

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 11-No.2 (2025) pp. 3291-3300
http://www.ijcesen.com

ISSN: 2149-9144

 Research Article

Optimizing Task Scheduling and Resource Allocation Using Multi-Criteria

Framework in Fog-Assisted IoT Networks with Preemption

D.Deepakraj1*, V. Saidulu2, Azham Hussain3, S. Muruganandam4, Sumit Kumar5, J

RajaSekhar6

1 Dept. of Computer and Information Science, Annamalai University, Tamilnadu.

* Corresponding Author Email: deepakraj0708@gmail.com - ORCID: 0000-0003-0740-1969

2 ECE Department, Mahatma Gandhi Institute of Technology, JNTUH University, Hyderabad.

Email: vsaidulu_ece@mgit.ac.in - ORCID: 0009-0000-5370-8668

3School of Computing, Universiti Utara Malaysia, 6010 UUM Sintok, Kedah, Malaysia

Email: azham.h@uum.edu.my- ORCID: 0000-0001-9169-7621

4 Department of Computer Science and Business Systems, Panimalar Engineering College (Autonomous), Chennai

Email: murugan4004@gmail.com - ORCID: 0000-0001-8813-0456

5Dept. of CSE, Haridwar University, Roorkee

Email: dr.sumitcse@huroorkee.ac.in- ORCID: 0000-0002-1906-5539

6 Department of IoT, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur Dist, AP, India
Email: rajasekharemb@gmail.com- ORCID: 0000-0003-3480-080X

Article Info:

DOI: 10.22399/ijcesen.2134

Received : 02 March 2025

Accepted : 05 May 2025

Keywords :

optimization,

Multi-Criteria Framework

IoT

Abstract:

The Internet of Things (IoT) can be developed further using fog and cloud computing

environments. Task scheduling is highly effective for carrying out user requests in these

settings, and the IoT-fog-cloud system's productivity is increased when IoT task

requests are scheduled well. To address challenges such as latency, bandwidth

overhead, and resource management, this paper proposes the Optimized Scheduling and

Cluster-based Resource Allocation (OSCRA) model. The OSCRA model introduces a

multi-criteria task scheduling with preemption using: (i) expectation-maximization

(EM) clustering to group jobs by priority and deadline, (ii) a heap-based optimizer to

schedule jobs based on SLA and QoS restrictions, and (iii) distributed resource

management to assign resources effectively. Experimental results using iFogSim

demonstrate that combining MSCFS and OSCRA enhances server utilization, reduces

latency, improves throughput, and shortens response time, outperforming existing

models.

1. Introduction

Computing is widely employed in many fields.

Nevertheless, a number of problems with remote

computing have emerged with the expansion of the

Internet of Things (IoT). One of the most important

enabling technologies in terms of applicability in

smart cities is the internet of things (IoT), which is

basically the use of internet networks to connect

and interlink computers and other technologically-

enabled items [1]. In the Internet of Things, data is

collected in real-time from several physical sensors

and devices and then disseminated via wireless

networks. Applications of the Internet of Things

IoT, including smart homes, driverless cars, and

healthcare, have been growing steadily in recent

years. With the help of cloud and fog networks, IoT

provides an effective resource environment for

industrial automation applications. Users have

public access to resources in the cloud

environment. Numerous applications that produce

enormous volumes of data and have strict latency

requirements can be created with millions of

sensors and intelligent devices [2]. Fog computing

is a sophisticated cloud computing environment

that is faster, closer to users geographically, and

uses a lot fewer resources for computation than the

environment of the cloud. As a result, compared to

cloud computing, it can offer reduced traffic and

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com
mailto:azham.h@uum.edu.my
mailto:murugan4004@gmail.com
mailto:dr.sumitcse@huroorkee.ac.in
mailto:rajasekharemb@gmail.com

D.Deepakraj, V. Saidulu, Azham Hussain, S. Muruganandam / IJCESEN 11-2(2025)3291-3300

3292

delay in the IoT-fog-cloud network. Figure 1.

depicts the IoT-fog-cloud network's three-layer

design.

