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Abstract:  
 

Given the seriousness of road traffic accidents as a public health concern, it is critical to 

comprehend the variables linked to an increase in the severity of injuries sustained by 

those who intervene in accidents. To improve road safety, make better decisions about 

road safety, and lessen the severity of crashes in the future, it is crucial to identify these 

elements. The study aimed to collect traffic data, analyse it to identify suitable variables 

for accident prediction, and to develop an accident predictive model suitable for Indian 

conditions. The dataset comprised of 67 blackspots, each containing 16 variables.  One 

innovative aspect of this study involves the utilization of the fuzzy subtractive 

clustering algorithm to predict the accident. This approach holds theoretical promise in 

terms of computational efficiency. This contrasts with the traditional exponential 

increase in computational load with data dimensionality. Root Mean Squared Error 

(RMSE), and Coefficient of Determination (R²) metrics were used to assess the model 

performance after the data was divided into training and validation sets, R2 of 0. 67 is 

obtained. The study emphasises the potential of machine learning to improve traffic 

safety. 

 

1. Introduction 
 

An estimated 1.19 million road traffic deaths 

occurred globally in 2021, or 15 deaths per 100,000 

people, according to the World Health 

Organization's Global Status Report on Road Safety 

2023. Road traffic injuries are the 12th largest cause 

of death for all age groups and continue to be the 

leading cause of death for those between the age of 

5 and 29. Furthermore, there is a significant 

financial impact from traffic accidents; estimates 

put the worldwide cost as high as US$1.8 trillion, 

or 10–12% of the world's gross domestic product 

[1] . This poses a significant social and economic 

challenge. Road traffic accidents are the primary 

cause of death for children and young adults aged 5 

to 29. Reducing the severity of collisions is a major 

global objective. Although all traffic accidents are 

concerning, vulnerable road users such as cyclists, 

motorcyclists, and pedestrians represent roughly 

54% of all traffic fatalities globally and 43% in 

Europe [2]. According to Chang and Wang, the 

most significant factor influencing the severity of 

injuries is the category of vehicle, with susceptible 

drivers having the highest risk of suffering a serious 

injury or passing away [3]. Compared to car 

occupants, motorbike riders have a 30 times higher 

risk of dying in a traffic accident [4]. 

 

To increase the road safety, a thorough examination 

of traffic accidents and the identification of the 

variables influencing the severity of injuries 

sustained in the crash intervenient are essential. For 

statistical and machine learning techniques to 

effectively forecast the severity of injuries, the 

accessible data must be dependable and inclusive of 

http://dergipark.org.tr/en/pub/ijcesen
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the target population. After analysing data on traffic 

accidents in a few countries in southeast Europe, 

Laiou et al. [5] concluded that, to increase road 

safety in such nations, it is critical to improve the 

quality of the data sets. One of the most crucial 

elements in enhancing traffic safety is data, as 

without it, it would be impossible to gauge the 

effectiveness of the current road safety initiatives 

[6]. 

The comprehensive study involved identification 

and analysis of black spot in Karnataka State, using 

Adaptive neuro-fuzzy inference system.  

2. Literature Review  

Artificial neural networks are the most widely used 

machine learning technique for risk assessment in 

engineering, with Support Vector Machines (SVM) 

coming in second. Various techniques, including 

decision trees, Bayesian networks, and artificial 

neural networks, have been developed over the 

years to create models for predicting the severity of 

injuries in traffic accidents. 

SVM and Ordered Probit (OP) models were used 

by Li et al. (2013) to analyse crash injury severity 

in China. This research was conducted on 1800 

crash casualties. Several variables were taken into 

consideration, including the exit ramp's length and 

the shoulder width. 48.8% of the SVM model's 

predictions were accurate, compared to 44.0% for 

the OP model. Furthermore, it was found that the 

SVM model outperformed the OP model in terms 

of sensitivity and specificity [7]. Ibrahim and Far 

(2014) created a Real-Time Transportation Data 

Mining (R Trans Dmin) approach. This technique 

could be used to forecast future Real Time 

Accidents (RTA) related data and assess a set of 

real-time traffic data. The study focused on 

application of two decision tree types viz., Java 48 

(J48) and Active Directory trees to 1385 accident 

records collected by the UK Department of 

Transport. The Active Directory tree approach 

registered 85.9%, while J48 registered 87.2%, 

based on the forecast accuracy statistics [8]. 

