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Abstract:  
 

The precision of Software Effort Estimates (SEE) is essential for planning, managing, 

and thoroughly assessing software projects, ensuring they stay on budget and schedule. 

Achieving accurate SEE results is vital for handling future software development tasks, 

addressing the challenges of overestimating and underestimating resources. The method 

employs machine learning (ML) assessment approaches that produce highly accurate 

results, evaluating based on metrics, data sets, and relevant attributes. This paper 

analyzes potential applications of data science in management accounting. With large 

amounts of data, deep learning techniques can overcome some of these limitations. 

Initially, we collected the dataset from a standard repository, and we started the first 

step of data preprocessing for reducing null and unbalanced values based on Mini-

Maxi-score normalization (Mm-Z-score). The final stage is classification is based on 

SoftMax deep Scaling Gated Adversarial Neural Network (SmDSAN2) evaluating the 

cost estimation debt budget schedule and reducing the false rate for analyzing the It can 

predict the costs required to build or develop software cost based on 

SmDSAN2algorithm has shown high accuracy for Predict the necessary cost to develop 

Software cost and effort estimation. Estimation techniques are used by categorizing the 

estimation of projects created using the Fuzzy margin rate to identify various debts 

available in different organizations. The SmDSAN2 algorithm will help software 

companies follow the rules and standards and reduce the cost of the overall estimation. 

 

1. Introduction 

Creating reliable software products requires 

performing several tasks within a particular cost 

and time limit, from collecting requirements to 

maintaining them [1]. Since software analysis 

requires accurate task estimation, software cost 

estimation has become significantly more important 

over the past two decades. The program offered 

cost estimation and debt management analysis for 

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com
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efficient contract negotiation, planning, and 

resource allocation. By using evaluation methods 

that improve project management, the time and cost 

of software development are significantly reduced 

while improving current processes.Future and 

current technology projects are essential for 

analyzing technology investment's profitability and 

potential and estimating costs. Furthermore, future 

information technology performance requires 

evaluating software program development using a 

wide range of specific data protection applications 

[2]. A software tool designed to distribute software 

products involves transferring or selling them to the 

user. Additionally, the data connected to the 

software tool includes programs, procedures, rules, 

and any provided documents for operating a data 

processing system.Consequently, estimating 

software expenses beforehand during the project 

planning stage is crucial. Calculating and predicting 

the effort required to develop a software system is 

part of the process [3]. Furthermore, software 

testing, maintenance, and requirements engineering 

contribute to cost estimation. These estimates 

empower a project manager to allocate resources 

and set budgets or deadlines effectively.Therefore, 

accurately estimating the costs needed to complete 

the project within the designated time and budget is 

crucial. Project managers possess significant 

expertise and experience in estimating software 

costs for intricate project architectures. 

Furthermore, the technology employed introduces 

complications related to project scope, 

requirements engineering, and the development 

team's capabilities [4]. The software development 

cost is accurately assessed to determine the 

influence of the likelihood that the software 

expansion will be completed quickly and cost-

effectively.Additionally, input data for cost 

estimation is difficult to obtain, and the work's 

scope is frequently unclear, resulting in rough and 

incomplete estimates. Even small improvements 

can complicate cost management if a project relies 

on inaccurate cost estimates [5]. Due to the 

characteristics of the construction industry, a large 

amount of capital is required to start and continue a 

business in a high-risk sector.The main contribution 

of this section is to improve the efficiency of 

software cost estimation techniques using the 

SmDSAN2 model for accurate software cost 

estimation. Data preprocessing begins by collecting 

data from standard repositories and reducing null 

and unbalanced values based on the Mm-Z-score. 

Furthermore, feature edge threshold analysis is 

performed based on the FSMIR model. Similarly, 

the PSI method calculates the nearest value to 

select the maximum weighted range based on the 

threshold value. Additionally, the SmDSAN2 

algorithm was adopted to reduce the estimation and 

cost estimate analysis error rate. In addition, 

software cost and effort estimates are generated 

using the SmDSAN2 algorithm, and accuracy is 

improved by assessing the required costs based on 

the SmDSAN2 algorithm. 

 

Figure 1. The Software Cost Estimation Architecture Diagram 

As shown in Figure 1, the data collected from the 

Kaggle dataset is processed using data pre-

processing, margin impact ratio, feature selection, 

and classification. 

2. Literature Survey 

It examines the size distribution of software system 

features by assessing partial moment data through a 

theoretical framework that maximizes Shannon 
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entropy [6]. The software evaluates other systems 

when the component sizes exhibit a gamma 

distribution. A Systematic Literature Review (SLR) 

analyzing movements in research papers published 

over the past five years suggests future directions. 

However, this review highlights challenges and 

risks in providing accurate cost estimates for the 

software project [7]. The proposed model's 

Artificial Neural Network (ANN) algorithm 

integrates the contribution of each presented model 

by applying the linear combination rule to the 

individual estimated models [8]. However, the 

demand for software systems has increased 

significantly, and their resources, such as money, 

time, and labor, are in short supply. The proposed 

metaheuristic algorithm for parameter optimization 

provides near-optimal solutions at a reasonable cost 

[9]. Construction Cost Model (COCOMO) 

evaluates the accuracy of the software effort based 

on constraints. The proposed Artificial Bee Colony-

Guided Analogy-Based Estimation (ABABE) 

model combines the ABC algorithm with ABE to 

provide accurate estimations [10]. During its 

training and testing stages, ABC applies the 

estimating method to the similarity function of 

ABE to generate various weights.However, 

choosing the best estimation algorithm is an expert 

and complex task [11]. To overcome these 

problems, this study improves the estimation using 

the Dolphin Bat Algorithm (DolBat) based on the 

COCOMO-II model. Two commonly used 

accuracy assessments are based on metrics such as 

ML ensembles. The performance of individual 

methods is examined on publicly available domain 

datasets [12]. The program uses ML techniques to 

integrate Convolutional Neural Networks (CNN) 

for time series forecasting and Particle Swarm 

Optimization (PSO) for cost assessment [13]. The 

offered method enables feature extraction and 

hyperparameter adjustment, reduces reliance on 

human input for parameter choices, and simplifies 

robustness calculations. The proposed method's 

main objective is identifying available loans for 

various companies [14]. This software allows 

agencies to maintain common standards and reduce 

overall evaluation costs. Evaluation of the proposed 

CNN method using multivariate time series data 

from the journal dataset [15]. CNN technology is 

the model input for number processing in time 

series problems.The author [16] used 

Biogeography-Based Optimization (BBO) to refine  

 

