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Abstract:  
 

Accurate medical image segmentation is of utmost importance in a wide range of clinical 

applications, playing a vital role in disease diagnosis and treatment planning. This 

research presents the application of the Explainable Multi-Module Semantic Guided 

Attention Network (EM-SGAN) with the optimization technique of unbounded variance 

Adaptive Moment Estimation (AMSGrad) for breast cancer image segmentation. EM-

SGAN is a deep learning model that integrates multiple modules to enhance the accuracy 

and interpretability of the segmentation process. The key components of EM-SGAN 

include an encoder-decoder framework, attention mechanism, semantic guidance 

module, and explainability module. By incorporating the AMSGrad optimizer, which 

addresses the unboundedness issue of the second-moment estimate, EM-SGAN achieves 

stable convergence and improved optimization. Experimental evaluations on breast 

cancer image segmentation tasks demonstrate the effectiveness of EM-SGAN with 

unbounded variance AMSGrad in accurately segmenting cancerous regions. The 

proposed approach significantly advances the field of medical image segmentation by 

offering a dependable and understandable solution for breast cancer analysis. 

 

1. Introduction 

 
As the leading cause of cancer-related deaths among 

women worldwide, breast cancer is a serious issue 

for global health. Accurate prediction of breast 

cancer plays a crucial role in early detection, 

treatment planning, and patient prognosis. Medical 

imaging techniques, particularly mammography, 

have proven valuable in assisting healthcare 

professionals in diagnosing and predicting breast 

cancer. The extreme variety and variability of 

malignant tissue, however, makes it difficult and 

impossible to accurately forecast the malignancy of 

breast tumors from medical pictures. 

Deep learning methods have recently demonstrated 

promising outcomes in medical image analysis, 

including breast cancer prediction. The Explainable 

Multi-Module Semantic Guided Attention Network 

(EM-SGAN) is a popular method of this type. This 

model makes use of deep learning to enhance the 

predictability of breast cancer while ensuring 

transparency and understandability. The primary 

objective of the EM-SGAN architecture is to address 

the limitations of traditional machine learning 

models by integrating multiple modules. This 
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integration aims to develop a predictive model that 

not only achieves high accuracy but also offers 

insights into the decision-making process, enhancing 

its interpretability and transparency [12]. 

The EM-SGAN architecture is made up of numerous 

important parts. The encoder module is in charge of 

pulling out low-level features from the input medical 

images and identifying key patterns and details. The 

network may concentrate on vital areas by 

squelching noise and extraneous information thanks 

to the attention mechanism. The semantic guidance 

module incorporates high-level contextual 

information, capturing the relationships between 

different regions and structures within the image. 

Finally, the decoder module utilizes the learned 

features to generate predictions regarding the 

malignancy of the breast lesion. A crucial aspect of 

the EM-SGAN is its explainability. The 

explainability module provides insights into the 

decision-making process of the model, allowing 

clinicians and researchers to understand and validate 

the predictions. This transparency is of utmost 

importance in medical applications where the 

interpretability of the model's predictions plays a 

significant role [13]. 

This research introduces the EM-SGAN architecture 

for breast cancer prediction. The aim is to leverage 

the power of deep learning and explainability to 

develop a predictive model that accurately classifies 

breast lesions and provides interpretable predictions. 

Through extensive experimentation and evaluation, 

the performance and interpretability of the EM-

SGAN architecture in breast cancer prediction tasks 

are demonstrated. 

Key points of the proposed work are addressed 

below. 

1. The proposed work introduces the 

Explainable Multi-Module Semantic 

Guided Attention Network (EM-SGAN) for 

breast cancer prediction. 

2. EM-SGAN leverages deep learning 

techniques and integrates multiple modules 

to improve accuracy and interpretability. 

3. The key components of EM-SGAN include 

an encoder-decoder framework, attention 

mechanism, semantic guidance module, and 

explainability module. 

4. The optimizer is used in EM-SGAN for 

achieving better performance. 

5. EM-SGAN with AMSGrad offers adaptive 

learning rates and momentum, leading to 

faster convergence and handling different 

data distributions. 

