset has been drawing by using Excel 2016 as

shown in Fig. 14. The other 3D and 4D shapes are

also generated randomly using Excel 2016.

From our preliminary test of GNG algorithm on the

aforementioned datasets, we found several cases

were GNG algorithm goes into an infinite run. In that

– for example – when we set the desired number of

neurons to be 80 on a dataset of 65 points, GNG

algorithm runs infinitely after it reaches a certain

number of connected neurons. Such situation is

better explained as “when GNG adds new neurons,

at the same exact time another neuron in the network

is expired”, in other words, that specific neuron age

passed AGEMAX value. Following on the same

dataset, Table 2 presents the desired number of

neurons and the correct value of which AGEMAX

must be set to. Table 2 shows that for each number

of desired neurons, it needs at least AGEMAX value,

otherwise the GNG algorithm will not give an

appropriate results and it may not stop From the

presented values, a linear relationship between the

number of desired neurons and AGEMAX value is

found and a linear regression line (Fig. 15) has the

following equation:

Figure 14. The four datasets: Shapes, Circle, 4-Rings

and Torus

Table 2. The desired number of neurons and the

correct value of which AGEMAX must be set to.

Number of Desired

Neurons (x)

Correct AGEMAX

Value (y)

30 >=60

40 >=80

50 >=120

60 >=140

70 >=160

80 >=180

90 >=220

100 >=240

110 >=270

𝐴𝐺𝐸𝑀 = 2.6000 𝑁𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑑𝑒𝑠𝑖𝑟𝑒𝑑_𝑛𝑒𝑢𝑟𝑜𝑛𝑠

− 18.667
(2)

Figure 15. Liner relationship trend-line between number

of desired neurons and AGEMAX values

With such relation exists between the two variables,

we excluded the AGEMAX from the evolutionary

cycle and the chromosome length changed from

seven to six genes only. However, AGEMAX is still

passed on to GNG algorithm since it is still a

requirement, but as a variable derived from the

number of desired neurons according to the linear

equation. The previous algorithm work with seven

6,906

6,908

6,91

6,912

25 35 45 55 65

Population = 15

AGEMAX = 2.6000 𝑁𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑑𝑒𝑠𝑖𝑟𝑒𝑑_𝑛𝑒𝑢𝑟𝑜𝑛𝑠 - 18.6670

0

50

100

150

200

250

300

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0

6,964

6,966

6,968

6,97

6,972

25 35 45 55 65

Population = 20

Mohanad ALALKAWI, Shadi AL SHEHABI, Meltem Y. IMAMOGLU / IJCESEN 9-2(2023)91-101

97

parameters (number of desired neurons, Eb, En,

AGEMAX. In the proposed method PTGNG by

depending on the linear relationship between the

AGEMAX and number of desired neurons, we

excluded AGEMAX from the set of parameters. Fig.

16 shows the new chromosome after excluding

AGEMAX.

neurons Eb En AGEMAX α Β

(a)

neurons Eb En α Β

(b)

Figure 16. (a) previous chromosome, (b) new

chromosome after applying linear relationship

For identifying the clustering method with better

results, Purity is also used to evaluate the quality of

resulting clusters for each of the datasets [26]. It

measures how much the cluster has the data of a class

(or a cluster in an optimal model). A perfect

clustering solution will be the one that leads to

clusters that contain data from only a single class (or

cluster in an optimal model). The larger the values

of Purity, the better the clustering solution is. Purity

is defined as:

𝑃𝑢𝑟𝑖𝑡𝑦 =
1

𝑛
∑ 𝑚𝑎𝑥𝑗(𝑛𝑖𝑗)

𝑖

 (3)

Where n is the number of elements in the dataset, nij

represents the number of elements of class j (or a

cluster j in an optimal model) in cluster i.

In our experiment, the clusters of an optimal model

(or class) can be found by generating several

clustering models with different number of clusters

using K-means algorithm then the extended contrast

index (EC) measure is used to evaluate and select the

optimal model [27].