Table 1. Software Cost Estimation Prediction Accuracy 

Author Year Technique Used Drawback  Accuracy 

M. S. Khan [18] 2021 Deep Neural Network 

(DNN)  

Software development is complex due to fast-

changing needs and technology. 

0.95 

H. L. T. K. 

Nhung [19] 

2022 Multiple Linear 

Regression models 

(MLRM) 

The use case affects the prediction accuracy of 

point-based methods. 

75.24 

Varshini, P. A. 

G [20] 

2021 Support Vector Machine 

(SVM) 

Software effort estimation focuses on estimating 

work hours for software 

development/maintenance. 

0.093 

C. A. U. Hassan 

[21] 

2022  Hybrid Of Ant Colony 

Optimization with BAT 

(HACO-BA), COCOMO 

Effective software makes it difficult to achieve 

specific goals through project management. 

85% 

Rao, K.E [22] 2021 Recursive Feature 

Elimination (RFE) 

As the development of software products 

progresses rapidly, they fail to achieve their 

software development goals effectively. 

81.25 

A. 

Puspaningrum 

[23] 

2021 Flower Pollination 

Algorithm (FPA) 

A key issue in effort estimation is that vague and 

inconsistent software requirements impede 

accurate estimates. 

52.48% 

K. R. Shweta 

[24] 

2021 Ensemble Duck Traveler 

Optimization (eDTO) 

Incorrect forecasts put the project at risk, and 

effective management requires accurate forecasts. 

91% 
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COCOMO-II's coefficients for improved software 

project cost and effort estimation, but the resulting 

model's accuracy remains limited. The optimal 

method provided the Fuzzy Inference System (FIS) 

with the necessary data, cost considerations, 

limitations, and priorities. Calculate minimum 

progress and processed outputs such as cost, effort, 

time, and expenses [17]. 

Software cost estimation can be improved using 

defect metrics and accuracy assessments, as 

detailed in Table 1. 

Table 2. Deep Learning Model Based on Software Effort Estimation 

Author Reference 

No 

Methodology Dataset Performance Evaluation 

D. K. K. 

Reddy 

[25] PSO online market server Computatinaltime, Precision, 

F-score 

E. Trojovská [26] Zebra Optimization 

Algorithm (ZOA) 

CEC2015, CEC2017 Sensitivity, Scalability 

 

Suresh Kumar 

Pemmada 

[27] Artificial Neural 

Network (ANN) 

COCOMO, NASA dataset Accuracy measure 

M. Rahman [28] K-Nearest Neighbor 

(K-NN) 

Albrech, Desharnais,Chia, 

Kemere, Mayazaki94, 

Maxwell,andCOCOMO 

Mean Squared Error (MSE), 

Mean Magnitude of Relative 

Error (MMRE) 

Feta, N [30] Fuzzy Logic 

Method (FLM) 

 

COCMOI,NASA98data set Accuracy, MMRE 

Kassaymeh, S [31] Fully Connected 

Neural Network 

(FCNN) model 

Software Development Effort 

Estimation (SEE) 

Accuracy 

 

As Table 2 illustrates, software effort evaluations 

based on DL techniques were processed to evaluate 

various techniques, datasets, and performance 

metrics. 

The proposed impact ratio determines the optimal 

clustering method and estimates the software 

development effort [32]. Furthermore, using the 

offered method based on the performance RMSE 

metric improved the accuracy of the FPA method to 

63.68% and the EEAC method to 72.02%. 

Additionally, the ML technology uses fuzzy logic 

models based on Support Vector Regression (SVR) 

technology introduced by simulation [33]. 

Additionally, FLM models have various 

advantages, such as adaptability and prediction 

accuracy. The proposed algorithm includes various 

node and edge types with the solved software input 

problem. In addition, the initial node created an 

embedding to learn and predict points supporting a 

Heterogeneous Graph Neural Network (GGNN) 

model [34]. A statistical evaluation of the overall 

tests across both classification types indicates that 

the proposed activation function is highly effective, 

increasing the average accuracy of all competing 

activation functions [35]. The results also indicate 

that this suggested process improves the 

performance of the most widely employed 

activation functions across numerous benchmarks. 

3. Proposed Methodology 

This section utilized the proposed method for 

software cost estimation and debt management 

analysis using the Desjardins dataset obtained from 

the Kaggle repository. First, the Mm-Z scoring 

technique was used to reduce the null and 

unbalanced values in the dataset. Next, the feature 

edge was analyzed using the FSMIR method. In 

addition, a range-based feature selection was 

designed to select the closest value based on the 

PSI algorithm. Finally, the SmDSAN2 algorithm 

based on the DL model helps software companies 

comply with rules and standards and reduces 

overall evaluation costs. As shown in figure 2, the 

architecture diagram of the proposed SmDSAN2 

project. Data from the standard repository 

experiences pre-processing using Mm-Z score 

normalization to reduce null values and imbalances. 

