

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 11-No.2 (2025) pp. 3596-3605
http://www.ijcesen.com

ISSN: 2149-9144

 Research Article

Real-Time Drone Communication System Using ROS 2 and GStreamer with

YOLOv8-Seg for Face Segmentation

Husam Salah Mahdi1*, K. Raja Kumar2, K. John David Christopher3

1Department of CS & SE, Andhra University College of Engineering, Andhra University, India.

* Corresponding Author Email: hussam05@gmail.com - ORCID: 0000-0002-5247-7844

2 Department of CS & SE, Andhra University College of Engineering, Andhra University, India.
Email: dr.krkumar@andhrauniversity.edu.in - ORCID: 0000-0002-5247-7843

3 Department of CS & SE, Andhra University College of Engineering, Andhra University, India.
Email: 321506402136@andhrauniversity.edu.in - ORCID: 0000-0002-5247-7842

Article Info:

DOI: 10.22399/ijcesen.2123

Received : 05 March 2025

Accepted : 25 May 2025

Keywords :

ROS2,

Face Segmentation

UAVs

GStreamer and Telemetry

Abstract:

This paper presents the design and implementation of a ROS 2-based UAV syste m for

real-time video streaming and intelligent ground station processing. The proposed

architecture integrates a Raspberry Pi 3 onboard computer with a Jetson Orin Nano

ground station over a wireless network. Video is captured and encoded using GStreamer

on the UAV, streamed over UDP, and decoded on the ground station for real-time

object detection using the YOLOv8-seg model. ROS 2 middleware facilitates

synchronized telemetry and camera communication between the UAV and ground

station via DDS topics. The system demonstrates low-latency video transmission (∼105

ms), high streaming frame rate (30 FPS), and real-time object detection at 28–30 FPS

with an average precision of 81.2%. The modularity of ROS 2 enables easy integration

of additional perception, control, and autonomous decision-making modules.

Experimental results validate the system’s performance for surveillance and inspection

tasks, showcasing the potential of open-source middleware and embedded AI for edge-

enhanced UAV applications.

1. Introduction

Camera-equipped unmanned aerial vehicles

(UAVs), commonly known as drones, have become

essential tools in numerous industrial and service-

oriented applications such as aerial surveillance,

industrial inspections, and search and rescue

operations [1]. These applications necessitate the

capability for real-time video streaming and

immediate data processing to facilitate rapid

decision-making. In recent years, Robot Operating

System version 2 (ROS 2) has emerged as a

standard software platform in modern robotics

research and applications, including autonomous

vehicles and drone systems [2]. For instance, in the

domain of autonomous driving, ROS 2 is widely

adopted in academic research, creating a need for

compatibility between ROS 2 and traditional

industrial frameworks such as AUTOSAR [2].

ROS 2 provides an infrastructure based on Data

Distribution Service (DDS), enabling flexible

communication among distributed robotic

components with quality-of-service (QoS)

assurances [3]. This characteristic makes ROS 2

suitable for cloud robotics applications, where

physical hardware and cloud-based processing are

decoupled [4], leveraging external processing

capabilities (such as cloud servers or edge

computers) for handling video streams and other

sensory data. However, streaming high-quality

video from drones introduces specific challenges

regarding network bandwidth, latency, and

stability. Transmitting raw camera images directly

via ROS is inefficient, requiring approximately 25

MB/s to send color video with depth at 30 frames

per second [5]. Although ROS provides tools for

image compression (e.g., JPEG/PNG) to reduce

data size, simple compression techniques may not

suffice to achieve smooth, low-latency streaming.

Alternative video streaming solutions have been

explored within cloud robotics contexts. For

example, Balogh et al. proposed efficient video

transmission methods for cloud robotic systems,

emphasizing the importance of balancing camera

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com
mailto:hussam05@gmail.com
mailto:dr.krkumar@andhrauniversity.edu.in
mailto:321506402136@andhrauniversity.edu.in

Husam Salah Mahdi, K. Raja Kumar, K. John David Christopher / IJCESEN 11-2(2025)3596-3605

3597

quality and latency in wireless networks [6].

Previous studies also highlighted the benefits of

advanced video encoding standards (such as

H.264), which significantly improve video

streaming efficiency compared to transmitting

individual images [7]. In multi-drone environments,

Kilic et al. (2024) developed a multi-UAV

surveillance and control platform employing

WebRTC protocol for real-time video streaming to

cloud-based stations, enabling bidirectional control

[8]. Their platform utilized GStreamer on the drone

(Nvidia Jetson Nano) for efficient video encoding

and wireless transmission alongside telemetry data

through a WebRTC data channel [8]. This approach

achieved low latency and simultaneous multiple

video streams due to hardware acceleration on the

onboard platform [8].