Tables 3, 4, 5, 6, 7 and 8 show the accuracy results,

using RMSE and Purity, obtained by applying GNG

algorithm to each dataset with number of desired

neurons being set to 350, and the proposed method

PTGNG along with an optimal number of desired

neurons, and the optimized parameters for 2D, 3D

and 4D data.

Table 3. 2D datasets: (a) RMSE, (b) Purity, (c) default

and optimized parameter values for each dataset.

Dataset GNG PTGNG

Shapes 5.7640 4.0537

Circle 6.2694 3.9415

Four Concerentic Rings 9.0498 7.1466

Tours 6.8910 6.4171

(a)

Dataset GNG PTGNG

Shapes 0.9029 0.9686

Circle 0.6057 0.6571

Four Concerentic Rings 0.5971 0.5857

Tours 0.6314 0.6743

(b)

Dataset Default

parameters

PTGNG

Optimized

Parameters

Shapes # neurons:350

Eb: 0.05

En: 0.0006

Age: 895

Lambda: 30

Alpha: 0.5

Beta: 0.0005

neurons:55

Eb: 0.3457

En: 0.5138

Age: 207

Lambda: 21

Alpha: 0.5353

Beta: 0.2355

Circle # neurons:350

Eb: 0.05

En: 0.0006

Age: 895

Lambda: 30

Alpha: 0.5

Beta: 0.0005

neurons:185

Eb: 0.8106

En: 0.2485

Age: 463

Lambda: 28

Alpha: 0.0010

Beta: 0.0640

Four

concentric

Rings

neurons:350

Eb: 0.05

En: 0.0006

Age: 895

Lambda: 30

Alpha: 0.5

Beta: 0.0005

neurons: 227

Eb: 0.7099

En: 0.6092

Age: 573

Lambda: 31

Alpha: 0.0010

Beta: 0.4956

Torus # neurons:350

Eb: 0.05

En: 0.0006

Age: 895

Lambda: 30

Alpha: 0.5

Beta: 0.0005

neurons: 236

Eb: 0.6987

En: 0.9368

Age: 595

Lambda: 44

Alpha: 0.8468

Beta: 0.2939

(c)

Table 4. 3D datasets: (a) RMSE, (b) Purity, (c) default

and optimized parameter values for each dataset.

Dataset GNG PTGNG

Shapes 4.0695 4.0440

Circle 7.0349 6.5702

Four Concerentic Rings 8.6143 7.1652

Tours 7.7065 6.1692

(a)

Dataset GNG PTGNG

Shapes3D 0.8657 0.9886

Circle 0.8114 0.8286

Four Concerentic Rings 0.5914 0.6314

Tours 0.5143 0.7200

(b)

Dataset Default

parameters

PTGNG Optimized

Parameters

Shapes # neurons:350

Eb: 0.05

En: 0.0006

Age: 895

Lambda: 30

Alpha: 0.5

Beta: 0.0005

neurons: 181

Eb: 0.7842

En: 0.6258

Age: 450

Lambda: 58

Alpha:0.1158

Beta: 0.4250

Mohanad ALALKAWI, Shadi AL SHEHABI, Meltem Y. IMAMOGLU / IJCESEN 9-2(2023)91-101

98

Circle # neurons:350

Eb: 0.05

En: 0.0006

Age: 895

Lambda: 30

Alpha: 0.5

Beta: 0.0005

neurons: 77

Eb: 0.4316

En: 0.7367

Age: 182

Lambda: 35

Alpha:0.2123

Beta: 0.6312

Four

concentric

Rings

neurons:350

Eb: 0.05

En: 0.0006

Age: 895

Lambda: 30

Alpha: 0.5

Beta: 0.0005

neurons: 266

Eb: 1

En: 0.0901

Age: 674

Lambda: 40

Alpha: 0.6034

Beta: 0.3895

Torus

neurons:350

Eb: 0.05

En: 0.0006

Age: 895

Lambda: 30

Alpha: 0.5

Beta: 0.0005

neurons: 37

Eb: 0.0774

En: 0.5617

Age: 79

Lambda: 43

Alpha: 0.6440

Beta: 0.1357

(c)

Table 5. 4D datasets: (a) RMSE, (b) Purity, (c) default

and optimized parameters for each dataset.