Mohamed (2014) forecasted the causes of traffic 

accidents based on 1000 real crashes in Dubai City 

using SVM with Gaussian Radial Basis function 

(RBF). The accuracy of this multi-class SVM 

model was over 75% [9]. To find the key factors 

affecting the severity prediction of crash datasets in 

Iran, Effati et al. (2015) used an integrated method 

to data mining that included SVM, coactive Neuro-

Fuzzy, and ANN inference systems. This 

innovative integration technique registered good 

forecasts with an accuracy of 85.49% [10]. Perone 

(2015) used SVM, Logistic Regression, Random 

Forest, KNN, and Naïve Bayes to create a new 

prediction model to evaluate the severity of injuries 

in Brazil using 20798 accident records from the city 

of Porto Alegrers. According to African Union 

Commission (AUC) records, the highest 

satisfaction rates were achieved by SVM and 

Logistic Regression (94%), Random Forest (93%), 

KNN (90%), and Naïve Bayes (83%) [11].  

To determine the key factors driving most RTAs, 

Sharma et al. (2016) collected 300 real accident 

cases from India and using Multi Layers Perceptron 

(MLP) and SVM (Gaussian kernel). Three 

categories were applied to their data set: 70% for 

training, 20% for cross-validation, and 10% for 

testing. LIBSVM, a support vector machine library, 

was integrated with Octave. The results of the 

investigation demonstrated that SVM with a 

Gaussian kernel function achieved 94% prediction 

accuracy, whereas conventional MLP achieved 

only 60% [12]. Gu et al. (2017) forecasted fatal 

traffic incidents in China using SVM. The goal of 

this study was to compare SVMs, KNNs, and 

Bayesian networks. The results showed that the 

particle swarm with mutation optimization-SVM-

based traffic fatalities prediction model had a 

higher prediction precision (97%) and fewer 

mistakes (9%) in training and testing data. [13]. 

To determine the primary environmental features of 

RTA in the UK, Al-Radaideh and Daoud (2018) 

used ANN back propagation, SVM (polynomial 

Kernel), and Decision Trees (Random Forest 

C4.5/CART/J45). The experimental results of the 

study showed that decision trees, also known as 

random forests, generated the highest accurate 

forecast of accident severity in the United Kingdom 

(80.6%) [14]. 

Farhat et al. (2019) employed several data mining 

techniques, including decision trees and artificial 

neural networks (ANNs), to predict traffic accidents 

in Lebanon. The findings show that an artificial 

neural network (ANN) using a Multi Layers 

Perceptron (MLP) with two hidden layers and 42 

neurones in each layer was the best strategy with an 

accuracy rate of prediction (94.6%) and an AUC 

(95.71%) [15].  

Karthik et al. (2019) employed a range of data 

mining techniques, such as J48, Random Forest, 

and Naïve Bayesian, in the Thanjavur region of 

India to predict the primary causes of fatal 

accidents. Among other RTA parameters, ten years' 

worth of accident data were collected, including 

surface quality, road boundary, accident time, and 

accident location. At 56.96%, J48 had the highest 

accuracy rate, followed by Random Forest at 49% 

and Naïve Bayesian at 54% [16].  
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In addition to reviewing and summarising existing 

approaches to accident black spot identification, H. 

Cui et al. (2022) suggested a novel approach based 

on accident spacing distribution that circumvents 

road segmentation problems and yields more 

precise accident black spot identification [17]. 

To increase the road safety, a study by I. 

Karamanlis et. al(2023) identified road accident 

black spots in Northern Greece using both 

traditional and contemporary methods, such as 

binary logistic regression and different machine 

learning techniques [18].  

The study conducted by A. Mbarek et al. (2023)  

suggests a paradigm for locating, categorising, and 

evaluating accident black spots on Moroccan rural 

roads by combining the Weighted Severity Index 

(WSI), Bagging Extreme Learning Machine (B-

ELM), and Ordinal Regression (OR) approaches to 

examine how environmental elements and road 

conditions affect the severity of accidents [19]. 

The study conducted by Manoj et al. (2023) 

suggests that the Machine learning models like 

Random Forest and SVM are effectively used for 

predicting road accidents and identifying blackspots 

with high accuracy. The study stresses the need for 

real-time data integration using ML, IoT, and cloud 

technologies for proactive road safety.[20] 

 

3. Objective and Methodology 

3.1 Objective 

The current study demonstrates how Adaptive 

neuro-fuzzy inference system (ANFIS) used to 

address the complex and vital issue of road safety. 

Overall, it demonstrates the multiple nature of 

research in forecasting and analysing the severity of 

traffic accidents. Through data-driven insights, the 

research contributes to the advancement of 

prediction model that may help avoid and mitigate 

the severity of traffic accidents. 

3.2 Study Area and Data Collection 

A road accident black spot is defined as a stretch of 

highway approximately 500 meters in length where, 

over the last three calendar years, either five road 

accidents involving fatalities or grievous injuries 

have occurred, or ten fatalities have taken place as 

per the guidelines of Ministry of Road Transport 

and Highways (MoRTH), 2019. The Planning and 

Road Asset Management Centre (PRAMC), a state 

government undertaking situated in Bangalore, 

Karnataka has identified several black spots across 

Karnataka State, India. However, 67 blackspots 

were considered for the study, and their locations 

are shown in Fig. 1. 