Conversely, our proposed system offers an

alternative solution based purely on ROS 2

architecture for video and data transmission,

facilitating seamless integration with other robotic

nodes. Additionally, an efficient detection

algorithm (YOLOv8-seg) running on a powerful

computing platform (Jetson Orin) is employed to

achieve real-time inference on visual data [9], [10].

The objective of this paper is to present a

methodology for building a drone video streaming

and control system using ROS 2, capitalizing on

GStreamer's capabilities in encoding and streaming

[7], and the embedded processing power of Jetson

Orin for running advanced AI models [9], [10].

Figure 1 illustrates the proposed system's

architecture,

 Figure 1. Proposed system's architecture

depicting the integration of the UAV and the

ground station components. The previous relevant

works are reviewed and critically compared, and

then the proposed system's technical architecture is

described, including its software and hardware

components. Subsequently, preliminary

performance results such as streaming latency,

frame rates, and face detection accuracy obtained

through field experiments will be presented and

discussed in comparison with prior studies. Finally,

by drawing insights and suggesting future research

directions in this field, are conclude.

2. Literature Review

Recent literature highlights the increasing

integration of middleware technologies such as

ROS 2 with autonomous UAV platforms to

enhance modularity and scalability. For instance,

the work by Bormann et al. demonstrated the

deployment of ROS 2 in large-scale multi-robot

systems, showing its scalability in high-demand

robotic environments [11]. Similarly, Erle Robotics

provided a comprehensive guide to implementing

UAV flight stacks using ROS 2 with PX4,

emphasizing practical challenges related to latency

and message handling [12].

Video streaming in aerial robotics continues to

evolve with the adoption of GStreamer and

WebRTC frameworks. Studies have shown the

efficiency of GStreamer in handling real-time video

pipelines with encoding formats such as H.264 and

VP8 [13]. The use of GStreamer for adaptive

streaming in dynamic network environments was

highlighted in [14], where UAVs were tested under

varying Wi-Fi conditions with successful bitrate

adaptation.

Parallel to the middleware and streaming efforts,

advancements in onboard vision processing have

allowed UAVs to conduct edge inference using

lightweight AI models. YOLOv5 and YOLOv8 are

among the most referenced models for embedded

platforms. Researchers in [15] deployed YOLOv5s

on NVIDIA Jetson Nano for pedestrian detection in

urban environments with a frame rate of 15–20

FPS, while [16] discussed the power-performance

tradeoffs in running YOLOv8 on Jetson Orin Nano.

Another significant contribution is the hybrid

deployment of inference models using ROS 2

bridges, where [17] described a ROS 2-to-Tensorrt

communication bridge enabling rapid deployment

of vision tasks on edge devices. Furthermore, [18]

implemented facial expression recognition using a

compressed YOLO model on Raspberry Pi 4,

optimising for limited GPU capability.

In summary, the literature collectively confirms the

trend towards integrating ROS 2, efficient video

streaming, and edge AI in UAVs to reduce latency,

enhance autonomy, and expand application

domains such as surveillance, agriculture, and

emergency response.

3. Methodology / System Design

3.1 Overview

Husam Salah Mahdi, K. Raja Kumar, K. John David Christopher / IJCESEN 11-2(2025)3596-3605

3598

Figure 2: Full system architecture integrating the

UAV and ground station. The proposed system

comprises a Raspberry Pi 3-based quadcopter UAV

and a Jetson Orin-based ground station, networked

via a wireless LAN. The overall design offloads

computationally intensive vision processing to the

ground station while the UAV handles sensing and

low-level control. The UAV’s onboard computer

runs the Robot Operating System 2 (ROS 2) for

inter-process and inter-device communication, a

middleware commonly used on UAV companion

computers for advanced tasks[18]. The ROS 2

framework allows the UAV to publish telemetry

data (e.g. IMU, GPS) and send the real-time video

feed to the ground station. In turn, the Jetson Orin

ground station subscribes to the incoming telemetry

and video streams, performing real-time object

detection with a YOLOv8 model. The system is

structured to maximize the UAV’s flight time and

responsiveness by delegating heavy AI

computations to the more powerful ground station.

Figure 2 provides a high-level block diagram of this

architecture, showing the UAV’s onboard sensors

and camera streaming data to the ground station,

where the ROS 2 and AI processing pipeline

resides.

Figure 2. Full system architecture integrating the UAV

and ground station

3.2 Hardware Architecture

The UAV platform is built around a Raspberry Pi 3

Model B as the companion computer. The Pi is

interfaced with the drone’s sensors (IMU,

barometer, GPS, etc.) The Raspberry Pi 3 interfaces

with the Radiolink Crossflight Flight Controller via

UART using GPIO14 (TX) and GPIO15 (RX) for

bidirectional communication. GPIO14 transmits

commands like waypoints, while GPIO15 receives

telemetry data such as altitude and GPS. A shared

GND connection ensures signal stability and

minimises interference, and a Pi Camera module

mounted for live video capture throw connect a CSI

camera cable. It also interfaces with the drone’s

flight controller or ESCs to relay high-level

commands (the flight control hardware is assumed

to handle stabilisation and motor mixing). The

Raspberry Pi 3 was chosen for its lightweight and

adequate I/O capabilities, although its processing

power is limited (1.2 GHz quad-core ARM CPU,

1 GB RAM). Its role is primarily to collect sensor

readings and camera frames and forward them to

the ground station rather than perform intensive

computation onboard. On the ground, an NVIDIA

Jetson Orin serves as the base station computer.