Dataset GNG PTGNG

Shapes 5.8721 4.0477

Circle 7.1254 6.7734

Four Concerentic Rings 8.7718 6.6763

Tours 6.5536 5.7802

(a)

Dataset GNG PTGNG

Shapes4D 0.9114 0.8771

Circle 0.6114 0.7143

Four Concerentic Rings 0.6771 0.7829

Tours 0.5571 0.8800

(b)

Dataset Default

parameters

PTGNG

Optimized

Parameters

Shapes # neurons:350

Eb: 0.05

En: 0.0006

Age: 895

Lambda: 30

Alpha: 0.5

Beta: 0.0005

neurons: 347

Eb: 0.9439

En: 0.2040

Age: 884

Lambda: 27

Alpha:0.1342

Beta: 0.4871

Hyper

sphere

neurons:350

Eb: 0.05

En: 0.0006

Age: 895

Lambda: 30

Alpha: 0.5

Beta: 0.0005

neurons: 118

Eb: 1.0000

En: 0.0969

Age: 289

Lambda: 42

Alpha:0.8717

Beta: 0.5854

Four

concentric

Rings

neurons:350

Eb: 0.05

En: 0.0006

Age: 895

Lambda: 30

Alpha: 0.5

Beta: 0.0005

neurons: 52

Eb: 0.9712

En: 0.6639

Age: 119

Lambda: 58

Alpha: 0.4892

Beta: 0.3840

Torus

neurons:350

Eb: 0.05

En: 0.0006

Age: 895

Lambda: 30

Alpha: 0.5

Beta: 0.0005

neurons: 16

Eb: 0.3073

En: 0.6819

Age: 25

Lambda: 38

Alpha: 0.2028

Beta: 0.2297

(c)

Table 6. 2D datasets: (a) RMSE with Flip mutation, (b)

Purity, (c) default and optimized parameters for each

dataset with Flip mutation.

Dataset GNG PTGNG with

Flip mutation

Shapes 5.7640 3.8443

Circle 6.2694 3.9762

Four Concerentic Rings 9.0498 7.1631

Tours 6.8910 6.4171

(a)

Dataset GNG PTGNG with

Flip mutation

Shapes 0.9029 0.9057

Circle 0.6057 0.7486

Four Concerentic Rings 0.5971 0.6429

Tours 0.6314 0.6629

(b)

Dataset Default

parameters

PTGNG

Optimized

Parameters with

Flip mutation

Shapes # neurons:350

Eb: 0.05

En: 0.0006

Age: 895

Lambda: 30

Alpha: 0.5

Beta: 0.0005

neurons: 122

Eb: 0.8080

En: 0.7589

Age: 298.3333

Lambda: 40

Alpha:0.9712

Beta: 0.0707

Hyper

sphere

neurons:350

Eb: 0.05

En: 0.0006

Age: 895

Lambda: 30

Alpha: 0.5

Beta: 0.0005

neurons: 110

Eb: 0.4456

En: 0.3734

Age: 296.3333

Lambda: 53

Alpha:0.9609

Beta: 0.1804

Four

concentric

Rings

neurons:350

Eb: 0.05

En: 0.0006

Age: 895

Lambda: 30

Alpha: 0.5

Beta: 0.0005

neurons: 157

Eb: 0.7257

En: 0.6800

Age: 389.3333

Lambda: 20

Alpha:0.4945

Beta: 0.7722

Torus

neurons:350

Eb: 0.05

En: 0.0006

Age: 895

Lambda: 30

Alpha: 0.5

Beta: 0.0005

neurons: 295

Eb: 0.5796

En: 0.3734

Age: 748.3333

Lambda: 21

Alpha: 0.9609

Beta: 0.1804

(c)

Table 7. 3D datasets: (a) RMSE with Flip mutation, (b)

Purity, (c) default and optimized parameters for each

dataset with Flip mutation.