Figure 1. Architecture of IoT-Fog Cloud network

The cloud environment's servers, which can store

and analyze large volumes of user data, are at the

top layer. The network's edge and fog nodes make

up the intermediate layer, which also contains smart

gateways and mini-servers. Laptops, cellphones,

automobiles, personal computers, sensors, and

other IoT devices and end systems are all part of

the lowest layer, known as the outer boundary of

the IoT-fog-cloud network [3].

With several data management options and

advancements in transmission technologies, using

cloud infrastructure to store the massive amounts of

data from numerous machines and devices as well

as data analytics became inevitable [4]. The data

from its surroundings is collected and sent by the

IoT devices to be stored on the cloud. IoT devices

benefit from the cloud, but at the expense of

lengthy transmission delays. Intelligent gadgets that

perform operations in near real time require

resources immediately and cannot wait for them.

Fog Computing has arisen to meet the demands of

such devices [5].

IoT devices can access storage and computation

services from fog devices. However, the fog nodes'

limited resources and high request volume

necessitate the use of an optimal scheduling

technique. While fog computing supplements the

cloud paradigm by addressing the delay barriers for

work with a deadline, cloud computing addresses

the issues of resource availability. [6] A hidden

Markov model (HMM) is applied in a study that

projects the presence of fog sources. IoT jobs have

also been scheduled using the DO-HHO hybrid

method, which stands for discrete opposition-based

Harris Hawk Optimization (HHO). A scalable

approach for scheduling time-sensitive jobs is

presented in research [7].

In cloud computing and fog environments, work

scheduling is regarded as an NP-hard problem [8].

This is why the relevant work section has suggested

various task scheduling techniques that have been

implemented utilizing artificial intelligence

algorithms. [9] This combination is intended to

solve the task planning issue in the IoT-fog-cloud

networking and decrease the task makespan time,

allowing jobs to be finished as quickly as possible

and decreasing the fitness function to arrive at the

problem's ultimate solution. The fitness function in

this paper is makespan time. Two datasets are used

for the experiments. Other algorithms are compared

to the suggested approach, and the suggested

method outperforms the compared algorithms [10].

2. Related works

Huang et al. [11] designed A multi-criteria study of

decision-making proficiency in student’s

employability for multidisciplinary curriculums.

There are four very important and useful

discoveries and conclusions. First, self-efficacy

(SE), self-control (SC), and self-regulation (SR) of

the autonomy-learning performance of social

Cloud

Fog
Fog

Fog

End

user

D.Deepakraj, V. Saidulu, Azham Hussain, S. Muruganandam / IJCESEN 11-2(2025)3291-3300

3293

learning theory (SLT) all had a direct impact on

judgeability, the most important decision-making

employability factor. Because most employers

require graduates of higher education programs

who can evaluate, revise, and justify their self-

action capacity in thinking, motivation, feeling, and

cognition, as well as have the behavior from the

interdisciplinary curriculum instilled that allows

them to cultivate their self-observing experience, it

is clear that the "AU" of the technological TAM

model also had an impact on the "SR" of

autonomy-learning performance.

Liu et al. [12] introduced An optimal scheduling

method in IoT-fog-cloud network using

combination of Aquila optimizer and African

vultures optimization. Task scheduling is a very

effective way to carry out user requests, and the

IoT-fog-cloud system is more productive when IoT

task requests are scheduled optimally. The Aquila

Optimizer (AO) and African Vultures Optimization

approach (AVOA) are combined in this research to

create AO_AVOA, a hybrid meta-heuristic (MH)

approach for scheduling IoT requests on IoTfog-

cloud networks. By employing AO operators to

identify the best solution while determining the

ideal scheduling solution, AO_AVOA enhances the

AVOA exploration phase. For both datasets,

AO_AVOA enhances the makespan time by 8.36%,

2.61%, 104.38%, 17.56%, and 94.05%,

respectively, in comparison to the AO, AVOA,

PSO, HHO, and FA algorithms.