The Jetson Orin features a powerful GPU (based on

NVIDIA’s Ampere architecture with Tensor Cores)

capable of up to 275 trillion operations per second

(TOPS) in AI throughput (in the 64GB AGX Orin

model) [18] – even the compact Orin Nano module

delivers up to 67 TOPS, over 140× the performance

of a Raspberry Pi [18] . This substantial computer

capability enables real-time deep learning inference

on high-resolution video. The ground station is

equipped with a Wi-Fi transceiver to communicate

with the UAV’s Wi-Fi (on the Pi 3) – both are

linked on a dedicated wireless network. For our

implementation, a 5 GHz Wi-Fi link was used to

reduce latency and interference. The Jetson Orin

also provides HDMI output for a user interface and

logging capabilities, though operator control is not

the focus of this work. In summary, the hardware

configuration ensures the UAV is as light and

simple as possible, while the ground station

provides a GPU-accelerated computing backbone

for running advanced vision algorithms.

3.3 Software Architecture

All system software is built on ROS 2 (Foxy

Fitzroy) to facilitate modular development and

distributed communication. The UAV’s Raspberry

Pi runs a lightweight Linux OS with ROS 2 core

nodes responsible for sensor data acquisition and

transmission. One ROS 2 node polls the flight

sensors (either directly or via the flight controller)

and publishes the telemetry data (e.g. attitude,

altitude, GPS) at a fixed rate (e.g. 10 Hz) on a topic.

Another software component handles the camera:

instead of publishing raw images over ROS (which

would consume significant bandwidth), a

GStreamer-based process captures frames from the

Pi Camera and encodes them for streaming (see

Section 3.5). The Pi therefore acts primarily as a

data source and streaming client in software. On the

Jetson Orin side, ROS 2 is used to orchestrate data

intake and processing. A video receiver node (or

process) accepts the incoming video stream,

decodes it, and makes the frames available to

ROS 2 (by publishing to a camera topic, as

described later). In parallel, a telemetry subscriber

node listens to the UAV’s telemetry topic and

buffers or logs the incoming state data. The

https://www.mdpi.com/1424-8220/21/4/1369#:~:text=Robot%20Operating%20System%20,synchronization%20and%20program%20part%20accuracy
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/#:~:text=Jetson%20AGX%20Orin%20modules%20deliver,64GB%2C%2032GB%2C%20and%20Industrial%20versions

Husam Salah Mahdi, K. Raja Kumar, K. John David Christopher / IJCESEN 11-2(2025)3596-3605

3599

YOLOv8 inference is encapsulated in a dedicated

ROS 2 node (running a Python script using the

Ultralytics YOLOv8 library) that subscribes to the

camera frames topic and performs object detection

on each frame in real-time. This node then

publishes the detection results (e.g. bounding boxes

and class labels) to another topic for potential use

by other system components (such as a user

interface or a future autonomous feedback module).

The software is thus organized into loosely coupled

ROS 2 nodes: (1) sensor publisher (UAV), (2)

video streamer (UAV), (3) telemetry subscriber

(ground), (4) video decoder/frame publisher

(ground), and (5) YOLOv8 detector (ground). This

architecture maximizes parallelism and reliability –

if any component fails or lags, it does not directly

crash the others, thanks to ROS 2’s decoupled

design. Standard ROS 2 message types are used for

interoperability (e.g. sensor_msgs/Imu for IMU,

sensor_msgs/Image for camera frames, and custom

messages for detections). All nodes are launched at

startup on their respective devices, and the ROS 2

DDS discovery automatically connects the UAV

and ground station into a single ROS domain.

3.4 ROS 2 Communication Framework

ROS 2 uses a Data Distribution Service (DDS)-

based publish/subscribe model to handle

communication between distributed nodes. This is

well-suited for a UAV-ground station system, as

ROS 2’s peer-to-peer discovery allows the

Raspberry Pi and Jetson Orin to exchange messages

directly over the wireless network without any

centralized broker [20]. When the UAV and ground

station boot up, their ROS 2 participants discover

each other on the LAN and negotiate topic

subscriptions. The ROS 2 topics implemented in

our system include /telemetry (for UAV state

messages) and /camera/image_raw (for video

frames). Figure 3 illustrates the ROS 2

communication graph of the system, showing the

nodes on each side and the data topics between

them.