Dataset GNG PTGNG with

Flip mutation

Mohanad ALALKAWI, Shadi AL SHEHABI, Meltem Y. IMAMOGLU / IJCESEN 9-2(2023)91-101

99

Shapes 4.0695 3.8967

Circle 7.0349 6.0591

Four Concerentic Rings 8.6143 5.6651

Tours 7.7065 6.3903

(a)

Dataset GNG PTGNG with

Flip mutation

Shapes 0.8657 0.9000

Circle 0.8114 0.8714

Four Concerentic Rings 0.5914 0.7314

Tours 0.5143 0.6086

(b)

Dataset Default

parameters

PTGNG Optimized

Parameters with

Flip mutation

Shapes # neurons:350

Eb: 0.05

En: 0.0006

Age: 895

Lambda: 30

Alpha: 0.5

Beta: 0.0005

neurons: 254

Eb: 0.7355

En: 0.9438

Age: 642.3333

Lambda: 60

Alpha:0.0561

Beta: 0.3773

Hyper

sphere

neurons:350

Eb: 0.05

En: 0.0006

Age: 895

Lambda: 30

Alpha: 0.5

Beta: 0.0005

neurons: 26

Eb: 0.4284

En: 0.7529

Age: 51.3333

Lambda: 21

Alpha:0.0561

Beta: 0.0707

Four

concentric

Rings

neurons:350

Eb: 0.05

En: 0.0006

Age: 895

Lambda: 30

Alpha: 0.5

Beta: 0.0005

neurons: 26

Eb: 0.5796

En: 0.8279

Age: 51.3333

Lambda: 36

Alpha:0.0742

Beta: 0.0398

Torus

neurons:350

Eb: 0.05

En: 0.0006

Age: 895

Lambda: 30

Alpha: 0.5

Beta: 0.0005

neurons: 215

Eb: 0.0979

En: 0.7529

Age: 540.3333

Lambda: 40

Alpha: 0.9712

Beta: 0.7067

(c)

Table 8. 4D datasets: (a) RMSE with Flip mutation, (b)

Purity, (c) default and optimized parameters for each

dataset with Flip mutation.

Dataset GNG PTGNG with

Flip mutation

Shapes 5.8721 3.9361

Circle 7.1254 6.7735

Four Concerentic Rings 8.7718 6.6763

Tours 6.5536 5.7802

(a)

Dataset GNG PTGNG with

Flip mutation

Shapes 0.9114 0.8943

Circle 0.6114 0.8343

Four Concerentic Rings 0.6771 0.7829

Tours 0.5571 0.8400

(b)

Dataset Default

parameters

PTGNG

Optimized

Parameters with

Flip mutation

Shapes # neurons:350

Eb: 0.05

En: 0.0006

Age: 895

Lambda: 30

Alpha: 0.5

Beta: 0.0005

neurons: 260

Eb: 0.2923

En: 0.7529

Age: 657.3333

Lambda: 40

Alpha: 0.3719

Beta: 0.2988

Hyper

sphere

neurons:350

Eb: 0.05

En: 0.0006

Age: 895

Lambda: 30

Alpha: 0.5

Beta: 0.0005

neurons: 118

Eb: 1.0000

En: 0.0969

Age: 289

Lambda: 42

Alpha: 0.8717

Beta: 0.5854

Four

concentric

Rings

neurons:350

Eb: 0.05

En: 0.0006

Age: 895

Lambda: 30

Alpha: 0.5

Beta: 0.0005

neurons: 52

Eb: 0.9713

En: 0.6639

Age: 119

Lambda: 58

Alpha:0.4892

Beta: 0.3840

Torus

neurons:350

Eb: 0.05

En: 0.0006

Age: 895

Lambda: 30

Alpha: 0.5

Beta: 0.0005

neurons: 16

Eb: 0.3073

En: 0.6819

Age: 26

Lambda: 38

Alpha: 0.2028

Beta: 0.2297

(c)

Each chromosome in PTGNG consists of six genes,

and each gene’s value is represented by a real value.