Xia et al. [13] proposed Optimized multiple-

attribute group decision-making through employing

probabilistic hesitant fuzzy TODIM and EDAS

technique and application to teaching quality

evaluation of international Chinese course in higher

vocational colleges. The expansion of vocational

education globally, the improvement of training for

international students, and the supply of talent

assistance for both domestic and international

businesses. To handle the MAGDM under PHFSs,

the probabilistic hesitant fuzzy TODIM-EDAS

(PHF-TODIM-EDAS) technique is developed in

this study. Lastly, the PHF-TODIM-EDAS

technique is demonstrated using a numerical

example for teaching quality evaluation of foreign

Chinese courses in higher vocational colleges. This

paper's primary contributions are as follows: (1) the

TODIM technique, which is based on the EDAS

technique, has been extended to PHFSs based on

the CRITIC technique; and (2) weight numbers

under PHFSs are derived using the CRITIC

technique. In order to manage the MAGDM under

PHFSs, the PHF-TODIM-EDAS approach was

developed. (4) A numerical case study for assessing

the quality of instruction of foreign Chinese courses

in higher vocational institutions is provided, along

with some comparative analysis to support the

suggested PHF-TODIM-EDAS technique.

Zhao et al. [14] designed Microservice based

computational offloading framework and cost

efficient task scheduling algorithm in

heterogeneous fog cloud network. Virtual machine-

based services are provided by modern cloud

frameworks. The following problems were brought

on by these frameworks: lengthy boot times,

overhead, and needless expenses to run IoT apps.To

execute mobility and delay-sensitive applications at

the lowest possible cost, we suggest a novel

architecture based on the Microservice Container

Fog System (MSCFS). The Cost Aware

Computational Optimization and Task Scheduling

(CACOTS) framework, which breaks down task

scheduling into many parts, is introduced in the

paper. The suggested MSCFS and CACOTS

schemes can improve server usage, according to the

testing results. Reduce service latency, more

efficiently average service bootup time, and

minimize expenses.

Hassan et al. [15] suggested Internet of Vehicles

(IoV)-Based Task Scheduling Approach Using

Fuzzy Logic Technique in Fog Computing Enables

Vehicular Ad Hoc Network (VANET). The

infrastructure of the fog processes, which functions

as a cloud extension, is near VANET, creating an

atmosphere that is conducive to smart cars with IT

hardware and efficient job management

supervision. In VANET, there are limitations on

vehicle processing power, bandwidth, time, and

high-speed mobility. In order to reduce latency and

enhance response time when offloading duties in

the Internet of Vehicles, we suggested a fuzzy

logic-based task scheduling system in VANET.

Lastly, the study will create best practices and

recommendations for implementing fog computing-

based applications that successfully strike a

compromise between performance metrics and

energy consumption.

3. Proposed system

Due to several commonalities in task scheduling,

the scope of this study extends beyond the cloud

and fog computing paradigms. However, a number

of factors contribute to the overall variances in

work scheduling across the two systems; these

distinctions are noted throughout the article where

needed.

As seen in Figure 1, the suggested system is

composed of three layers: the client application

layer, the control layer, and the resource layer. In

most cases, the client application layer creates

loading tasks for arrive at the control layer at

random from various IoT apps. On the other hand,

D.Deepakraj, V. Saidulu, Azham Hussain, S. Muruganandam / IJCESEN 11-2(2025)3291-3300

3294

four modules make up the control layers, which

process the output tasks at the different resource

layers. With the help of the scheduling and task

sequence modules, the Fog Cloud Agent (FCA), an

orchestrator, is in charge of overseeing and

controlling the tasks. FCA is a centralized

controller that sits between system resources and

user applications. FCA keeps an eye on and gathers

data from entities, including metrics, configuration

details, and logs. In a fog system network, these

things are housed on hosts or virtual hosts.

Figure 2. Proposed architecture

We introduced a multi-criteria task scheduling with

a preemption technique to be planned with minimal

cost within their deadlines in order to meet the

requirements of the tasks. This model is called the

Optimized Scheduling and Cluster-based Resource

Allocation (OSCRA) model. Heterogeneous fog

servers with a small number of homogenous virtual

machines make up the resource layer. Internal

docker-engine, which adds and removes container

microservices for the fine-grained of loaded tasks,

as the top layer of resources. Each of these jobs

operates separately and needs a different set of

resources to complete. Prior to job scheduling at the

fog system, each task has vector attributes such data

size, CPU requirements, and deadline. We

suggested task sequence rules using an alternative

technique to guarantee that the sorted algorithm is

planned with the least amount of expense under

their deadlines in order to satisfy the job

requirements. The lookup table for monitoring

system management contains the list of tasks for

apps and the resource status. The lookup table is

updated. The resource becomes available once an

event, such finishing a task, has taken place.