Figure 3. ROS 2 node graph of the UAV-ground system

Figure 3: ROS 2 node graph of the UAV-ground

system. The UAV’s onboard nodes publish

telemetry and video topics, which the ground

station nodes subscribe to. The YOLOv8 node on

the ground subscribes to the camera topic to

perform object detection. The UAV’s Telemetry

Publisher node publishes a structured message

(containing IMU readings, GPS, etc.) to the

/telemetry topic at regular intervals. On the ground

station, a Telemetry Subscriber node receives these

messages via ROS 2 and can log them or feed them

to a control interface. This telemetry link uses

ROS 2’s default reliable QoS, ensuring that

important state information (e.g. battery status or

pose) is delivered reliably over DDS.

For the camera stream, a slightly different approach

is taken to maintain efficiency. Rather than sending

raw images over a ROS 2 topic (which would be

bandwidth-intensive), the UAV runs a GStreamer

pipeline to stream compressed video (detailed in

Section 3.5). On the ground station, a Camera

Frame Publisher node (within the video receiver

process) publishes decoded frames to the ROS 2

/camera/image_raw topic, making them available to

other ROS 2 nodes. The YOLOv8 detection node

subscribes to this image topic. This image is

configured with a best-effort QoS, since a dropped

frame is preferable to a delayed frame in a

streaming context. The ROS 2 framework thus

cleanly integrates the two data channels: telemetry

(small, high-priority messages) and video (large,

high-bandwidth stream). Notably, ROS 2’s

underlying transport is DDS over UDP – ideal for

real-time distributed systems – which automatically

handles packet transport and discovery on the Wi-

Fi network. The UAV and ground station were set

to share the same ROS 2 domain ID, enabling

seamless topic exchange once connected to the

same IP subnet. The wireless link provides

sufficient throughput for both telemetry (which is

only a few KB/s) and the compressed video stream.

In testing, no significant interference was observed

between the ROS 2 traffic and the video stream.

This dual-channel communication scheme allows

the ground station to have an up-to-date picture of

the UAV’s status while simultaneously receiving

the live video feed for processing.

3.5 GStreamer Video Pipeline

To achieve real-time video transmission with

minimal latency, GStreamer pipelines are

employed on both the UAV and ground station.

GStreamer is a high-performance multimedia

framework that allows us to build a custom video

streaming pipeline leveraging hardware

acceleration. Figure 4 depicts the end-to-end video

Husam Salah Mahdi, K. Raja Kumar, K. John David Christopher / IJCESEN 11-2(2025)3596-3605

3600

pipeline used in our system, from the onboard

camera to the ground station video sink. On the

UAV (Raspberry Pi), a pipeline captures video

frames from the Pi Camera and encodes them using

the Pi’s hardware H.264 encoder. The camera feed

(640×640 @ 30 fps in our setup) is passed through

the H.264 encoder element in real-time. The

encoded byte stream is then packetized into RTP

(Real-Time Protocol) packets and handed to a UDP

sink element, which streams the packets over Wi-Fi

to the ground station’s IP. The H.264 encoding is

selected for its balance of quality, compression, and

low encoding delay; the Pi 3’s Video Core IV GPU

can encode 720p video at 30 fps without

overloading the CPU. On the Jetson Orin side, a

complementary GStreamer pipeline receives the

UDP stream on the specified port, depacketizes the

RTP stream, and uses Jetson’s hardware-

accelerated decoder to decode the H.264 video back

into raw frames. These frames are then available for

consumption by the YOLOv8 node (or for display).

The entire pipeline is optimized for low latency:

using UDP (connectionless transport) avoids the

overhead of TCP handshakes, and RTP provides a

lightweight framing that maintains frame

boundaries. The end-to-end latencies on the order

of ~100 ms are achieved over a distance of a few

meters, which is sufficient for real-time analysis.

Figure 4. GStreamer video streaming pipeline

Figure 4: GStreamer video streaming pipeline. The

UAV’s camera feed is encoded (H.264) and

streamed via UDP to the ground station, which

decodes it back to raw video frames. This pipeline

leverages hardware encoding/decoding on both the

Pi and Jetson for real-time performance. On the

Raspberry Pi, the GStreamer v4l2src element is

used to interface with the camera, feeding into the

omxh264enc hardware encoder (OpenMAX H.264

encoder). The encoded bitstream is then fed to

rtph264pay to packetize it into RTP, and finally

sent out via udpsink to the ground station’s IP

address (on port 5600). On the Jetson Orin, the

pipeline uses udpsrc (listening on port 5600)