 

Figure 1. Locations of Selected Blackspots in State of 

Karnataka, India 

3.2.1 Primary Data: Primary data were collected 

through various surveys, including a road inventory 

survey and a spot speed study, with results recorded 

in an excel sheet for further analysis. The road 

inventory and detailed survey involved measuring 

road geometric details using a Total Station. 

Additional details within each black spot area were 

also documented. For traffic spot speed data, a 

radar speed gun was employed to measure vehicle 

speeds by detecting changes in frequency caused by 

the Doppler effect. Speed studies were conducted at 

all black spots, where a handheld radar gun was 

used specifically for two-wheelers and four-

wheelers. The average spot speed was then 

calculated and utilized for modelling purposes. 

3.2.2 Secondary Data: Secondary data for the 

study included First Information Reports (FIRs), 

vehicle insurance claim reports, and traffic volume 

data. FIRs, the primary source for accident data, 

were accessed with permission from the 

Superintendent of Police and gathered from police 

stations in Mysuru, Tumkuru, Ramanagara, 

Chamarajanagar, and Kodagu. These reports, 

covering 2017-2021, detailed incidents categorized 

by Indian Penal Code (IPC) sections 337, 338, and 

304(A) for accidents involving various vehicles, 

including tempos, trucks, and buses. FIR copies 

from the designated black spot areas were also 

retrieved from the Karnataka State Police portal and 

contained specifics such as accident type, time, 

involved parties, causes, road condition, and 

 
Black 

Spots 
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vehicle type. IPC sections categorized accidents 

into minor (Section 337), major (Section 338), and 

fatal (Section 304(A)) categories.  

Additionally, traffic volume data, including 

Passenger Car Unit (PCU) values, was obtained 

from the Office of the Chief Engineer 

(Communication and Buildings, South) in 

Bangalore, which provided information on traffic 

count for selected black spot stretches across 

districts. 

3.3 Data Preparation 

 On two-lane undivided rural highways, black spots 

were examined with an emphasis on curved road 

segments only. Softwares viz., MS Excel, 

AutoCAD, E-Survey CAD were used to process 

survey data. Accidents were categorised as Minor, 

Major and Fatal using FIR data and Equivalent 

Accident Number (EAN) was calculated based on 

severity of accidents as per Indian Road Congress 

(IRC) 131-2022 under section 4.5.1. 

 A weighted total of accident severity, with severity 

weights obtained from IRC 131-2022 (minor = 2, 

major = 5, fatal = 10), was used to calculate EAN. 

More accurate accident analysis was made possible 

by this weighted system. The equation for 

calculating EAN is represented by below. 

EAN = [(2 x minor accident) + (5 x major accident) 

+ (10 x Fatal accident)] 

The computed EAN for each Black Spot was then 

fixed as Dependent Variable (DV) and processed 

data consisting of 16 variables were considered as 

Independent Variables (IDV) for model 

development.  

3.4 Selection of variables  

3.4.1 List of variables  

After processing the data, 17 variables were 

selected for model development and the statistical 

details of 16 Independent Variables (IDV) which is 

used for the prediction of EAN are presented in 

Table 1. For every variable, important statistics are 

given, including the mean, median, mode, standard 

deviation, minimum, and maximum. For instance, 

the speed at entry and exit varies very little, with a 

mean of about 65–66 m, and the mean radius is 126 

m with a standard deviation of 96.9. To illustrate 

the distribution of these variables with their 

corresponding extremes, the dataset additionally 

contains measurements such as Length of 

Transition curve, Tangent Length, Carriage Way 

width and Shoulder width. Some variables, such as 

Passenger Car Unit (PCU) have a wide range of 

values (7109 to 25000), which indicate a wide 

range of observed conditions. 

Table 1: The statistical details of selected variables 

Sl. 