Through job swapping between servers, initial work

scheduling will further enhance the resource's cost-

function by distributing duties among many fog

servers.

With the help of the scheduling and task sequence

modules, the Fog Cloud Agent (FCA), an

orchestrator, is in charge of overseeing and

controlling the tasks. FCA is a centralized

controller that sits between system resources and

user applications. We integrated every fog cloud

service at the wireless network's edge. Containers, a

lightweight approach to virtualizing applications,

have recently gained popularity in the fog cloud

paradigm, particularly for IoT applications [23].

Usually, managing clusters of containers becomes

essential, and coordinating development and

deployment becomes a major challenge.

We assume a set of delay-sensitive tasks in the fog

cloud system.

𝑇 = {𝑡1, 𝑡2, 𝑡3 … … … … . } (1)
We assumed that there are M heterogeneous fog

servers in the fog cloud system. Each node has

attributes including memory size, storage capacity,

network bandwidth, and CPU processing rate

(measured in millions of Procedures 2023, 11, 1162

Monitoring

System

For computing Task

scheduling

Task

sequencing

VM

Dockers

VM

Dockers
VM

Dockers

Databases
Databases

Server 1 Server 2 Server 3

Iot application

Offload tasks

D.Deepakraj, V. Saidulu, Azham Hussain, S. Muruganandam / IJCESEN 11-2(2025)3291-3300

3295

5 of 18 instructions per second, or MIPS).

Consequently, the ECT matrix, which has a size of

f1*f2, is used to indicate the expected computation

time (ECT) for task requests on nodes for n1 tasks

and f2 computing nodes.

𝐹 = {𝑓1, 𝑓2 … … … . . , 𝑀} (2)

Each fog server 𝑓𝑗 possesses the following

characteristics:

𝑓𝑗 = {𝐵𝑗, 𝐶𝑗, 𝑊𝑗, 𝑉𝑗} (3)

On the other hand, during the loading operation, 𝐵𝑗

displays the bandwidth between the fog cloud

server and the centric fog cloud agent. 𝑆 shows the

overall capacity (such as storage) of fog server j in

the system, while ~j shows the compute rate of the

jth fog server. The number of virtual machine

Docker deployments for microservices with the

same capabilities in the fog server j is indicated by

𝑉𝑗.

The fog server precisely schedules one task at a

time, much like the assignment issue, where each

work is assigned to a single 𝑓𝑗. Here is how we

indicate that task 𝑡𝑖has been assigned to fog server

j:

∑ 𝑦𝑎,𝑏

𝑀

𝑗=1

= 1 (4)

Because fog server j has limited resources, it has a

limited number of virtual machines that docker can

use to provide microservices for every task. As a

result, less virtual machine capacity must be used

for the specified job demand. This phrase is

explained as

∑ 𝑥, 𝑤

𝑁

𝑖=0

= 𝑉𝑗 (5)

Because a task must be sent to the fog server for

processing, it receives additional communication

during loading and is returned by the fog server as

𝑅𝑇𝑇 = (
𝑑𝑎𝑡𝑎𝑖

𝐵𝑤𝑖𝑗
𝑢𝑝 ±

𝑑𝑎𝑡𝑎𝑗

𝐵𝑤𝑖𝑗
𝑑𝑜𝑤𝑛) (6)

As a result, each task's bandwidth demand is

calculated as follows:

𝑋𝑖(𝑅𝑇𝑇 + 𝑇𝑗
𝑥) ≤ 𝑑𝑖 (7)

The first part is fog server resource matching,

which uses a pairwise method to match each job to

the appropriate fog server. The task sequence

module is an essential module that arranges the

tasks into various sequences so that the scheduler

may do the best possible scheduling on them.

Several components must process the IoT apps in

order for them to be executed. For example, an

algorithm designed to obtain the best optimal

scheduling in the heterogeneous fog servers

specifies the complete application process. Because

the cost optimization challenge involves diverse fog

servers. Thus, it is essential to determine how to

choose edge servers to handle the sequential jobs.