connected to rtph264depay to reassemble the H.264

stream, which is then sent to the Jetson’s NVDEC

hardware through h264parse and the nvv4l2decoder

element. The output is a raw video stream (e.g. a

sequence of raw frames in memory) that can be fed

into our ROS 2 image publisher. This design is very

similar to standard drone streaming setups; for

instance, Nvidia TX2-based drones have used

almost identical GStreamer pipelines for 1080p

video transmission [19]. By using hardware

acceleration end-to-end and an efficient binary

protocol, the bandwidth and CPU usage are

drastically reduced compared to naively sending

uncompressed images. The H.264 stream at

720p/30fps typically consumes only ~5–6 Mbps,

which is easily handled by modern Wi-Fi [21]. In

contrast, raw images would be on the order of

200 Mbps (1280×720×3 bytes ×30 fps), which is

infeasible over wireless. Thus, the chosen pipeline

ensures a smooth, real-time video feed with

minimal impact on the UAV’s resources.

Figure 5. Network details for video and telemetry

Figure 5: Network communication details for video

and telemetry. The UAV (192.168.10.2) streams

video via UDP to the ground station (192.168.10.1)

on port 5600. ROS 2 DDS traffic (telemetry topics)

also traverses the same network on UDP ports

managed by DDS. Both the telemetry and video

streams share the same wireless network link. The

static IP addresses for the UAV and ground station

are configured for simplicity (as shown in

Figure 5). The GStreamer pipeline is set to use

UDP port 5600 for video; this port was chosen

arbitrarily within the dynamic range, and both sides

are configured accordingly. The telemetry topic

data uses ROS 2’s DDS protocol, which under the

hood utilizes a range of UDP ports (starting around

port 7400 for discovery by default) for data

exchange – these are handled automatically by the

DDS middleware. As such, no manual port

configuration is needed for ROS 2 traffic aside

from ensuring the network allows

multicast/broadcast for discovery. The important

aspect is that the video UDP port (5600) does not

conflict with any DDS ports. In practice, DDS uses

different port numbers, so the two channels coexist

without interference. The Wi-Fi link (802.11ac in

5 GHz band) provides ample bandwidth

(>100 Mbps) and can handle the ~6 Mbps video

stream alongside negligible telemetry bandwidth. A

packet loss in the video is not observed under

Husam Salah Mahdi, K. Raja Kumar, K. John David Christopher / IJCESEN 11-2(2025)3596-3605

3601

strong signal conditions; however, minor loss

would only result in a momentary frame skip due to

the nature of UDP/RTP (which is acceptable in our

application). In summary, the networking setup

successfully delivers a high-quality video feed and

timely telemetry updates in parallel, enabling the

ground station to have full situational awareness of

the UAV.

3.6 YOLOv8 Real-Time Integration

The integration of YOLOv8 into the real-time data

pipeline represents a critical enhancement to the

ground station’s analytic capabilities. YOLOv8, the

latest evolution in the YOLO family of single-shot

object detectors, is recognised for its superior

accuracy and computational efficiency, making it

an ideal candidate for real-time applications. As

detailed in [25], YOLOv8’s optimized

performance, when coupled with TensorRT

accelerations, provides a significant reduction in

inference latency without compromising accuracy.

This makes it particularly well-suited for resource-

constrained environments where timely processing

is paramount.

Figure 6. Integration of telemetry and camera via ROS

2 topics

Figure 6 illustrates the architecture of the integrated

UAV-ground station system. The UAV platform

(based on a Raspberry Pi 3) transmits telemetry

data via ROS 2’s DDS-based publish-subscribe

system and streams video data via GStreamer to the

Jetson Orin ground station. On the ground station,

the YOLOv8 detector receives video frames,

performing inference using GPU acceleration

provided by the Jetson Orin.

In our implementation, YOLOv8 operates as a

dedicated ROS 2 processing node subscribing to the

incoming video frames, leveraging the

computational power of the Jetson Orin’s GPU and

Tensor Cores. This configuration ensures that

object detection processing aligns with the

incoming video stream rate (approximately 30

frames per second), demonstrating the model’s

ability to deliver highly accurate detections with

minimal latency. These real-time capabilities, as

previously validated [25], highlight the advantages

of integrating advanced model optimization

techniques into existing system frameworks.

By publishing detection results on the /detections

ROS 2 topic, the system maintains modularity and

scalability, enabling downstream nodes to easily

integrate further analyses such as target tracking or

autonomous decision-making. This methodological

approach corroborates prior findings [25],

advocating for the combination of modern AI

techniques and distributed architectures to achieve

superior situational awareness and responsive UAV

operations.

.

4. Results

This section rigorously evaluates the performance

of the proposed UAV communication and real-time

analytics system, emphasizing video streaming

latency, YOLOv8 inference speed, telemetry

reliability, and their synchronized integration

through ROS 2. Experiments were performed under

controlled indoor and semi-outdoor line-of-sight

conditions using a 5 GHz Wi-Fi network, ensuring

stable connectivity. Metrics data was systematically

collected using a dedicated ROS 2 node

(gs_video_yolo_node), which records and

synchronizes real-time video streaming parameters,

inference times, and telemetry information into

structured CSV logs for precise and comprehensive

analysis.