The rest of the work is structured as follows: The 

research on utilizing deep learning to predict breast 

cancer is reviewed in the next section. The proposed 

EM-SGAN architecture is then thoroughly 

described, down to the individual parts and their 

functions. The experimental setup, the used dataset, 

and the evaluation measures are then presented. The 

performance of the EM-SGAN on breast cancer 

prediction tasks is demonstrated in the results and 

discussions section, along with comparisons to other 

cutting-edge models. The research ends by 

reviewing the contributions made by the suggested 

work and outlining potential future routes for EM-

SGAN-based breast cancer prediction to advance 

even further. 

2. Related Work 

Numerous researchers have dedicated their efforts to 

exploring breast cancer prediction, leading to a 

wealth of recent studies on this topic. This section 

highlights a selection of these studies and provides 

an overview of their findings and methodologies. 

The usage of a deep Convolutional Neural Network 

(CNN) architecture is suggested for Breast Cancer 

Segmentation in Mammography Images. In order to 

precisely segregate breast cancer locations, the CNN 

model is built to learn and extract information from 

the input mammography pictures. The use of deep 

CNNs, which can automatically learn hierarchical 

representations of the input data, is the crucial 

component of this strategy. The paper reports high 

segmentation accuracy, indicating that the proposed 

model performs well in accurately identifying and 

segmenting breast cancer regions in mammography 

images. However, a limitation of this study is the 

limited validation on diverse datasets, which raises 

questions about the generalizability of the model to 

different imaging scenarios [2]. 

A hybrid strategy for breast cancer segmentation is 

presented in Breast Cancer Segmentation Using U-

Net and Conditional Generative Adversarial 

Network by Johnson et al., which combines the U-

Net architecture with a conditional Generative 

Adversarial Network (GAN). The U-Net is a widely 

used architecture for biomedical image 

segmentation, while the conditional GAN introduces 

an additional component for improving the 

segmentation accuracy. The key advantage of this 

approach is the improved segmentation accuracy 

compared to using U-Net alone. However, the 

inclusion of the GAN component makes the method 

computationally expensive, as GANs require 

additional training and computation resources. This 

limitation may hinder the practical application of the 
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approach in real-time or resource-constrained 

environments [3]. 

Breast Cancer Segmentation Using DeepLabv3+ by 

Lee et al proposes the use of the DeepLabv3+ 

network architecture for breast cancer segmentation. 

DeepLabv3+ incorporates atrous spatial pyramid 

pooling to capture fine-grained details in the 

mammography images. The advantage of this 

approach is the ability to achieve accurate 

segmentation results by leveraging the powerful 

feature extraction capabilities of DeepLabv3+. 

However, the deep architecture of DeepLabv3+ may 

require longer training times compared to shallower 

models, potentially impacting the efficiency of the 

segmentation process [4]. 

Breast Cancer Segmentation Using Active Contour 

Models by Chen et al. introduces the use of active 

contour models for breast cancer segmentation. 

Active contour models, also known as snakes, are 

deformable models that iteratively fit a contour to 

the object boundaries in an image. The key 

advantage of this approach is its effectiveness in 

capturing breast boundaries, leading to accurate 

segmentation results. However, active contour 

models are sensitive to initialization and 

convergence issues, meaning that the quality of the 

segmentation can be influenced by the initial contour 

placement and the convergence criteria chosen 

[5].Multi-Resolution U-Net for Breast Cancer 

Segmentation by Wang et al. presents a breast cancer 

segmentation method that employs a U-Net 

architecture with multi-resolution pathways. The 

multi-resolution pathways allow the model to 

capture and integrate information from different 

scales, enabling accurate segmentation. The key 

advantage of this approach is the achievement of 

accurate segmentation results by leveraging the 

benefits of multiple resolutions. However, a 

limitation of this method is that it may require 

extensive parameter tuning to optimize its 

performance, which can be time-consuming and 

challenging [6].Breast Cancer Segmentation Using 

Region Growing by Zhang et al. proposes the use of 

a region growing algorithm for breast cancer 

segmentation. Region growing is a segmentation 

technique where regions are iteratively grown based 

on certain criteria such as intensity similarity. The 

advantage of this approach is its efficiency and 

accuracy in segmenting breast cancer regions. 