Remember that our job scheduling approach

chooses the server with the lowest unit cost in order

to reduce the fog computing system's expenses.

After scheduling certain activities, we refer to the

server 𝑓𝑗’s remaining resources as qfj. The task that

maximizes the dot product is the largest, according

to our definition [25]. We calculate hi as follows:

After scheduling certain activities, we refer to the

server 𝐹𝑗’s remaining resources as𝑄𝑓𝑗. The task that

maximizes the dot product is the largest, according

to our definition [25]. Here's how we determine 𝐻𝑖:

ℎ𝑖 = 𝑆𝑖
𝑗
𝑞 + 𝑉𝑖

𝑙 + 𝑛𝑖𝑗𝑏𝑖
𝑗
𝑞

𝑞𝑓𝑗 = 𝑆𝑖
𝑗
𝑞 + 𝑉𝑖

𝑙 + 𝑛𝑖𝑗𝑏𝑖
𝑗
𝑞

= 𝑝𝑓𝑗 − ∑ 𝑃𝑡∗𝑗 (8)

The process of choosing the most suitable resource

for every task on the heterogeneous fog servers is

known as resource matching. Nonetheless, every

task has vector qualities (like workload, deadline,

and data size), and every resource has vector

attributes (like cost, storage, bandwidth, and virtual

machine capacity).

The Poisson process follows tasks that are

introduced into the system at random in our

situation. The tasks are submitted at random and in

no particular order. Therefore, we must first order

these tasks. Sequencing the work depends on the

specified deadline, size, and free time. In order to

categorize the submitted obligations according to

three features, we thus establish the three rules.

Offloaded tasks arrived at the fog cloud system at

random. Using task sequencing, FCA put them in

order of priority. To complete the execution in a

way that is economical, the FCA takes advantage of

the suggested sequence rules in a certain order. As

a result, we will select an ideal order of activities

D.Deepakraj, V. Saidulu, Azham Hussain, S. Muruganandam / IJCESEN 11-2(2025)3291-3300

3296

that fulfills the problem's constraints and objective

function.

The preparatory task scheduling approach is

obtained via task sequencing and resource

matching. In terms of cost, task scheduling is not

the best option for IoT applications. The initial does

not stay constant because of seasonal variations in

network contents and variations in cloud resources.

Tasks t1 and t2 have different resource demand

characteristics: data size: 10 MB, CPU required: 10,

and deadline: 20; and data size: 30 MB, CPU

required: 30, and deadline: 40. Conversely, servers

𝐾1and 𝐾2 may have the following resource

attributes, in order: 𝑆: 15, 𝑉𝑀𝑗: 4, 𝐵𝑗: 10, and 𝑆𝑗:

20, 𝑉𝑀𝑗: 8, 𝐵𝑗: 20. Therefore, in order to identify

our optimization problem and increase the

application cost, we suggest using the task

scheduling technique.

We break down the CACOTS framework for time

complexity into several parts. (I) Resource

Matching: To match each task to the various

servers, we utilize the TOPSIS and AHP

techniques. O(T * M) represents the time

complexity.

Result

We produced real-world outcomes from trials on

several IoT application benchmarks by the system

in order to assess the performance of the suggested

OSCRA architecture. The experimental setup used

in this work was broken up into distinct

components. (i) OSCRA implementation portion;

(ii) Metric parameter and component calibration.

(iii) Evaluation of computational offloading

frameworks (iv) Comparison of algorithms and task

scheduling. The experiment considers and

compares the following current computational

loading framework methodologies. In contrast, the

workload analysis of IoT apps is displayed in Table

1.
Table 1. Workload analysis
Workload EM N Communication

cost

Augmented

reality

64.6 5764 5G:7.4$

E- transport 24.5 2437 4G:6.3$

Heathcare 74.1 3241 3G:9.2$

3D- game 44.5 8273 Cellular:2$

The Simulation parameters and for servers

specification are compared with workload. The

following current methods for work scheduling are

compared and examined.

Baseline 1: In the experiment section, we use the

current cost-effective static task scheduling

techniques and evaluate how well they perform in

terms of application costs when contrasted with the

suggested plan.