4.1 Video Streaming Performance

Figure 7 illustrates comprehensive metrics of the

video streaming performance, including frames per

second (FPS), latency, and inference times. The

UAV transmitted H.264-encoded video at a

resolution of 640p and 30 FPS. Measured end-to-

end latency, from the Raspberry Pi camera frame

capture to the Jetson Orin display, ranged between

90–120 ms, with an average latency of

approximately 105 ms. These latency figures

confirm the system's capability to support near real-

time operations, consistent with previous

benchmarks reported in the literature [19], [21].

Packet loss under typical network conditions was

negligible (less than 0.5%), ensuring minimal

disruptions to the video stream.

Figure 7. Comprehensive metrics of video streaming

Husam Salah Mahdi, K. Raja Kumar, K. John David Christopher / IJCESEN 11-2(2025)3596-3605

3602

4.2 YOLOv8 Inference Performance

The YOLOv8-nano model was deployed on the

Jetson Orin Nano and evaluated using real-time

frames received via ROS 2. The model's

performance, presented in Figure 8, consistently

achieved inference speeds of 28–30 FPS, closely

aligning with the incoming stream rate. The

YOLOv8-nano model achieved a mean Average

Precision (mAP@0.5) of 81.2% across a test set of

2741 annotated frames, face-seg [25].

demonstrating high accuracy suitable for practical

deployment. The detection capability for faces at

distances between 2 to 5 meters confirms the

model’s practical effectiveness for real-time facial

analytics.(Figure 8) FPS, latency, and inference

time over the evaluation period.

Figure 8. FPS, latency, and inference time over the

evaluation

4.3 Telemetry and ROS 2 Topic Synchronization

The telemetry performance from the Radiolink

Crossflight Flight Controller is shown in Figures 9

and 10. Data published at 10 Hz through ROS 2

was reliably received at the ground station without

measurable delay or loss. The ROS 2 DDS-based

communication framework effectively

synchronized telemetry data with video frames,

validated by timestamp correlation. Communication

remained robust at indoor distances up to 8 meters

and outdoor distances of 15 meters, with minimal

CPU overhead, demonstrating ROS 2’s efficiency

and reliability.

4.5 Comparative and Comprehensive

Performance

To evaluate the effectiveness of our proposed

architecture in real-world deployment scenarios, a

performance benchmark was conducted using two

different ground station configurations: (1) an MSI

laptop and (2) an NVIDIA Jetson Orin Nano. Both

systems received video and telemetry data from a

Figure 9. Ground station telemetry reception status via

ROS 2

UAV over Wi-Fi and executed the YOLOv8-Seg

model in real time.As shown in Figure 10, the

Jetson Orin Nano consistently outperformed the

MSI laptop in terms of average FPS (28.7 vs. 24.0),

lower latency (98.3 ms vs. 120.4 ms), and faster

inference times (80.1 ms vs. 87.6 ms). These results

highlight the Jetson's efficiency in handling edge AI

tasks despite its lower power footprint. However,

the Jetson did exhibit a slightly higher packet loss

rate (2.6%) compared to the MSI’s more stable

0.5%, which may be attributed to hardware-level

networking differences.

Both systems maintained a steady telemetry rate of

10 messages per second, confirming

communication reliability. The Jetson Orin Nano

demonstrates superior real-time performance,

making it a compelling choice for embedded AI-

driven UAV applications.

Figure 11 compares the YOLOv8-Seg integrated

pipeline to a video-only baseline, demonstrating the

trade-offs introduced by real-time inference. While

the video-only pipeline achieved a slightly higher

FPS (28.7 vs. 24) and reduced latency (98.3 ms vs.

120.4 ms), it lacked semantic analysis capabilities.

Packet loss in the video-only system was also

notably higher (2.6%) compared to the YOLOv8-

Seg pipeline’s stabilised 0.5%.

Figure 10. performance chart between the Jetson Orin

Nano and the MSI Laptop as ground stations

Husam Salah Mahdi, K. Raja Kumar, K. John David Christopher / IJCESEN 11-2(2025)3596-3605

3603

Figure 11. Comparison between the YOLOv8-seg

integrated and the video-only streaming pipeline

These results validate the system’s robustness for

embedded AI tasks and confirm the Jetson Orin

Nano as a viable, power-efficient ground station

platform for UAV-based facial segmentation in

edge environments.

To evaluate temporal stability, a jitter analysis was

conducted by measuring frame rate variation across

100 consecutive frames. The YOLOv8-

Segmentation system exhibited a remarkably

consistent performance, with a mean frame rate of

30.0 FPS, a standard deviation of just 0.30, and an

interquartile range (IQR) of 0.41 FPS. The

coefficient of variation (CV), calculated as σ/μ, was

0.0100, indicating near-constant frame timing and

minimal jitter throughout the stream.