Using real genome in Genetic Algorithms only

permits the use of two mutation types, Flip Mutation

and Swap Mutation. The first type randomly picks

two genes and flip all 0’s to 1’s, and vice versa. This

type of mutation is usually used in the binary

application or encoding. The second type, however,

swaps the values of the two randomly selected genes.

To perform the swap mutation, two alleles are

chosen randomly and exchange their locations.

Testing Swap Mutation failed to produce any results

due to the reason that swapping genes caused the

assignments of gene to a value which beyond the

predefined Min and Max value for that particular

gene (i.e. parameter), hence, GNG failed to build the

topological network. However, testing Flip Mutation

showed noticeable improvements when compared to

previous results. Tables 6, 7 and 8 summarize the

obtained results after applying the Flip mutation on

the different datasets 2D, 3D and 4D.

 5. Results

From the results we obtained from testing the

proposed approach, and from comparing the

Mohanad ALALKAWI, Shadi AL SHEHABI, Meltem Y. IMAMOGLU / IJCESEN 9-2(2023)91-101

100

proposed method to what we found in the literatures,

we can conclude the following findings:

 From the approach proposed in [22], we found

that the suggested method in this research article

covers the optimization of GNG algorithm for

multiple dimensions if compared to only two

dimensional data. Second, our approach can work

on any dataset described in multiple dimensions.

 The execution time for all experiments were

between 10s and 2m. However, two of 3D

datasets took more than 3m.

 During testing the proposed approach on the

aforementioned datasets, we found quite often

that there are no better results can be achieved

after fifty generations.

 When using two-point crossover approach

instead of one point, we only observed few cases

of improvements. Also the same occurred when

changing the crossover ratio value. Also, using

Flip Mutation combined with Single Point

crossover showed a noticeable improvement in

solution accuracy, but with a huge increase of

execution time. We observed a minimum of

~10m and a maximum of ~35m compared to ~15s

to 1m.

 From the proposed approach, namely FGNG,

presented in 2014 [19], the researchers were

interested in optimizing GNG execution time

compared to other four published approaches.

Our proposed approach in this paper

demonstrates relatively fast execution time but

still slower when compared to the FGNG.

However, reducing the number of generations

and populations in the propose method can

guarantee a good execution time, but it will be on

the cost of producing less optimized results

which is beyond the scope of this paper.

 We found a linear relationship between the

number of desired neurons and AGEMAX

parameters. We used such relationship to derive

the value of AGEMAX from the number of

desired neurons, hence, excluding AGEMAX

from evolution cycle can reduce the occurrence

of GNG local optima problem. In our

implementation, it was reduced to 10 and

sometimes to 16 for every complete evolution

cycle.

6. Conclusions

The GNG algorithm is an unsupervised learning

algorithm which belongs to the competitive learning

algorithms. It was proposed in 1995 by Fritzke as

unsupervised learning model and it is a

popularization of the GCS algorithm and based on

the NG algorithm. What makes such algorithm

special from other learning models is that nodes

(neurons) are periodically change (adding and

removing) according to the need of presented data

and to reduce the overall representation error. GNG

algorithm has no restrictions if compared to SOM

model.