Baseline 2: We examine the effectiveness of the

suggested system in terms of application costs by

implementing the current cost-effective dynamic

task scheduling algorithms in the experiment

section.

Baseline 3: We examine the performance of the

suggested scheme in terms of application costs by

implementing the current cost-effective static task

scheduling solutions without task scheduling in the

experiment section.

Figure 3. Proposed system implementation

Gateway Monitoring Scheduling Task

Sequencing

Docker image registry
Lib/Bin Lib/Bin Lib/Bin

User device service

Fog computing agent console

Fog server runtime platform

D.Deepakraj, V. Saidulu, Azham Hussain, S. Muruganandam / IJCESEN 11-2(2025)3291-3300

3297

As seen in Figure 2, we create Internet of Things

(IoT) apps from the user's point of view using

Android Studio and incorporate the GenyMotion

emulator for testing. The elements calibrated for

task organization for scheduling are the suggested

task sequencing rules (i.e., EDD, SPF, and SSTF).

The mean plot of the suggested task sequence rules

with 95.0% Tukey HSD spaces is shown in Figure

3. As shown in Figures, the RPD significance of the

EDD is significantly lower than that of the SPF and

SSTF. The task sequence, shown in Figure 4, is

used to map or arrange the activity. tasks that failed

because of fog servers with limited resources. This,

in a heterogeneous environment, results in lower

delay fog clouds due to the EDD rule. As a result,

EDD has been selected for the Mob-Cloud's job

sequencing component.

Figure 4. Boot-time

Figure 4 illustrates how the suggested technique has

cut down on time. Four distinct numbers of

applications are considered for testing in the

experiment. The following formula is used in the

study to determine the deadline for tasks for the

various types of deadline constraints.

𝐷𝑎,𝑖 = 𝐹𝑖 + 𝛾 + 𝐹𝑎.𝑖 (9)

The earliest finishing time and a specific percentage

of the early finish time are used to determine the

task's deadline (D). We used the parameter's range

of values to demonstrate that it can handle the job

deadline's tightness specifically, 𝛾= f:2; :4; :6; :8; 1.

0

1

2

3

4

5

6

200 300 400 500

Baseline 1

Baseline 2

OSCRA

Number of random arrival task

B
o

o
t

ti
m

e

D.Deepakraj, V. Saidulu, Azham Hussain, S. Muruganandam / IJCESEN 11-2(2025)3291-3300

3298

Figure 5. Failed task resource-constraint Fog service

The study makes use of RPD (Relative Percentage

Deviation) statistical analysis to calculate the recital

of the VFCN, MTOP, and CTOS. It assesses how

much power is used by various parameters, the

framework, and algorithm permutations across the

component calibration parameter. We create

Internet of Things (IoT) apps from the viewpoint of

the user using Android Studio, and we integrate the

GenyMotion emulator for testing. The OSCRA is

made up of three primary layers: the resource layer,

fog control agent layer, and user device layer. IoT

applications use the Representational State Transfer

(REST) API to load their tasks at random to the

Fog Computing Agent Console (FCA).

Following the trial, Figure 5 shows that the

suggested scheme's task failure ratio is lower than

that of the baseline method. As a result, the

suggested dynamic OSCRA approach improves

costs and meets deadlines while being effective in a

dynamic setting.

Device services inform FCA of the type of service

needed to complete a task. To determine if the

system is stable or not, the monitoring system keeps

track of a look-up table of tasks and resources. The

FCA's Task Sequence and Scheduler methods

arrange the tasks in a certain order and schedule

their processing on the heterogeneous fog server.

The environment in which the system will function

is called the runtime. Java Runtime Virtual (JVM),

for example, is capable of efficiently running a dot

class of Java programs. Compared to the current

heavyweight virtual machine-based architecture,

the suggested microservices container fog system-

based computation loading has resulted in a shorter

bootup time. On the other hand, we enhanced the

suggested system's service resource use.There are

several containers in use, and in order to use them

all, they must be registered through registry

services. Microservices can communicate with one

another via REST APIs with less overhead.