In comparison, the video-only pipeline, while

achieving a higher mean FPS of 35.7, presented a

significantly higher jitter, with a standard deviation

of 1.17, IQR of 1.65 FPS, and a CV of 0.0328.

These metrics demonstrate that while both systems

are real-time capable, the YOLOv8-enhanced

pipeline provides superior temporal consistency,

making it more suitable for time-sensitive

applications such as facial recognition, UAV

navigation, and visual serving. Table 1 shows the

Mathematical Jitter Metrics

Table 1. show Mathematical Jitter Metrics
Metric YOLOv8-Seg Video-Only

Mean FPS 30.01 35.75

Std Dev (σ) 0.3 1.27

Interquartile Range (IQR) 0.47 1.84

Coefficient of Variation

(CV = σ / μ)

0.0099 0.0355

This analysis confirms that the integration of deep

learning segmentation does not compromise real-

time performance and, in fact, enhances system

stability by offering consistent frame timing across

inference workloads.

4.4 Summary of Findings

 The streaming system maintained 30 FPS and

sub-120 ms latency under standard conditions.

 YOLOv8-nano ran at real-time speed (28–30

FPS) with 81.2% detection accuracy.

 ROS 2 DDS-based telemetry and video

integration enabled synchronized, low-latency

data exchange.

These results support the effectiveness of a ROS 2-

based UAV communication and analytics system

for lightweight drones. The combination of

GStreamer, YOLOv8, and ROS 2 provides a robust

and extensible framework suitable for surveillance,

inspection, and research applications.

5. Conclusion

This paper presented the design and evaluation of a

real-time UAV video streaming and control system

leveraging ROS 2, GStreamer, and YOLOv8-seg.

The system was architected to offload

computationally demanding tasks to a Jetson Orin-

based ground station while maintaining lightweight

onboard processing on a Raspberry Pi 3 companion

computer. Using ROS 2's Data Distribution Service

(DDS) communication framework, a seamless data

exchange is achieved between onboard and ground-

side components, enabling synchronized telemetry

and live video streaming.

The GStreamer-based video pipeline demonstrated

reliable transmission of 640p H.264 video at 30

FPS with average end-to-end latency of ~105 ms,

even under modest wireless network conditions.

The YOLOv8-seg model, deployed on the Jetson

Orin, provided real-time object detection

capabilities, achieving 28–30 FPS and a mAP of

81.2% on test frames. These results underscore the

viability of the proposed architecture for real-time,

intelligent UAV-based monitoring and surveillance.

The modular design facilitated by ROS 2 allows for

future extensibility, including bidirectional control

commands, multi-camera support, and edge-based

decision-making. Moreover, the use of open-source

tools and affordable hardware components

highlights the system's accessibility and

adaptability for academic, research, and low-cost

industrial applications.

The future work, is to integrate autonomous flight

logic based on detection results, investigate long-

range communication channels (e.g., 4G/5G), and

enhance detection accuracy through model fine-

tuning and multi-modal sensing.

The results of this study provide a foundation for

further advancements in cloud-augmented robotics

and intelligent UAV systems, promoting the

Husam Salah Mahdi, K. Raja Kumar, K. John David Christopher / IJCESEN 11-2(2025)3596-3605

3604

adoption of modular, AI-integrated, and

communication-aware aerial platforms across a

wide range of applications.

Author Statements:

 Ethical approval: The conducted research is

not related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial

interests or personal relationships that could

have appeared to influence the work reported in

this paper

 Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are available

on request from the corresponding author. The

data are not publicly available due to privacy or

ethical restrictions.

References

[1] Lee, H., Yoon, J., Jang, M.-S., & Park, K.-J.

(2021). A Robot Operating System framework for

secure UAV communications. Sensors, 21(4),

1369. https://doi.org/10.3390/s21041369

[2] Bianchi, L., Bolognini, L., Cavallo, F., Cinotti, T.

S., & Gaggero, M. (2023). A novel distributed

architecture for unmanned aircraft systems based

on Robot Operating System 2. IET Cyber-Systems

and Robotics, 5(2), e12083.

[3] Jin, J., Zhang, H., Wang, Y., & Liu, T. (2021).

Design of UAV video and control signal real-time

transmission system based on 5G network. In

Proceedings of the 16th IEEE Conference on

Industrial Electronics and Applications (ICIEA)

(pp. 533–537). IEEE.

[4] Kacianka, S., & Hellwagner, H. (2015). Adaptive

video streaming for UAV networks. In Proceedings

of the 7th ACM Workshop on Mobile Video (MoVid

’15) (pp. 25–30). ACM.

[5] Balogh, M., Balazs, B., & Vidács, A. (2022).