In this paper we proposed and implemented an

evolutionary based approach, namely PTGNG, to

improve the performance of GNG algorithm by

tuning its parameters when it works in multiple

dimensional space. Root Mean Square Error

(RMSE) is used as a fitness function to evaluate each

chromosome/solution. The returned values are

encoded in each chromosome and used later by the

Genetic Algorithm, the fitness value represents the

base by which individuals are selected/survive onto

the next generation. At that time, the Genetic

Algorithm performs crossover operation and

evaluate the offspring using the same procedure

described above, and then the best of these offspring

are picked using the defined selector for the next

round of evolution. Special consideration must be

given on how and why the stop condition of the

evolutionary algorithm is defined. The idea basically

relies on finding the optimum set of parameter

values for any given problem to be solved using

GNG algorithm. The evolutionary algorithm by its

nature searches a vast space of applicable solutions

and evaluate each solution individually. The results

showed that, after applying our proposed algorithm

by tuning the set of GNG parameter values, GNG

can represent and capture the structure of data

described in multiple dimensional space with a small

number of neurons and with a better accuracy.

Author Statements:

 Ethical approval: The conducted research is not

related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial interests

or personal relationships that could have

appeared to influence the work reported in this

paper

 Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are available on

request from the corresponding author. The data

are not publicly available due to privacy or

ethical restrictions.

Mohanad ALALKAWI, Shadi AL SHEHABI, Meltem Y. IMAMOGLU / IJCESEN 9-2(2023)91-101

101

References

[1] Fritzke, B. (1994). A growing neural gas network

learns topologies. Advances in neural information

processing systems, 7.

[2] Fritzke, B. (1997). Some competitive learning

methods. Artificial Intelligence Institute, Dresden

University of Technology, 100.

[3] Fritzke, B. (1994). Growing cell structures—a self-

organizing network for unsupervised and supervised

learning. Neural networks, 7(9), 1441-1460.

DOI:10.1016/0893-6080(94)90091-4

[4] Martinetz, T. and Schulten, K. (1991), “A" neural-

gas" network learns topologies,” Artif. Neural

Networks, pp. 397–402.

[5] Qin, A. K., & Suganthan, P. N. (2004). Robust

growing neural gas algorithm with application in

cluster analysis. Neural networks, 17(8-9), 1135-

1148. DOI:10.1016/s0893-6080(04)00166-2
[6] Andreakis, A., Hoyningen-Huene, N. V., & Beetz,

M. (2009). Incremental unsupervised time series

analysis using merge growing neural gas.

In Advances in Self-Organizing Maps: 7th

International Workshop, WSOM 2009, St.

Augustine, FL, USA, June 8-10, 2009. Proceedings

7 (pp. 10-18). Springer Berlin Heidelberg.

DOI:10.1007/978-3-642-02397-2_2
[7] Kohonen, T. (1997, June). Exploration of very large

databases by self-organizing maps. In Proceedings

of international conference on neural networks

(icnn'97) (Vol. 1, pp. PL1-PL6). IEEE.

DOI:10.1109/icnn.1997.611622
[8] Qin, A. K., & Suganthan, P. N. (2005). Enhanced

neural gas network for prototype-based

clustering. Pattern recognition, 38(8), 1275-1288.

DOI:10.1016/j.patcog.2004.12.007
[9] Strickert, M., & Hammer, B. (2005). Merge SOM

for temporal data. Neurocomputing, 64, 39-71.

DOI:10.1016/j.neucom.2004.11.014
[10] Lomp, O. (2008). Finding Optimal Parameters for

Neural Gas Networks Using Evolutionary

Algorithms.

[11] Al Shehabi, S., & Lamirel, J. C. (2005, July). Multi-

Topographic Neural Network Communication and

Generalization for Multi-Viewpoint Analysis.

In Proceedings. 2005 IEEE International Joint

Conference on Neural Networks, 2005. (Vol. 3, pp.