0

1

2

3

4

5

6

7

100 200 300 400

Baseline 1

Baseline 2

OSCRA

Number of random arrival of task

Fa
ile

d
ta

sk
 r

es
o

u
rc

e
-c

o
n

st
ra

in
t

Fo
g

se
rv

ic
e(

%
)

D.Deepakraj, V. Saidulu, Azham Hussain, S. Muruganandam / IJCESEN 11-2(2025)3291-3300

3299

Figure 6. Comparing latency

Following the trial, Figure 6 shows that the

suggested scheme's latency is lower than that of the

baseline method. As a result, the suggested

dynamic OSCRA approach improves costs and

meets deadlines while being effective in a dynamic

setting. The secret to IoT applications is cost-

effective task scheduling. The main factors that are

taken into account during scheduling are the

application costs (such as communication and

computation costs) and task deadlines. We take into

account the various fog servers for the task

scheduling issue. The projects with the shortest

deadlines should be given priority over all others.

We take into account the various fog servers for the

task scheduling issue. Our goal is to complete

applications on time and with the least amount of

expense. As stated in the equations, we take into

account the various deadlines. Figure 7 shows that

all programs run under their deadlines and

experience reduced throughput under the suggested

OSCRA strategy. As stated in the equations, we

take into account the various deadlines. The

primary explanation is that the suggested approach

continuously refines neighbour space solutions until

the ultimate ideal solution is obtained. Comparing

our task scheduling strategy

0

1

2

3

4

5

6

200 400 600 800

Baseline 1

Baseline 2

OSCRA

Number of random arrival task

La
te

n
cy

D.Deepakraj, V. Saidulu, Azham Hussain, S. Muruganandam / IJCESEN 11-2(2025)3291-3300

3300

Figure 7. Throughput comparison

to previous research, we increase the task failure

ratio. As of right now, baseline methods only take

into account the first answer. As a result, the

suggested dynamic OSCRA approach improves

costs and meets deadlines while being effective in a

dynamic setting.

4. Conclusion

The cost-effective job scheduling issue in

preempting fog servers is examined in this work.

Under time and failure-aware limitations, the

suggested algorithm framework completed every

task with various components. Furthermore, we

provide the OSCRA framework, which breaks

down task scheduling into several steps: Optimized

Scheduling and Cluster-based Resource Allocation.

Such as the scheduling, resource matching, and task

sequencing steps. According to the performance

evaluation, OSCRA performs better than any

current scheduling and joint offloading issues in the

dynamic environment. According to the results

provided, the suggested work successfully

implemented industrial automation applications on

the cooperative fog cloud network. The outcomes

of the experiments demonstrate that the suggested

OSCRA strategies can improve server usage.

Throughput is increased as service latency and

average bootup time are decreased more efficiently.

In order to operate IoT applications on hybrid

service platforms like Amazon, Azure, and Google

jointly, we will concentrate on services composition

in the future. Task scheduling and system loading

take security and temporary failure into

consideration.

Author Statements:

 Ethical approval: The conducted research is

not related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial

interests or personal relationships that could

have appeared to influence the work reported in

this paper

 Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are available

on request from the corresponding author. The

data are not publicly available due to privacy or

ethical restrictions.

References

[1] Abdelmoneem, R. M., Benslimane, A., & Shaaban,

E. (2020). Mobility-aware task scheduling in cloud-

fog IoT-based healthcare architectures. Computer

Networks, 179, 107348.

https://doi.org/10.1016/j.comnet.2020.107348

[2] Alsadie, D. (2024). Advancements in heuristic task

scheduling for IoT applications in fog-cloud

0

1

2

3

4

5

6

Category 1 Category 2 Category 3 Category 4

Baseline 1

Baseline 2

Baseline 3

OSCRA

th
ro

u
gh

p
u

t

Number of random arrival task

D.Deepakraj, V. Saidulu, Azham Hussain, S. Muruganandam / IJCESEN 11-2(2025)3291-3300

3301

computing: Challenges and prospects. PeerJ

Computer Science, 10, e2128.

https://doi.org/10.7717/peerj-cs.2128

[3] Abualigah, L., & Diabat, A. (2021). A novel hybrid

antlion optimization algorithm for multi-objective

task scheduling problems in cloud computing

environments. Cluster Computing, 24(1), 205–223.

https://doi.org/10.1007/s10586-020-03176-7

[4] Alsammak, I. L. H., Alomari, M. F., Nasir, I. S., &

Itwee, W. H. (2022). A model for blockchain-based

privacy-preserving for big data users on the Internet

of Things. Indonesian Journal of Electrical

Engineering and Computer Science, 26(2), 974–

988. https://doi.org/10.11591/ijeecs.v26.i2.pp974-

988

[5] Lakhan, A., Mohammed, M. A., Abdulkareem, K.