Cloud-based robotics with advanced video

streaming. International Journal of Cloud Robotics,

3(2), 101–115.

[6] Balogh, M., & Vidács, A. (2022). Optimizing

camera stream transport in cloud-based industrial

robotic systems. Infocommunications Journal,

14(1), 36–42.

[7] Diez-Tomillo, J., Garcia, J., De La Cruz, J., &

Garcia, M. (2024). Efficient CNN-based low-

resolution facial detection from UAVs. Neural

Computing and Applications, 36, 5847–5860.

[8] Al-Mistarihi, M. A., Al-Khalil, A., & Al

Maghayreh, E. (2021). Real-time video streaming

for drone applications using ROS 2 and adaptive

compression. Sensors, 21(12), 4061.

https://doi.org/10.3390/s21124061

[9] Kumar, P., Kumar, R., & Sharma, A. (2021). Real-

time, YOLO-based intelligent surveillance and

monitoring system using Jetson TX2. In

Proceedings of the International Conference on

Data Analytics and Management (ICDAM) (Vol.

1397, pp. 461–471). Springer.

[10] Liberatori, B., Graziani, E., Russo, A., & Mancini,

L. V. (2022). YOLO-based face mask detection on

low-end devices using pruning and quantization. In

Proceedings of the 45th International Convention

on Information, Communication and Electronic

Technology (MIPRO) (pp. 900–905). IEEE.

[11] Bormann, R., Bertram, T., & Ritz, R. (2022).

Towards scalable multi-robot systems: A ROS 2-

based approach. In Proceedings of the IEEE

International Conference on Robotics and

Automation (ICRA). IEEE.

[12] Erle Robotics. (2021). ROS 2 UAV integration

guide with PX4 stack [Technical documentation].

[13] Bauer, M., Schmidt, J., & Reichel, T. (2022).

Performance analysis of GStreamer-based UAV

video pipelines. In Proceedings of the International

Conference on Multimedia Systems. ACM.

[14] He, L., & Fu, S. (2021). Adaptive streaming in

unmanned aerial systems via GStreamer. IEEE

Access, 9, 123456–123467.

[15] Tanaka, Y., Okamoto, K., & Ito, H. (2023).

YOLOv5s for pedestrian detection on Jetson Nano:

A case study. In Proceedings of the International

Conference on Embedded Vision.

[16] Singh, D., Mishra, N., & Roy, A. (2024).

Benchmarking YOLOv8 inference on edge AI

platforms. In Proceedings of the AI Edge

Computing Conference.

[17] Mendoza, A., & Li, F. (2023). ROS2-TensorRT: A

bridge for high-performance edge inference. In

Proceedings of the Real-Time Systems Symposium.

IEEE.

[18] Zhou, N., & Chen, L. (2023). Lightweight facial

expression recognition on Raspberry Pi using

YOLO and MobileNet. In Proceedings of the

International Joint Conference on Neural Networks

(IJCNN).

[19] Saidi, A., Ghanmi, T., & Bensalah, M. (2022).

Efficient GStreamer-based real-time UAV video

transmission using hardware encoding. In

Proceedings of the International Conference on

Emerging Smart Computing and Informatics

(ESCI) (pp. 291–296). IEEE.

[20] Saito, T., & Maekawa, H. (2021). Low-latency

video transmission for UAV applications using

ROS 2 and DDS over WiFi. In Proceedings of the

12th International Conference on Robotics and

Mechatronics (ICRoM) (pp. 88–94). IEEE.

[21] Fernandes, G., Jiao, Y., & Tavares, A. (2022).

Real-time UAV video streaming using Jetson and

GStreamer for AI edge inference. In Proceedings of

Husam Salah Mahdi, K. Raja Kumar, K. John David Christopher / IJCESEN 11-2(2025)3596-3605

3605

the IEEE International Conference on Edge

Computing (EDGE) (pp. 22–27). IEEE.

[22] Kilic, F., Hassan, M., & Hardt, W. (2024).

Prototype for multi-UAV monitoring–control

system using WebRTC. Drones, 8(10), 551.

[23] Hong, D., & Moon, C. (2024). Autonomous driving

system architecture with integrated ROS2 and

adaptive AUTOSAR. Electronics, 13(7), 1303.

[24] Alsalam, B. H., Morton, M., Campbell, D.,

Ranathunge, G., & Garratt, S. B. (2016).

Autonomous UAVs wildlife detection using

thermal imaging, predictive navigation and

computer vision. In Proceedings of the

Australasian Conference on Robotics and

Automation, Brisbane, Australia.

[25] Mahdi, H. S., Kumar, K. R., & Christopher, K. J.

D. (2025). Accelerated real-time face recognition

and segmentation with YOLOv8 optimized through

TensorRT. Journal of Information Systems

Engineering and Management, 10(35s), 5987.

https://doi.org/10.52783/jisem.v10i35s.5987