FSMIR-based thresholds define feature contour 

thresholds. Feature selection uses PSI to increase 

the weighted threshold based on these thresholds 

and iteratively ranks the importance of the features 

until the best subset is 
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Figure 2. The Proposed SmDSAN2 Method Architecture Diagram 

obtained. Finally, SoftMax SmDSAN2 classifies 

data, evaluates cost estimates, minimizes false 

positive rates, and predicts software costs. 

SmDSAN2 software accurately predicts costs and 

efforts, classifies projects using fuzzy margin 

percentages, and identifies debt. This allows 

companies to adhere to standards and reduce 

overall estimated costs. 

3.1 Dataset Collection 

This section developed a proposed model to predict 

software cost estimates using Desjardins datasets 

collected from Promise repositories and Kaggle to 

improve accuracy. Collecting and determining the 

dataset's features, we analyze, process, and 

visualize them. Similarly, the proposed algorithm 

provides excellent results using Desjardin's datasets 

of different sizes. This project analyzes, cleans, 

prepares, and visualizes data to predict the 

organization's software effort estimation costs. In 

addition, the company developed an application  

 

Figure 3. Dataset Feature Collection 

 

           

         

           

                    

           

                     

                   
                   

                       

    

                        

                    

                     

        

            

           

                 

                



K. Ravikumar, K. Saravanakumar, Anand Viswanathan,  Mathivanan Durai, S. Devi, S. Kalaiselvan / IJCESEN 11-2(2025)3171-3184 

 

3176 

 

designed to improve software cost estimation. This 

application, which is provided to internal 

stakeholders, allows them to interact with internal 

and external data and quickly access invoice 

estimates. To assess the software cost estimates for 

82 features, a training set of 11 and a test set of 71 

were utilized. 

Figure 3 illustrates the significance of quality 

requirement attributes in assessing software effort 

with the feature set-based data from the Desharnais 

dataset. This dataset is widely recognized, much 

like other datasets for training and validating 

software cost estimation models. The dataset's 

features are gathered from 

https://www.kaggle.com/datasets/toniesteves/desha

rnais-dataset using the website. 

3.2 Data Pre-Processing 

An MM-Z scoring algorithm based on data 

preprocessing can reduce null and unbalanced 

values in the dataset. In addition, preprocessing 

steps remove errors, missing values, and outliers. 

All values in the dataset are numerically converted 

and analyzed as single numbers. In addition, the 

software uses the isnull () and sum () functions to 

check that the price estimate contains no null 

values. In addition, the feature values are 

transformed, and all measured features are scaled to 

the same unit of measure, determining the scale of 

the software effort cost estimate.  

All variables were assessed by normalizing 

the minimum and maximum values in the dataset. 

Variables with different thresholds are measured 

and standardized as illustrated in Equations 1 and 2. 

Let’s assume Pn −input variable, Pmax −
Pmin, standardized scale value, Newmax −
Newmin − new minimum and maximum variable, 

𝐽 −normalized value. 

Pn = (
Pn−Pmin

Pmax−Pmin
) × (𝑁𝑒𝑤𝑚𝑎𝑥 − 𝑁𝑒𝑤𝑚𝑖𝑛) +

𝑁𝑒𝑤𝑚𝑖𝑛 (1) 

Pmax = 𝑚𝑎𝑥𝑃𝑛1≤𝑛≤𝐽,   Pmin = 𝑚𝑖𝑛𝑃𝑛1≤𝑛≤𝐽    (2) 

Calculate a Z-score to standardize the 

variable units of measurement based on the unit 

choice for each attribute, as illustrated in Equations 

4 and 5. Where 𝐼 −interval, 𝐴𝑉 −actual value, 

𝑁𝐴𝑉 −normalized actual data. 

𝐼[0,1] =
𝑁𝐴𝑉−𝑚𝑖𝑛(𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒)

𝑚𝑎𝑥(𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒)−𝑚𝑖𝑛(𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒)
  (3) 

𝐼[−1,1] =
𝑁𝐴𝑉−(𝑚𝑎𝑥(𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒)+𝑚𝑖𝑛(𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒))/2

(𝑚𝑎𝑥(𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒)+𝑚𝑖𝑛(𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒))/2
 

    (4) 

The software generates a cost estimate by 

minimizing null and unbalanced values in the 

dataset, employing a pre-processing technique that 

standardizes scaling to normalize the minimum-

maximum score. 

3.3 Fuzzified Support Margin Impact Rate 

(FSMIR) 

This section utilizes the FSMIR model to identify 

various loans accessible to firms, examining the 

spectrum of characteristic margins. Furthermore, 

the fuzzy margin ratio calculates the impact ratio of 

development projects and enhances software 

evaluation techniques. The FSMIR algorithm, 

which analyzes fuzzy numbers, can be used to 

analyze the ambiguities and inaccuracies in the 

data. Each possible value represents a set of 

possible values with weights between '0' and '1'. 

The weight membership function is determined by 

dividing the mean value of fuzzy numbers into 

three categories: triangular, trapezoidal, and bell-

shaped. 

Determine the interval [0, 1] using fuzzy logic 

outlined in Equations 5 and 6. Calculate the 

classical extension of fuzzy sets into a collection of 

ordered pairs. Let’s assume 𝑎𝑛 𝑥 −universe of 

discourse elements, 𝐸 −fuzzy set, 𝑃 −set of 

ordered pairs, and 𝜇𝐸(𝑃) −membership function. 

𝐸 = 𝑁𝐴𝑉{𝑋|𝑋 > 6}  (5) 

𝐸{𝑃, 𝜇𝐸(𝑃)|𝑝   𝑃}  (6) 

As shown in equation 7, membership functions 

classify the ambiguities in the fuzzy set and map 

each point in the input space to a membership value 

between 0 and 1. Let’s assume 𝑚 −modal value, 

𝑎 −lower limit, 𝑏 −upper limit, 𝑝 − 𝑓, 𝑎𝑛𝑑 𝑓 −
𝑖 −margin value. 