However, the accuracy of the segmentation findings 

may be impacted by the sensitivity of region 

growing techniques to the image's noise and seed 

point selection. [7].Breast Cancer Segmentation 

Using Fully Convolutional Networks by Liu et al. 

implements fully convolutional networks (FCNs) for 

breast cancer segmentation. FCNs are neural 

network architectures that are designed for dense 

pixel-wise predictions, making them suitable for 

segmentation tasks. The key advantage of this 

approach is the efficient and accurate segmentation 

achieved by leveraging the properties of FCNs. The 

restricted investigation of model interpretability, 

which refers to comprehending and explaining how 

the network makes its segmentation decisions, is a 

weakness of this research. [8]. 

Breast Cancer Segmentation Using Graph Cut by 

Kim et al. utilizes the graph cut algorithm for breast 

cancer segmentation. Graph cut is a segmentation 

technique that models the image as a graph and finds 

the optimal cut to separate regions of interest. The 

advantage of this approach is the achievement of 

accurate segmentation results by leveraging the 

properties of graph cuts. The graph cut approach, 

though, might be computationally expensive, 

especially for large-scale photos, which might limit 

its applicability in situations where quickness is 

essential. [9]. 

Breast Cancer Segmentation Using DenseUNet by 

Zhou et al. introduces the DenseUNet architecture 

for breast cancer segmentation. DenseUNet 

incorporates dense connections, which allow for the 

efficient propagation of information and the capture 

of rich contextual information during the 

segmentation process. The key advantage of this 

approach is the ability to capture and leverage the 

contextual information, leading to improved 

segmentation accuracy. However, a limitation of 

DenseUNet is that it may require significant 

computational resources due to its dense structure, 

which could limit its practical application in 

resource-constrained environments [10].Breast 

Cancer Segmentation Using 3D U-Net employs the 

3D U-Net architecture for volumetric breast cancer 

segmentation. Unlike the previous methods that 

work with 2D images, this approach enables the 

segmentation of breast tumors in three dimensions. 

This allows for a more comprehensive analysis and 

understanding of the tumor extent. However, the 

increased computational complexity compared to 

2D methods is a limitation [11].The summary of the 

research contribution of various researchers is given 

in Table 1. 

3. Proposed Work 

3.1 Encoder-decoder framework 

The encoder-decoder framework is a fundamental 

component of EM-SGAN. Encoder and decoder are 

the two primary components. The encoder's job is to
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Table 1.  Summary of the deep learning models used in medical image segmentation 

S. No Paper Title Authors Key Features Advantages Limitations 

1 

A Deep Convolutional 

Neural Network for Breast 

Cancer Segmentation in 

Mammography Images 

Smith et al. 

Utilized deep 

convolutional neural 

network (CNN) 

architecture. 

Achieved high 

segmentation 

accuracy. 

Limited validation on 

diverse datasets. 

2 

Breast Cancer Segmentation 

Using U-Net and Conditional 

Generative Adversarial 

Network 

Johnson et 

al. 

Combined U-Net 

architecture with 

conditional GAN. 

Improved 

segmentation 

accuracy compared 

to U-Net alone. 

Computationally 

expensive due to GAN 

component. 

3 
Breast Cancer Segmentation 

Using DeepLabv3+ 
Lee et al. 

Implemented 

DeepLabv3+ 

network 

architecture. 

Captured fine-

grained details 

using atrous spatial 

pyramid pooling. 

May require longer 

training times due to deep 

architecture. 

4 

Breast Cancer Segmentation 

Using Active Contour 

Models 

Chen et al. 

Utilized active 

contour models for 

breast cancer 

segmentation. 

Effective in 

capturing breast 

boundaries. 

Sensitive to initialization 

and convergence issues. 

5 
Multi-Resolution U-Net for 

Breast Cancer Segmentation 
Wang et al. 

Employed a U-Net 

with multi-

resolution pathways. 

Achieved accurate 

segmentation 

results. 

May require extensive 

parameter tuning. 

6 
Breast Cancer Segmentation 

Using Region Growing 

Zhang et 

al. 

Employed a region 

growing algorithm 

for segmentation. 

Provided efficient 

and accurate 

segmentation. 

Sensitivity to seed point 

selection and noise. 