H., Jaber, M. M., Nedoma, J., Martinek, R., &

Zmij, P. (2022). Delay optimal schemes for Internet

of Things applications in heterogeneous edge cloud

computing networks. Sensors, 22(16), 5937.

https://doi.org/10.3390/s22165937

[6] Al-Maytami, B. A., Fan, P., Hussain, A., Baker, T.,

& Liatsis, P. (2019). A task scheduling algorithm

with improved makespan based on prediction of

tasks computation time algorithm for cloud

computing. IEEE Access, 7, 160916–160926.

https://doi.org/10.1109/ACCESS.2019.2951760

[7] Khan, Z. A., Aziz, I. A., Osman, N. A. B., & Ullah,

I. (2023). A review on task scheduling techniques

in cloud and fog computing: Taxonomy, tools, open

issues, challenges, and future directions. IEEE

Access, 11, 143417–143445.

https://doi.org/10.1109/ACCESS.2023.3308305

[8] Ali, I. M., Sallam, K. M., Moustafa, N.,

Chakraborty, R., Ryan, M., & Choo, K. K. R.

(2020). An automated task scheduling model using

non-dominated sorting genetic algorithm II for fog-

cloud systems. IEEE Transactions on Cloud

Computing, 10(4), 2294–2308.

https://doi.org/10.1109/TCC.2020.3007621

[9] Adhikari, M., Mukherjee, M., & Srirama, S. N.

(2019). DPTO: A deadline and priority-aware task

offloading in fog computing framework leveraging

multilevel feedback queueing. IEEE Internet of

Things Journal, 7(7), 5773–5782.

https://doi.org/10.1109/JIOT.2019.2962370

[10] Amoon, M., Bahaa-Eldin, A. M., & El-Bahnasawy,

N. A. (2023). Resource allocation strategy in fog

computing: Task scheduling in fog computing

systems. Journal of Communication Sciences and

Information Technology, 1(1), 1–11.

https://doi.org/10.21608/jcsit.2023.XXXXX

[11] Huang, Y. M., Hsieh, M. Y., & Usak, M. (2020). A

multi-criteria study of decision-making proficiency

in student’s employability for multidisciplinary

curriculums. Mathematics, 8(6), 897.

https://doi.org/10.3390/math8060897

[12] Liu, Q., Kosarirad, H., Meisami, S., Alnowibet, K.

A., & Hoshyar, A. N. (2023). An optimal

scheduling method in IoT-fog-cloud network using

combination of Aquila optimizer and African

vultures optimization. Processes, 11(4), 1162.

https://doi.org/10.3390/pr11041162

[13] Xia, F. (2024). Optimized multiple-attribute group

decision-making through employing probabilistic

hesitant fuzzy TODIM and EDAS technique and

application to teaching quality evaluation of

international Chinese course in higher vocational

colleges. Heliyon, 10(4), e26616.

https://doi.org/10.1016/j.heliyon.2024.e26616

[14] Zhao, X., & Huang, C. (2020). Microservice-based

computational offloading framework and cost

efficient task scheduling algorithm in

heterogeneous fog cloud network. IEEE Access, 8,

56680–56694.

https://doi.org/10.1109/ACCESS.2020.2982572

[15] Ehtisham, M., Hassan, M. U., Al-Awady, A. A.,

Ali, A., Junaid, M., Khan, J., ... & Akram, M.

(2024). Internet of Vehicles (IoV)-based task

scheduling approach using fuzzy logic technique in

fog computing enables vehicular ad hoc network

(VANET). Sensors, 24(3), 874.

https://doi.org/10.3390/s24030874

https://doi.org/10.1109/ACCESS.2020.2982572