𝐸(𝑃) = {

0     𝑖𝑓 𝑃 ≤ 𝑒 𝑜𝑟 𝑝 ≤ 𝑓

(𝑝 − 𝑒)/(𝑝 − 𝑓)    𝑖𝑓 𝑝 ∈ (𝑒, 𝑖)

(𝑓 − 𝑝)/(𝑓 − 𝑓)  𝑖𝑓 𝑝 ∈ (𝑖, 𝑓)
              (7) 

Calculate the distance bounded by the upper and 

lower points of the curve, as shown in Equation 8. 

Let’s assume 𝑇(𝑃) −fuzzy set,  

𝑇(𝑃) =  

{
 

 
0           𝑖𝑓  𝑝 ≤ 𝑒

2 {(𝑝 − 𝑒)/(𝑓 − 𝑒)}2    𝑖𝑓 𝑝 ∈ (𝑒, 𝑖)

1 − 2 {(𝑝 − 𝑒)/(𝑓 − 𝑒)}2  𝑖𝑓 𝑝 ∈ (𝑖, 𝑓)

1    𝑖𝑓𝑝 ≥ 𝑓

 (8) 

As illustrated in Equation 9, estimate the lower and 

upper bounds of the central or kernel value. Let’s 

assume m-value, 𝑎 − 𝑏 −distance. 
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𝑆(𝑃) =

{
 

 
0             𝑖𝑓(𝑝 ≤ 𝑒)𝑜𝑟(𝑝 ≥ ℎ)

(𝑝 − 𝑒)/(𝑝 − 𝑓)    𝑖𝑓 𝑝 ∈ (𝑒, 𝑓)

1     𝑖𝑓  𝑝 ∈ (𝑓, 𝑔)

(ℎ − 𝑝)/(ℎ − 𝑔)  𝑖𝑓  𝑝 ∈ (𝑔, ℎ)

         (9) 

As shown in Equation 10, calculate the maximum 

ambiguity value for the left and right boundaries 

using the ambiguity of the triangular membership 

function to identify credit management based on 

software cost estimation. Let’s assume 𝑇𝐹𝑁 (𝐵) − 

Triangular Membership function, 𝑖 −model value, 

𝛽 − 𝛼 −right and left boundaries, and 𝐵 −higher 

value of margin impact rate. 

𝐹𝑢𝑧𝑧𝑖𝑛𝑒𝑠𝑠 𝑇𝐹𝑁 (𝐵) =
𝛽−𝛼

2𝑖
, 0 < 𝐵 < 1  (10) 

The FSMIR model identifies debt management, 

analyzing characteristic margins where more 

significant fuzziness indicates higher value. 

3.4 Particle Swarm Intelligence (PSI) 

Particle Swarm Intelligence (PSI) enhances 

software cost estimation accuracy through its 

ability to optimize the selection of cost-driving 

features from software project archive data. 

Software cost estimation requires considering 

project size, team experience, development tools, 

and complexity to determine the final expenditure. 

Not all the existing features generate equal 

precision during accuracy estimation processes. 

The selection of the most significant feature subset 

happens during PSI execution through simulated 

particle swarm mechanics that assign each particle 

to represent different feature options. The process 

begins by letting particles investigate different 

features before they readjust their positions by 

evaluating historical cost estimation results from 

their selected features. PSI performs iterations that 

rely on individual and group learning to drive its 

convergence toward an optimal feature selection, 

which produces minimum prediction mistakes. PSI 

provides automated feature selection capability 

using a virtual swarm of particles representing 𝑋𝑖 
subsets of all features. This subset is encoded as a 

binary vector through equation 11, 

𝑋𝑖 = 𝐵[𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛]   (11) 

A value of 𝑥𝑖𝑗 = 1 indicates the 𝑗 − 𝑡ℎ feature 

participates in the subset, while 𝑥𝑖𝑗 = 0 represents 

exclusion from the subset. The parameter 𝑛 

represents the number of features in the historical 

software project database. Particles perform space 

exploration by adjusting their velocity factors and 

position variables step by step. The velocity update 

equation 12 determines individual particles' motion 

patterns and knowledge acquisition. 

𝑉𝑖(𝑡 + 1) = 𝑤. 𝑉𝑖(𝑡) + 𝑐1. 𝑟1. (𝑃𝑖 − 𝑋𝑖(𝑡)) +

𝑐2. 𝑟2. (𝐺 − 𝑋𝑖(𝑡))   (12) 

The velocity vector at iteration t is represented by 

𝑉𝑖(𝑡), and w represents the inertia weight, which 

dictates how much the previous direction should be 

kept in the process. The best-known feature subsets 

of individual particles and the swarm correspond to 

𝑃𝑖 and 𝐺 variables. The acceleration coefficients 𝑐1 

and 𝑐2 regulate how much individual and swarm 

experience affects the search process, and 𝑟1 and 𝑟2 

serve as random range numbers [0,1] for ensuring 

randomness in movement. The position update step 

selects the new feature subset a particle will use 

after its velocity receives its update as below 

equation 13. 

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑉𝑖(𝑡 + 1)  (13) 

A sigmoid transfer function receives the velocity 

signal to convert it into probability space before 

thresholding occurs in equation 14. 

𝑥𝑖𝑗(𝑡 + 1) =

{
1 𝑖𝑓 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑣𝑖𝑗(𝑡 + 1)) > 𝜃

0                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
      𝑤ℎ𝑒𝑟𝑒 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑣) =

1

1+𝑒−𝑣
 (14) 

Each object selection occurs probabilistically under 

the parameters learned from the particle's behavior. 

Each particle evaluates its feature subset quality 

through a fitness function that usually measures the 

Mean Absolute Error (MAE) of the cost estimation 

model as presented in equation 15. 