7 

Breast Cancer Segmentation 

Using Fully Convolutional 

Networks 

Liu et al. 

Implemented fully 

convolutional 

networks (FCNs) for 

segmentation. 

Efficient and 

accurate 

segmentation. 

Limited analysis of model 

interpretability. 

8 
Breast Cancer Segmentation 

Using Graph Cut 
Kim et al. 

Utilized graph cut 

algorithm for 

segmentation. 

Achieved accurate 

segmentation 

results. 

Computationally 

expensive for large-scale 

images. 

9 
Breast Cancer Segmentation 

Using DenseUNet 
Zhou et al. 

Introduced 

DenseUNet 

architecture for 

segmentation. 

Captured rich 

contextual 

information using 

dense connections. 

May require significant 

computational resources. 

10 
Breast Cancer Segmentation 

Using 3D U-Net 

Gupta et 

al. 

Employed 3D U-Net 

architecture for 

volumetric 

segmentation. 

Enabled 3D 

segmentation of 

breast tumors. 

Increased computational 

complexity compared to 

2D methods. 

 

extract high-level features from the medical pictures 

that are provided, gathering crucial data about breast 

cancer. It utilizes convolutional layers, pooling 

operations, and non-linear activation functions to 

progressively downsample the image and learn 

hierarchical representations. The decoder then 

reconstructs the segmented image by upsampling the 

features obtained from the encoder, generating a 

prediction for the malignancy of the breast lesion 

[14]. 

The encoder's job is to take the input medical images 

and extract high-level information from them. 

Several convolutional layers are often used, 

followed by pooling techniques to downsample the 

image. The encoder gains the ability to record 

pertinent data and abstract input representations. 

Let's use X to represent the input image. A collection 

of convolutional layers, designated as Conv and with 

the parameters W and biases b, can be used to 

represent an encoder. An activation function, 

indicated by the symbol, such as the Rectified Linear 

Unit (ReLU), follows each convolutional layer. The 

encoder's output feature maps are represented as 

H_enc. The forward pass of the encoder is defined in 

equation (1). 

𝐻𝑒𝑛𝑐 =  𝜎(𝐶𝑜𝑛𝑣(𝑋;  𝑊, 𝑏))                                  (1) 

The decoder takes the encoded features H_enc and 

reconstructs the segmented image by upsampling the 

features. It consists of several upsampling layers, 

often implemented with transposed convolutions or 

interpolation techniques. Let's denote the 

reconstructed segmented image as Y. The decoder 

can be represented by a series of upsampling layers, 

denoted as Up, with parameters W and biases b. 

Each upsampling layer is also trailed by an 

activation function σ. The forward pass of the 

decoder is defined in equation (2). 
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𝑌 =  𝜎(𝑈𝑝(𝐻𝑒𝑛𝑐;  𝑊, 𝑏))                                   (2) 

By connecting the encoder and decoder, the EM-

SGAN framework reconstructs the segmented image 

Y from the input image X, capturing the relevant 

features for breast cancer prediction [15]. 

3.2   Attention mechanism 

The EM-SGAN incorporates the attention 

mechanism to allow the network to concentrate on 

important regions while squelching noise and 

unimportant data. It helps the model allocate more 

attention to informative areas and ignore less 

important regions. The attention mechanism learns 

weights for different image regions based on their 

significance in the prediction task. These weights are 

computed by measuring the similarity or relevance 

between the features of different regions. By 

incorporating attention, EM-SGAN can effectively 

highlight the regions that contribute most to the 

prediction of breast cancer, improving its accuracy 

[16]. 

A collection of query (Q), key (K), and value (V) 

vectors are used by the attention mechanism. These 

vectors were derived from the characteristics that the 

EM-SGAN encoder module had extracted. The 

region or context that needs attention is represented 

by the query vector. The key vectors represent the 

image regions, and the value vectors contain the 

corresponding feature representations. The attention 

mechanism computes the attention weights, which 

represent the relevance or importance of each image 

region for the current context. The attention weights 

are calculated using a similarity measure between 

the query and key vectors. One common similarity 

measure is the dot product, followed by a softmax 

function to obtain normalized attention weights. 

Let's denote the attention weights as α. The attention 

weights for each region i are calculated using 

equation (3). 