1564-1569). DOI:10.1109/ijcnn.2005.1556111

[12] Holland, J. H. (1992). Adaptation in natural and

artificial systems: an introductory analysis with

applications to biology, control, and artificial

intelligence. MIT press. DOI:10.7551/mitpress/

1090.003.0007

[13] Nannen, V., & Eiben, A. E. (2007, September).

Efficient relevance estimation and value calibration

of evolutionary algorithm parameters. In 2007 IEEE

congress on evolutionary computation (pp. 103-

110). IEEE. DOI:10.1109/cec.2007.4424460
[14] Maron, O., & Moore, A. W. (1997). The racing

algorithm: Model selection for lazy

learners. Artificial Intelligence Review, 11, 193-225.

DOI:10.1007/978-94-017-2053-3_8
[15] Dobslaw, F. (2010). A parameter tuning framework

for metaheuristics based on design of experiments

and artificial neural networks. In International

conference on computer mathematics and natural

computing. WASET.

[16] Goldberg, D. E. (1988). Holland, JH. Genetic

Algorithms in Search. Optimization, and Machine

Learning. Mach. Learn, 3, 95-99.

DOI:10.1023/a:1022602019183

[17] TAN, R. K., & Şebnem, B. O. R. A. (2017).

Parameter tuning algorithms in modeling and

simulation. International Journal of Engineering

Science and Application, 1(2), 58-66.

DOI:10.1109/cicn.2017.8319375
[18] Ventocilla, E., Martins, R. M., Paulovich, F., &

Riveiro, M. (2021). Scaling the growing neural gas

for visual cluster analysis. Big Data Research, 26,

100254. DOI:10.1016/j.bdr.2021.100254
[19] Mendes, C. A. T., Gattass, M., & Lopes, H. (2014).

FGNG: A fast multi-dimensional growing neural gas

implementation. Neurocomputing, 128, 328-340.

DOI:10.1016/j.neucom.2013.08.033
[20] Fišer, D., Faigl, J., & Kulich, M. (2013). Growing

neural gas efficiently. Neurocomputing, 104, 72-82.

DOI:10.1016/j.neucom.2012.10.004

[21] García-Rodríguez, J., Angelopoulou, A., García-

Chamizo, J. M., Psarrou, A., Escolano, S. O., &

Giménez, V. M. (2012). Autonomous growing

neural gas for applications with time constraint:

optimal parameter estimation. Neural Networks, 32,

196-208. DOI:10.1016/j.neunet.2012.02.032

[22] Donatti, G. S., Lomp, O., & Würtz, R. P. (2010,

July). Evolutionary optimization of growing neural

gas parameters for object categorization and

recognition. In The 2010 International Joint

Conference on Neural Networks (IJCNN) (pp. 1-8).

IEEE. DOI:10.1109/ijcnn.2010.5596682

[23] Wall, M. (1996). GAlib: A C++ library of genetic

algorithm components. Mechanical Engineering

Department, Massachusetts Institute of

Technology, 87, 54.

[24] Fritzke, B. (1994). Fast learning with incremental

RBF networks. Neural Process. Lett., 1(1), 2-5.
DOI:10.1007/bf02312392

[25] Fritzke, B. (1995). Growing grid—a self-organizing

network with constant neighborhood range and

adaptation strength. Neural processing letters, 2, 9-

13. DOI:10.1007/bf02332159

[26] Zaki, M. J., & Meira, W. (2014). Data mining and

analysis: fundamental concepts and algorithms.

Cambridge University Press.

DOI:10.1017/cbo9780511810114

[27] Lamirel, J. C., & Al Shehabi, S. (2015). Feature

maximization based clustering quality evaluation: a

promising approach. In Trends and Applications in

Knowledge Discovery and Data Mining: PAKDD

2015 Workshops: BigPMA, VLSP, QIMIE, DAEBH,

Ho Chi Minh City, Vietnam, May 19-21, 2015.

Revised Selected Papers (pp. 210-222). Springer

International Publishing. DOI:10.1007/978-3-319-

25660-3_18