𝑀𝐴𝐸 =
1

𝑚
∑ |�̂�𝑘 − 𝐶𝑘|
𝑚
𝑘=1    (15) 

 
Figure 4. Flowchart Diagram Using PSI Method 
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The selected features calculate estimated costs 

using �̂�𝑘 for the 𝑘 − 𝑡ℎ project among past 

software projects 𝑚, while 𝐶𝑘 represents the actual 

recorded cost. A lower Mean Absolute Error value 

signifies better accuracy for predicting results with 

a selected feature subset. The PSI process guides 

the swarm toward its optimal search space by 

finding the minimum error subset, making the 

model more efficient, and removing useless data to 

generate predictive models for software cost 

estimation, as shown in Figure 4. 

3.5 SoftMax deep Scaling Gated Adversarial 

Neural Network (SmDSAN2) 

Software cost estimation utilizes classification 

models that determine project cost categories 

between low, medium, and high by analyzing 

historical software project features. Using 

SmDSAN2-based methods enhances the 

performance of these classification models by 

effectively generating realistic synthesized data that 

supplements small or unbalanced training datasets. 

A SmDSAN2 framework operates with two neural 

networks: the generator generates synthetic data 

that resembles real-world project data through 

learning and a discriminator network that separates 

original and synthetic data. After training 

completion, the discriminator receives further 

adjustments before becoming operational as a 

classification tool for software cost categories. The 

Softmax function operates in the discriminator's 

output layer for multi-class classification. The 

Softmax function transforms output logits into class 

probability distributions with a sum of 1. Using 

synthesized data from the generator combined with 

the Softmax function, the classifier achieves greater 

robustness, mainly when dealing with limited or 

unbalanced datasets. The proposed classification 

framework, built with SmDSAN2 components, 

ultimately enhances the reliability and 

generalization capabilities of models used for 

software cost estimation. 

Software cost estimation through SmDSAN2 starts 

with the generator 𝐺 accepting a noise vector 𝑧 as 

its input parameter. A vector z originates from a 

known prior distribution 𝑝𝑧(𝑧). The distribution 

most often takes the form of multivariate Gaussian 

or uniform types. Using noise from this 

distribution, the generator creates an artificial �̃� 

software feature vector that emulates project 

attributes such as team allotment and coding length, 

execution span, and programming tools applied. 

The generator contains parameters 𝜃𝐺 consisting of 

weights and biases that should be adjusted during 

training. This process is defined by equation 16, 

𝑧~𝑝𝑧(𝑧), �̃� = 𝐺(𝑧; 𝜃𝐺)  (16) 

The discriminator 𝐷 receives accurate historical 

software project data as 𝑥 vectors and synthesized 

data as �̃� vectors from the generator. The 

probability assignment 𝐷(𝑥) through 𝐷 determines 

the likelihood that the input belongs to accurate 

data. The discriminator contains parameters 𝜃𝐷 and 

operates through continual updates to better detect 

realistic inputs from fake ones. The algorithm 

ensures the generator creates more realistic feature 

vectors through its mechanism as below equation 

17. 

𝐷(𝑥; 𝜃𝐷) ∈ [0,1], 𝐷(�̃�) = 𝐷(𝐺(𝑧)) (17) 

In SmDSAN2, adversarial training operates through 

minimax optimization, where the generator works 

to deceive the discriminator while the discriminator 

dedicates efforts to detecting actual versus fake data 

instances. The accurate data distribution, known as 

𝑝𝑑𝑎𝑡𝑎, has an expectation that matches the noise 

distribution, 𝑝𝑧, which generates synthetic samples. 

The equation 18 represents the fundamental 

learning principle between these elements. 

min
𝐺
max
𝐷
𝐿𝐺𝐴𝑁 = 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎[log𝐷(𝑥)] + 𝐸𝑧~𝑝𝑧[log 1 −

𝐷(𝐺(𝑧))]   (18) 

Through cost estimation, this method 

enables the creation of synthetic projects that 

contain genuinely cost-related characteristics that 

boost the model's generalization ability. An 

attached discriminator classifier generates output 

logits as a vector [𝑧1, 𝑧2, … , 𝑧𝐾] where each 𝑧𝑖 value 

indicates the scoring for class 𝑖, using 𝐾 as the total 

number of categorized costs (such as low or high). 

The logging results pass through the Softmax 

function, which transforms them into cost class 

probabilities while maintaining the validity of 

distribution probabilities as below equation 19. 

𝑃(𝑦 = 𝑖|𝑥) =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗𝐾

𝑗=1

, 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝐾    (19) 

The predicted probability that software project x 

belongs to cost class 𝑖 is expressed through 

𝑃(𝑦 = 𝑖|𝑥). This approach allows for probabilistic 

predictions that are also easy to interpret. The 

selected cost class prediction relies on equation 20, 

which determines the output from Softmax 

probability distributions. 

�̂� = arg max
𝑖

𝑃(𝑦 = 𝑖|𝑥)  (20) 

The ultimate classified outcome, �̂�, determines 

which category will identify a software project 

among the low, medium, or high-cost options, thus 
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assisting with managerial resource planning. The 

network receives training with cross-entropy loss to 

enhance classification results by comparing 

predicted probabilities and true one-hot vector 
[𝑦1, 𝑦2, … ,  𝑎𝑛𝑑 𝑦𝐾] class labels, where only one 

element in the vector contains a value of 1. The 

model absorbs penalties through the loss function 

that arises from wrong predictions in equation 21. 