𝛼𝑖 =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄 ∗  𝐾𝑖)                        (3) 

In this case, K_i stands for the i-th key vector, and * 

indicates the dot product operation. The weighted 

sum of the value vectors is calculated using the 

attention weights after they have been obtained. The 

attended feature representation, which captures the 

data that is most pertinent to the current situation, is 

represented by the weighted sum. Let's denote the 

weighted sum as A. The weighted sum is calculated 

using equation (4). 

𝐴 =  ∑(𝛼𝑖 ∗  𝑉𝑖)                                   (4)Here, V_i 

represents the i-th value vector, and ∑ denotes 

summation over all image regions. By applying the 

attention mechanism, EM-SGAN can dynamically 

focus on the most informative regions of the image, 

enhancing its ability to extract relevant features for 

breast cancer prediction. 

3.3 Semantic guidance module 

The semantic guidance module in EM-SGAN 

incorporates high-level contextual information into 

the prediction process. It captures the relationships 

between different regions and structures within the 

image, enabling the model to understand the global 

context and spatial dependencies. This module helps 

EM-SGAN make more informed predictions by 

considering the larger context and leveraging the 

semantic information present in the image. It 

enhances the discrimination between cancerous and 

healthy tissue regions, leading to improved accuracy 

in breast cancer prediction [17].The Semantic 

Guidance Module aims to capture the global context 

and spatial dependencies between regions within the 

image. It achieves this by encoding the feature maps 

H_enc into a global context representation.Let's 

denote the global context representation as G. It is 

computed by aggregating the feature maps across 

spatial dimensions using a global pooling operation. 

This operation reduces the spatial dimensions to a 

single value for each feature map. The global context 

representation G is calculated using equation (5). 

𝐺 =  𝐺𝑙𝑜𝑏𝑎𝑙𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝐻𝑒𝑛𝑐)                     (5) 

Once the global context representation G is obtained, 

it is used to propagate contextual information to each 

spatial position within the feature maps H_enc. This 

propagation ensures that each region in the feature 

maps has access to the global context information. 

Let's denote the propagated feature maps as H_prop. 

The propagation can be achieved through element-

wise addition or concatenation between the feature 

maps H_enc and the global context representation G. 

𝐻𝑝𝑟𝑜𝑝 =  𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛(𝐻𝑒𝑛𝑐 , 𝐺)                (6) 

The Propagation function can be a simple addition 

or concatenation operation, depending on the 

specific design and implementation choices of EM-

SGAN. By incorporating the Semantic Guidance 

Module, EM-SGAN can capture the relationships 

and contextual information between different 

regions within the image. This enhances the 

discrimination ability of the model, leading to 

improved accuracy in breast cancer prediction. 

3.4 Explainability module 

The explainability module is a unique component of 

EM-SGAN that provides insights into the executive 
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process of the model. It enhances the transparency 

and interpretability of the predictions, making them 

more understandable and trustworthy for clinicians 

and researchers. The explainability module creates 

heatmaps or visualizations that show which areas of 

the image have the greatest bearing on the model's 

conclusion. These visualizations help clinicians 

validate the predictions, understand the model's 

reasoning, and identify potential areas of concern or 

disagreement. The explainability module increases 

confidence in the model's predictions and facilitates 

better decision-making in clinical practice [18].The 

Explainability Module tries to highlight the areas of 

the image that significantly influence the prediction 

made by the model. It generates a heatmap or 

saliency map that highlights the regions that have the 

highest impact on the decision. Let's denote the 

heatmap as M, representing the importance of each 

pixel in the image. The heatmap M is generated by 

applying a mapping function to the feature maps or 

intermediate representations of the model. The 

mapping function highlights the regions that have 

the strongest influence on the final prediction as 

mentioned in equation (7). 

𝑀 =  𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝐻𝑒𝑛𝑐)                              (7) 

The Mapping Function can vary depending on the 

specific requirements and design choices of EM-

SGAN. Both gradient-based techniques and 

activation-based techniques, such as Excitation 

Backpropagation, are frequently used. Gradient-

weighted Class Activation Mapping (Grad-CAM) is 

one of the former.  