𝐿𝐶𝐸 = −∑ 𝑦𝑖
𝐾
𝑖=1 log 𝑃(𝑦 = 𝑖|𝑥)  (21) 

The loss direction prompts the classifier to generate 

elevated probabilistic outputs for proper cost 

categories, which results in better performance with 

labeled data. The training regime that unites 

generation with classification components runs 

their combined loss function with control 

parameters 𝜆1 and 𝜆2 to balance their weight as 

below equation 22. 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜆1. 𝐿𝐺𝐴𝑁 + 𝜆2. 𝐿𝐶𝐸   (22) 

The combined loss mechanism enables the 

generator to generate valid project data, 

contributing to high classification accuracy for 

software cost levels. Thus, the generator can solve 

real-world assessment operations with minimal or 

skewed data sets. 

4. Result and Discussion 

 
Several test and training sets are provided in this 

section to assess the software effort estimation's 

performance. The outcomes of three different 

estimate techniques—SVM, MLRM, and DNN—

obtained using the prior framework are compared to 

the results of the suggested approach. Additionally, 

software evaluation was enhanced utilizing features 

supplied by Kaggle for all approaches employing 

training and test datasets. The suggested 

SmDSAN2 methodology outperforms other models 

in terms of accuracy verification. Therefore, 

MMRE and Root Mean Square Error (RMSE) 

criteria are used to assess accuracy, recall, F1 score, 

and precision to increase the accuracy of software 

cost assessment. 

Table 3. Simulation Parameter 

Simulation Variable 

Dataset Name Desharnais dataset 

No of Dataset 82 

Training  71 

Testing 11 

Language Python 

Tool Jupyter 

 

The simulation uses the parameter-based variables 

as shown in Table 3. In addition, software cost 

estimation is enhanced by leveraging Jupyter tools 

in Python with training and testing data. 

 

Table 4. Confusion Metrix 

 

Table 4 illustrates that the costs associated with 

software deployment can be optimized by applying 

different formulas from the confusion matrix. 

Table 5. Performance of Precision 

No of 

Records SVM MLRM DNN SmDSAN2 

25 58 62 66 69 

50 62 67 70 73 

75 67 71 74 77 

100 71 75 78 81.8 

 

 

Figure 5. Analysis of Precision 
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As shown in Figure 5 and Table 5, the proposed 

SmDSAN2 model accuracy performance was 

validated by comparing it with other models using 

different data sets and evaluation criteria. 

Furthermore, comparisons between the previous 

SVM, MLRM, and DNN methods and the proposed 

SmDSAN2 method show that the precision of 

software cost estimation has improved. The 

proposed SmDSAN2 method achieved an analysis 

precision of 81.8%, surpassing the earlier methods: 

SVM at 71%, MLRM at 75%, and DNN at 78.9%. 

Table 6. Performance of Recall 

No of 

Records SVM MLRM DNN SmDSAN2 

25 60 65 69 72 

50 65 69 73 76 

75 70 74 76 80 

100 74 78 79 84.6 

 

 

Figure 6. Analysis of Recall 

 

Figure 7. Analysis of F1-Score 

Figure 6 and Table 6 illustrate the recall 

performance of the proposed SmDSAN2 model 

alongside various other models across different 

datasets and evaluation measures to validate its 

effectiveness. In addition, when we compare the 

prior SVM, MLRM, and DNN techniques with the 

SmDSAN2, an enhancement in recall performance 

can be observed in software cost estimation. The 
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SmDSAN2 method achieves a recall performance 

of 84.6%, while the previous methods show recall 

rates of 74%, 78%, and 79%. 

Table 7. Performance of F1-Score 

No of 

Records SVM MLRM DNN SmDSAN2 

25 64 67 70 74 

50 69 70 74 78 

75 72 76 78 82 

100 75 79 82 86.7 

 

Figure 7 and Table 7 show the suggested 

SmDSAN2 model's F1-score performance along 

with that of several other models on various 

datasets and evaluation metrics to confirm its 

efficacy. Furthermore, the SmDSAN2 improves F1-

score performance in software cost estimation 

compared to the previous SVM, MLRM, and DNN 

approaches. The recall performance of the 

SmDSAN2 approach is 86.7%, whereas the F1-

score rates for the earlier methods were 75%, 79%, 

and 82%, respectively. 

Table 8. Performance of Accuracy 

No of 

Records SVM MLRM DNN SmDSAN2 

25 67 70 75 78 

50 70 73 79 82 

75 74 79 84 89 

100 79 84 89 95.6 

Figure 8 and Table 8 show the accuracy 

performance of the proposed SmDSAN2 model and 

several models on different datasets and evaluation 

scales to validate its performance. Additionally, 

SmDSAN2 improves the accuracy of software cost 

estimation compared to previous SVM, MLRM, 

and DNN methods. The SmDSAN2 method 

obtained an accuracy performance of 95.6% 

compared to 79%, 84%, and 89% of the previous 

method. 

Table 9. Performance of MMRE 

No of 

Records SVM MLRM DNN SmDSAN2 

25 21 19 17 15 

50 18 17 15 12 

75 14 15 13 10 

100 16 13 11 0.7 

 

 

Figure 9. Analysis of MMRE 

 

Figure 9 and Table 9 illustrate the suggested 

SmDSAN2 model's MMRE performance compared 

to several other models on various datasets and 

evaluation metrics to confirm its efficacy. 

Furthermore, the SmDSAN2 exhibits better MMRE 

performance in software cost estimates than the 

earlier SVM, MLRM, and DNN approaches. The 

SmDSAN2 approach's MMRE efficiency is 0.7%, 

but the MMRE rates of the previous methods are 

reduced by 16%, 13%, and 11%, respectively. 