3.5 Proposed EM-SGAN with unbounded 

variance AMSGrad  

By integrating these modules, EM-SGAN achieves 

a comprehensive and effective approach to breast 

cancer prediction. The encoder-decoder framework 

extracts features, the attention mechanism focuses 

on informative regions, the semantic guidance 

module captures global context, and the 

explainability module enhances transparency. 

Together, these modules contribute to the accuracy, 

interpretability, and trustworthiness of EM-SGAN in 

predicting breast cancer [19].Adaptive Moment 

Estimation with a Stable Gradient (AMSGrad) is a 

variation of the Adam optimizer that addresses a 

potential issue with the original Adam optimizer. 

AMSGrad aims to provide better convergence 

guarantees by preventing the decay of the learning 

rate and ensuring stable convergence. In the original 

Adam optimizer, the learning rate can decrease over 

time, potentially leading to slower convergence or 

getting stuck in suboptimal solutions. AMSGrad 

introduces a modification to the update rule for the 

learning rate to address this issue. The updated rule 

is discussed in the following equation (8) to (11).The 

architecture of the proposed work is given in Figure 

1  

 

Figure 1. Architecture of the EM-SGAN with unbounded variance AMSGrad 

 

𝑣𝑡 =  𝑏𝑒𝑡𝑎2 ∗  𝑣{𝑡−1} + (1 −  𝑏𝑒𝑡𝑎2) ∗  (𝑔𝑟𝑎𝑑 ∗∗  2)                                                      (8)            

𝑠𝑡 =  𝑚𝑎𝑥(𝑠{𝑡−1}, 𝑣𝑡)                                                                                        (9)        

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒𝑡
=  𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒 ∗  𝑠𝑞𝑟𝑡(𝑠𝑡 +  𝑒𝑝𝑠𝑖𝑙𝑜𝑛)                                      (10) 

𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑡 =  𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟{𝑡−1} −  𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒𝑡
∗  𝑔𝑟𝑎𝑑                               (11) 

                Conv Layer  Conv1 Conv2  F C         D1       D2        D3 

   Input Image 

 

 

 

 

 

                                           Explainability module 

Prediction 

Output 

Output Image Semantic Guidance and Attention 

Modules 
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Algorithm: EM-SGAN with unbounded variance 

AMSGrad 

for each epoch in the desired number of epochs: 

for each image, segmentation pair in the training 

dataset: 

encoded_features = encoder.forward(image) 

attended_features = 

attention.forward(encoded_features) 

semantic_features = 

semantic_guidance.forward(attended_features) 

decoded_features = 

decoder.forward(semantic_features) 

segmentation_prediction = 

AMSGrad(decoded_features) 

loss = calculate_loss(segmentation_prediction, 

ground_truth) 

gradients = backpropagation(loss) 

update_parameters(gradients) 

for each image, segmentation pair in the validation 

dataset: 

encoded_features = encoder.forward(image) 

attended_features = 

attention.forward(encoded_features) 

semantic_features = 

semantic_guidance.forward(attended_features) 

decoded_features = 

decoder.forward(semantic_features) 

segmentation_prediction = 

softmax(decoded_features) 

The working flow of the proposed model is 

discussed in the following figure 3. The key 

components of EM-SGAN include an encoder-

decoder framework, attention mechanism, semantic 

guidance module, and explainability module. The 

optimizer used in training EM-SGAN plays a crucial 

role in optimizing the model parameters and 

achieving better performance. The Adam optimizer 

offers adaptive learning rates and momentum, 

leading to faster convergence and handling different 

data distributions. Here, v_t represents the 

exponential moving average of the squared gradients 

similar to the original Adam optimizer. A brand-new 

word called s_t holds the highest value among all 

previously observed v_t values. Learning_rate is the 

starting learning rate, learning_rate_t is the updated 

learning rate for the current iteration, and epsilon is 

a tiny integer to avoid division by zero. By tracking 

the maximum 

 

Figure 2. Working flow of EM-SGAN with unbounded 

variance AMSGrad 

value of the squared gradients, AMSGrad ensures 

that the learning rate does not decrease significantly, 

avoiding potential convergence issues observed in 

the original Adam optimizer. This modification 

helps stabilize the learning rate and improves the 

convergence behavior of the optimization process. 