Figure 10 and Table 10 demonstrate the RMSE 

performance comparison of the proposed 

SmDSAN2 model with several models on various 

datasets and the evaluation metrics to validate its 

Table 10. Performance of RMSE 

No of 

Records SVM MLRM DNN SmDSAN2 

25 20 18 15 12 

50 18 16 13 9 

75 17 15 11 8 

100 15 12 0.9 0.5 
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Figure 8. Analysis of Accuracy 

 

 

Figure 10. Analysis of RMSE 

 

performance. The SmDSAN2 approach's RMSE 

performance is 0.5%, while the RMSE ratios of 

previous methods are lower: 15%, 12%, and 0.9%, 

respectively. Furthermore, SmDSAN2 exhibits 

better RMSE performance in software cost 

estimation than previous SVM, MLRM, and DNN 

methods. 

5. Conclusion 

In conclusion, the effectiveness of DL-based 

software cost estimation using SmDSAN2 for 

accurate software cost estimation. Data pre-

processing first gathers data from a standard 

repository and then reduces nulls and unbalanced 

values based on Mm-Z scores. Also, feature edge 

thresholding is analyzed based on the FSMIR 

model. Similarly, the PSI method selects the 

maximum weighted range by calculating the closest 

value based on a range. In addition, the SmDSAN2 

algorithm is used to reduce the estimation error rate 

and perform cost estimation analyses. In addition, 

software cost and effort estimates are generated 

using the SmDSAN2 algorithm, and accuracy is 

improved by estimating the required costs based on 

the SmDSAN2 algorithm. Additionally, SmDSAN2 
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enhances the accuracy of software cost estimates 

compared to previous SVM, MLRM, and DNN 

methods. The SmDSAN2 method achieved an 

accuracy performance of 95.6%, compared to the 

79%, 84% and 89% accuracy of the previous 

methods. 

 

Author Statements: 

 

 Ethical approval: The conducted research is 

not related to either human or animal use. 

 Conflict of interest: The authors declare that 

they have no known competing financial 

interests or personal relationships that could 

have appeared to influence the work reported in 

this paper 

 Acknowledgement: The authors declare that 

they have nobody or no-company to 

acknowledge. 

 Author contributions: The authors declare that 

they have equal right on this paper. 

 Funding information: The authors declare that 

there is no funding to be acknowledged.  

 Data availability statement: The data that 

support the findings of this study are available 

on request from the corresponding author. The 

data are not publicly available due to privacy or 

ethical restrictions. 

 

References 
 
 

[1] Vanathi, D., Anusha, K., Ahilan, A., & Suniram, S. 

E. (2024). Software cost and effort estimation using 

dragonfly whale optimized multilayer perceptron 

neural network. Alexandria Engineering Journal, 

103, 30–37. 

https://doi.org/10.1016/j.aej.2024.04.043 

[2] Qassem, N. T., & Saleh, I. A. (2023). Survey of 

cost estimating software development using 

machine learning. International Research Journal 

of Innovations in Engineering and Technology 

(IRJIET), 7(12), 67–72. 

https://doi.org/10.47001/IRJIET/2023.712009 

[3] Hammad, M. (2023). Software cost estimation 

using stacked ensemble classifier and feature 

selection. International Journal of Advanced 

Computer Science and Applications (IJACSA), 

14(6). 

[4] Rashid, C. H., Shafi, I., Khattak, B. H. A., Safran, 

M., Alfarhood, S., & Ashraf, I. (2025). ANN-based 

software cost estimation with input from the 

COCOMO: CANN model. Alexandria Engineering 

Journal, 113, 681–694. 

https://doi.org/10.1016/j.aej.2024.11.042 

[5] Hashemi, S. T., Ebadati, O. M., & Kaur, H. (2020). 

Cost estimation and prediction in construction 

projects: A systematic review on machine learning 

techniques. SN Applied Sciences, 2, 1703. 

https://doi.org/10.1007/s42452-020-03497-1 

[6] Sharma, S., Pendharkar, P. C., & Karmeshu. 

(2022). Learning component size distributions for 

software cost estimation: Models based on 

arithmetic and shifted geometric means rules. IEEE 

Transactions on Software Engineering, 48(12), 

5136–5147. 

https://doi.org/10.1109/TSE.2021.3139216 

[7] Rashid, C. H., et al. (2023). Software cost and 

effort estimation: Current approaches and future 

trends. IEEE Access, 11, 99268–99288. 

https://doi.org/10.1109/ACCESS.2023.3312716 

[8] Ali, S. S., Ren, J., Zhang, K., Wu, J., & Liu, C. 

(2023). Heterogeneous ensemble model to optimize 

software effort estimation accuracy. IEEE Access, 

11, 27759–27792. 

https://doi.org/10.1109/ACCESS.2023.3256533 

[9] Alsheikh, N. M., & Munassar, N. M. (2023). 

Improving software effort estimation models using 

grey wolf optimization algorithm. IEEE Access, 11, 

143549–143579. 

https://doi.org/10.1109/ACCESS.2023.3340140 

[10] Shah, M. A., Jawawi, D. N. A., Isa, M. A., Younas, 

M., Abdelmaboud, A., & Sholichin, F. (2020). 

Ensembling artificial bee colony with analogy-

based estimation to improve software development 

effort prediction. IEEE Access, 8, 58402–58415. 

https://doi.org/10.1109/ACCESS.2020.2980236 

[11] Fadhil, A. A., Alsarraj, R. G. H., & Altaie, A. M. 

(2020). Software cost estimation based on dolphin 

algorithm. IEEE Access, 8, 75279–75287. 

https://doi.org/10.1109/ACCESS.2020.2988867 

[12] Mahmood, Y., et al. (2022). Software effort 

estimation accuracy prediction of machine learning 

techniques: A systematic performance evaluation. 

Software: Practice and Experience, 52(1), 39–65. 

[13] Mohamed, M., Emam, O., & Azzam, S. M. (2024). 

Software cost estimation prediction using a 

convolutional neural network and particle swarm 

optimization algorithm. Scientific Reports, 14(1), 

13129. https://doi.org/10.1038/s41598-024-63025-

8 

[14] Ravikumar, K., & Gunasekaran, G. (2018). 

Software cost estimation technique with technical 

debt management using orchestration. International 

Journal of Advanced Research in Engineering and 

Technology (IJARET), 9(6), 104–110. 

[15] Putra, A. B., et al. (2022). PSO-based 

hyperparameter tuning of CNN multivariate time-

series analysis. Journal of Online Information, 7(2), 

193–202. 

[16] Ullah, A., Wang, B., Sheng, J., Long, J., Asim, M., 

& Sun, Z. (2021). Optimization of software cost 

estimation model based on biogeography-based 

optimization algorithm. Intelligent Decision 

Technologies, 14(4), 441–448. 

[17] Vanathi, D., Anusha, K., Ahilan, A., & Salinda 

Eveline Suniram, A. (2024). Software cost and 

effort estimation using dragonfly whale optimized 

multilayer perceptron neural network. Alexandria 

Engineering Journal, 103, 30-37. 

https://doi.org/10.1016/j.aej.2024.04.043. 

https://doi.org/10.1016/j.aej.2024.04.043
https://doi.org/10.47001/IRJIET/2023.712009
https://doi.org/10.1016/j.aej.2024.11.042
https://doi.org/10.1007/s42452-020-03497-1
https://doi.org/10.1016/j.aej.2024.04.043


K. Ravikumar, K. Saravanakumar, Anand Viswanathan,  Mathivanan Durai, S. Devi, S. Kalaiselvan / IJCESEN 11-2(2025)3171-3184 

 

3184 

 

[18] Khan, M. S., et al. (2021). Metaheuristic algorithms 

in optimizing deep neural network model for 

software effort estimation. IEEE Access, 9, 60309–

60327. 

[19] Nhung, H. L. T. K., Van Hai, V., Silhavy, R., 

Prokopova, Z., & Silhavy, P. (2022). Parametric 

software effort estimation based on optimizing 

correction factors and multiple linear regression. 

IEEE Access, 10, 2963–2986. 

[20] Varshini, P. A. G., Kumari, A. K., & Varadarajan, 

V. (2021). Estimating software development efforts 

using a random forest-based stacked ensemble 

approach. Electronics, 10, 1195. 

[21] Hassan, C. A. U., et al. (2022). Optimizing deep 

learning model for software cost estimation using 

hybrid meta-heuristic algorithmic approach. 

Computational Intelligence and Neuroscience, 

2022, 1–20. 

[22] Rao, K. E., & Rao, G. A. (2021). Ensemble 

learning with recursive feature elimination 

integrated software effort estimation: A novel 

approach. Evolutionary Intelligence, 14, 151–162. 

https://doi.org/10.1007/s12065-020-00360-5 

[23] Puspaningrum, A., Muhammad, F. P. B., & 

Mulyani, E. (2021). Flower pollination algorithm 

for software effort coefficients optimization to 

improve effort estimation accuracy. JUITA Jurnal 

Informatika, 9(2), 139–144. 

[24] Shweta, K. R. (2021). Software cost and effort 

estimation using ensemble duck traveler 

optimization algorithm (eDTO) in earlier stage. 

Turkish Journal of Computer and Mathematics 

Education, 12, 3300–3311. 

[25] Reddy, D. K. K., & Behera, H. S. (2020). Software 

effort estimation using particle swarm optimization: 

Advances and challenges. In Proceedings of CIPR 

(pp. 243–258). 

[26] Trojovská, E., Dehghani, M., & Trojovský, P. 

(2022). Zebra optimization algorithm: A new bio-

inspired optimization algorithm for solving 

optimization algorithm. IEEE Access, 10, 49445–

49473. 

[27] Pemmada, S. K., & Behera, H. S. (2020). 

Advancement from neural networks to deep 

learning in software effort estimation: Perspective 

of two decades. Computer Science Review, 38, 

100288. 

https://doi.org/10.1016/j.cosrev.2020.100288 

[28] Khan, B., Khan, W., Arshad, M., & Jan, N. (2022). 

Software cost estimation: Algorithmic and non-

algorithmic approaches. International Journal of 

Data Science and Advanced Analytics, 2(2), 1–5. 

[29] Rahman, M., Sarwar, H., Kader, M. A., Gonçalves, 

T., & Tin, T. T. (2024). Review and empirical 

analysis of machine learning-based software effort 

estimation. IEEE Access, 12, 85661–85680. 

https://doi.org/10.1109/ACCESS.2024.3404879 

[30] Feta, N. R. (2022). Integration of fuzzy logic 

method and algorithm to prediction timeliness and 

software development cost. Jurnal Teknologi Nusa 

Mandiri, 19(1), 46–54. 

[31] Kassaymeh, S., et al. (2024). Software effort 

estimation modelling and fully connected artificial 

neural network optimization using soft computing 

techniques. Cluster Computing, 27(1), 737–760. 

[32] Van, H. V., et al. (2022). Toward improving the 

efficiency of software development effort 

estimation via clustering analysis. IEEE Access, 10, 

83249–83264. 

[33] Upreti, K., et al. (2022). Fuzzy logic-based support 

vector regression (SVR) model for software cost 

estimation using machine learning. In ICT Systems 

and Sustainability: Proceedings of ICT4SD 2021 

(pp. [pages]). Springer. 

[34] Phan, H., & Jannesari, A. (2022). Heterogeneous 

graph neural networks for software effort 

estimation. In Proceedings of the 16th ACM/IEEE 

International Symposium on Empirical Software 

Engineering and Measurement. 

[35] Alkhouly, A. A., Mohammed, A., & Hefny, H. A. 

(2021). Improving the performance of deep neural 

networks using two proposed activation functions. 

IEEE Access, 9, 82249–82271. 

 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.1007/s12065-020-00360-5