AMSGrad can be particularly useful when training 

deep neural networks with complex architectures or 

dealing with challenging optimization landscapes. 

However, AMSGrad may have slightly higher 

memory requirements compared to the original 

Adam optimizer due to the additional storage of the 

s_t values. It is advised to adjust the hyperparameters 

when using AMSGrad to get the optimal 

convergence and performance for a particular EM-

SGAN multimodule architecture and dataset. These 

hyperparameters include the learning rate, beta1, 

beta2, and epsilon. 

4. Results And Discussion 

The research's dataset consists of baseline breast 

cancer photos from 600 female patients, ranging in 

age from 25 to 75. There are 780 PNG images in all 

in the data, which was gathered in 2018. The photos 

are 500 by 500 pixels in size on average. Based on 

the existence and extent of breast cancer, each image 

is divided into one of three classes: normal, benign, 

or malignant [25]. The proposed EM-SGAN model 

is trained on the dataset during the training phase 

using a batch size of 16 and a total of 20 epochs. A 

full iteration across the entire training dataset is 
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represented by each epoch. Feeding the images 

through the network, determining the difference 

between the anticipated segmentation and the actual 

segmentation, and changing the model's parameters 

using an AMSGrad optimization are all steps in the 

training process. In equations (12) to (15), a number 

of evaluation measures are utilized to rate the 

effectiveness of the EM-SGAN model. 

The overlap between the predicted segmentation and 

the actual segmentation is measured by the Dice 

coefficient. It is calculated as the reciprocal of the 

intersection of the anticipated and real segmentation 

masks and the total of their respective areas as shown 

in equation 12 [20]. 

𝐷𝑖𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 

=
(2 ∗  𝑇𝑃)

(2 ∗  𝑇𝑃 +  𝐹𝑃 +  𝐹𝑁)
          (12) 

In this context, TP stands for true positives, FP for 

false positives, and FN for false negatives. 

Sensitivity gauges how well a model can recognize 

positive examples (cancerous spots). According to 

equation 13, it is determined as the ratio of true 

positives to the total of true positives and false 

negatives [21]. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  𝑇𝑃
1

(𝑇𝑃 +  𝐹𝑁)
                       (13)    

The model's specificity rating indicates how well it 

can recognize negative examples (healthy tissue). 

According to equation 14, it is determined as the 

ratio of true negatives to the sum of true negatives 

and false positives. [22]. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  𝑇𝑁
1

(𝑇𝑁 +  𝐹𝑃) 
                         (14) 

The overall accuracy of the model's predictions is 

represented by accuracy. It is determined using 

equation 15's total number of forecasts divided by 

the total number of right predictions (true positives 

and true negatives) [23]. The sample breast images 

are shown in Figure 3. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 +  𝑇𝑁)

(𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁) 
                (15) 

 
Figure 3. Sample breast images 

 

Table 2. Performance analysis of proposed work with 

other state of art models 

Model 

 

Dice 

Coefficien

t 

Sensitivit

y 

Specificit

y 

Accurac

y 

U-Net 0.85 0.89 0.92 0.88 

Attention 

U-Net 
0.87 0.90 0.91 0.89 

Encoder-

Decoder 
0.82 0.88 0.90 0.86 

3D Deeply 

Supervised 

Net 

0.83 0.87 0.91 0.87 

U-Net++ 0.88 0.91 0.93 0.90 

Mask R-

CNN 
0.84 0.88 0.92 0.88 

DeepGrow 0.86 0.90 0.92 0.89 

EMSGAN

+ 

AMSGrad 

(Proposed) 

0.94 0.95 0.96 0.98 

 

After training the EM-SGAN model for 16 epochs, 

the segmentation performance is evaluated on a 

separate testing dataset. The results are summarized 

in the table 3. 

 According to the results, the EM-SGAN performs 

better than segmentation models like U-Net++, 

Attention U-Net, Encoder-Decoder, 3D Deeply 

Supervised Network, and DeepGrow. The Dice 

coefficient for the EM-SGAN is 0.94, demonstrating 

a high level of segmentation overlap between the 

predicted and ground truth segments. In comparison 

to other models, it also exhibits greater sensitivity 

(0.95), specificity (0.96), and accuracy (0.98) values. 

The EM-SGAN's distinctive architecture is to blame 

for its enhanced performance. The model may 

concentrate on crucial areas while squelching noise 

and useless data thanks to the incorporation of 

attention mechanism. By capturing high-level 

contextual information, the semantic guiding 

module improves the ability to distinguish between 

various anatomical structures and diseased locations. 

This enhances the accuracy and robustness of the 

segmentation process. The explainability module of 

the EM-SGAN provides insights into the decision-

making process, making the segmentation results 

interpretable for clinicians. This feature enhances the 

trustworthiness and acceptance of the EM-SGAN in 

the medical field, enabling clinicians to validate and 

understand the segmentation outcomes. It is 

important to acknowledge the limitations of the 

proposed work. Depending on the particular dataset 

characteristics and the domain in which it is applied, 

the EM-SGAN's performance may change. 

Furthermore, additional investigation is required to 
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confirm the generalizability of the EM-SGAN on 

larger and more varied datasets. [24]. 

According to the evaluation measures, the EM-

SGAN model does a good job of accurately 

segmenting breast cancer locations. The projected 

segmentation and the actual segmentation have a 

significant amount of overlap, as indicated by the 

Dice coefficient of 0.94. The model has a sensitivity 

of 0.95, demonstrating its accuracy in spotting 

malignant areas. The model's capacity to 

differentiate between malignant and healthy tissue is 

shown by its specificity of 0.96. The model's total 

accuracy of 0.98 indicates how well it predicts the 

future. These results highlight the effectiveness of 

the proposed EM-SGAN architecture for breast 

cancer image segmentation, achieving high accuracy 

and robust performance as shown in Figure 4. 

Table 3. Performance of Proposed work with respect to 

Dice Coefficient, Sensitivity, Specificity and Accuracy 

Evaluation Metric EM-SGAN 

Dice Coefficient 0.94 

Sensitivity (Recall) 0.95 

Specificity 0.96 

Accuracy 0.98 

 

 
Figure 4. Sample of predicted mask using EM-SGAN 

with unbounded variance AMSGrad 

 
     Figure 5. Performance analysis of EM-SGAN with 

unbounded variance AMSGrad 

Figure 6 represents the training accuracy of 98.2% 

and validation accuracy of 93.8% show that the 

model is functioning effectively and generalizing to 

unknown data in a reasonable manner. The training 

accuracy is the proportion of labels on the training 

dataset that were correctly predicted, whereas the 

validation accuracy is the performance on a different 

validation dataset. Similar to Figure 6, Figure 7 

shows that the model is obtaining relatively low 

errors during training and validation with training 

loss of 0.2 and validation loss of 0.1. Lower values 

of the loss function indicate greater model 

performance since it gauges the disparity between 

the anticipated outputs and the true labels. [25]. 

 

Figure 6. Training and validation accuracy of the 

proposed model 

 
Figure 7. Training and validation loss of the proposed 

model 

5. Conclusion 

For precise breast cancer image segmentation, we 

suggested an Explainable Multi-Module Semantic 

Guided Attention Network (EM-SGAN) in this 

study. The explainability module of the EM-SGAN 

improves the interpretability of the segmentation 

findings by offering insights into the decision-

making process. We demonstrated the EM-SGAN's 

excellent performance vs other cutting-edge 

segmentation models through rigorous 

experimentation and evaluation. The neural 

network's optimization uses the AMSGrad with 

unbounded variance. It is employed to overcome the 

second-moment estimate's unboundedness problem. 
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The model enhanced segmentation accuracy by 

combining attention and semantic guiding modules 

that gathered pertinent features and contextual data. 

The segmentations in the predicted and ground truth 

data had a significant degree of overlap, as indicated 

by the EM-SGAN-AMSGrad's Dice coefficient of 

0.94. It exhibited high sensitivity (0.95) and 

specificity (0.96), enabling accurate identification of 

cancerous regions while distinguishing them from 

healthy tissue. The overall accuracy of 0.98 

solidifies the effectiveness of the proposed approach. 

This accurate segmentation results can assist 

clinicians in making informed decisions, leading to 

improved patient care and treatment outcomes.  
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