No.  Variables Mean Median Mode 
Standard 

deviation 
Minimum Maximum 

1 Radius [R] in m 126 97.5 247 96.9 13.4 414 

2 Speed @ Entry [V(entry)] in Kmph 65.3 66 66 3.07 58 72 

3 Speed @ Exit [V(exit)] in Kmph 66.3 67 67 3.4 56 73 

4 Length of Transition Curve [Ls] in m  46.9 26.2 10 60.5 6.05 382 

5 Tangent Length [L(tangent)] in m 42.9 36.2 47.8 27.8 3.55 118 

6 Superelevation [e] in mm 4.95 4.92 4.64 0.853 2.5 6.8 

7 Sight distance [SD] in m 67.1 50 20 46.5 10 200 

8 Deflection Angle [D(angle] in m 53.5 48 22.3 26 17.9 177 

9 Total width [TW] in m 11.4 11 11 3.8 5.5 21 

10 Carriage Way Width [CW] in m 8.22 7.5 5.5 2.69 3.75 15 

11 Shoulder width (Left) [SW(L) in m  1.81 1.5 0 1.97 0 8.94 

12 Shoulder width (Right) [SW(R)] in m  1.44 1.2 0 1.61 0 7 

13 Long Chord (LC) in m  91.7 78.5 96.7 59.2 7.9 256 

14 Appex Distance (Es) in m 12.5 8.16 4.77 12.6 1.07 77.3 

15 Mid Speed [V(mid)] in m 50.5 52 56 10.3 20 67 

16 Passenger Car Unit [PCU] 7109 5879 5462 3751 1769 25000 

17 Equivalent Accident Number [EAN] 58.9 62 43 25.4 0 99 

 

3.4.1 Correlation analysis  
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The correlation analysis of the variables used to 

estimate the Equivalent Accident Number (EAN) is 

shown in Fig. 2, emphasising important links and 

model predictors. The correlation matrix heatmap 

above displays the relationships between various 

variables related to road geometry, vehicle speed, 

sight distance, and accident data in terms of EAN 

(Equivalent Accident Number). The colour scale 

indicates the strength and direction of correlations, 

with dark red representing strong positive 

correlations and dark blue indicating strong 

negative correlations. For instance, "Radius" shows 

a strong positive correlation with "Sight distance" 

(0.88) and "Tangent Length" (0.83), suggesting that 

larger road radius may be associated with increased 

sight distance and tangent length. Conversely, 

"Sight distance" has a strong negative correlation 

with "EAN" (-0.79), implying that better visibility 

may reduce the frequency or severity of accidents. 

Similarly, "Speed at Entry" and "Speed at Exit" 

have moderate positive correlations with "EAN" 

0.45 and 0.47, respectively, indicating that higher 

speeds at these points may contribute to more 

severe accidents. Designing safer road 

infrastructure may benefit from this analysis's and it 

facilitates in identifying the traffic and road features 

most frequently linked to accidents. 

 

Figure 2. Correlation between the variables 

Model Development  

The dataset was divided into 80% testing and 20% 

validation for the application of ANFIS model. 

Adaptive neuro-fuzzy inference system (ANFIS) 

Fuzzy systems and artificial neural networks work 

together to generate a powerful hybrid system that 

can handle problems with complicated 

relationships. The constraints of fuzzy inference 

and ANN can be solved by ANFIS, one of the AI 

models. To develop a process that can handle 

complicated non-linear interactions between a 

collection of input and output, the ANFIS model 

combines the capabilities of ANN and fuzzy logic 

[20]. Figure 3 depicts the ANFIS's overall structure. 

First order Sugeno fuzzy has the following rule for 

a typical ANFIS, assuming the FIS has two inputs 

('x' and 'y') and one output ('f'). 

Rule(1):𝑖𝑓 𝜇(𝑥)𝑖𝑠 𝐴1 𝑎𝑛𝑑 𝜇(𝑦)𝑖𝑠 𝐵1 𝑡ℎ𝑒𝑛 𝑓1 =
𝑝1𝑥 + 𝑞1𝑦 + 𝑟1  

Rule(2): 𝑖𝑓 𝜇(𝑥)𝑖𝑠 𝐴2 𝑎𝑛𝑑 𝜇(𝑦)𝑖𝑠 𝐵2 𝑡ℎ𝑒𝑛 𝑓2 =
𝑝2𝑥 + 𝑞2𝑦 + 𝑟2 

A five-layer neural network configuration that 

followed the formulation and structure of ANFIS 

had membership function parameters for x and y 

inputs of A1, B1, A2, B1, and outlet function 

parameters of p1, q1, and r1, p2, q2, and r2[6]. 

ANFIS's architecture is composed of five levels. 

Numerous nodes represented by the node function 

are present in each layer. The parameter sets that 

are changeable in these nodes are represented by 
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Figure 3. ANFIS architecture 

adaptive nodes, which are indicated by 

squares,whereas the parameter sets that are fixed in 

the system are represented by fixed nodes, which 

are indicated by circles. The input for the current 

layer is made up of the output data from the nodes 

in the preceding layers. The figure below illustrates 

the general organisation of ANFIS. ANFIS's 

architecture is composed of five levels. Numerous 

nodes represented by the node function are present 

in each layer. The parameter sets that are 

changeable in these nodes are represented by 

adaptive nodes, which are indicated by squares, 

whereas the parameter sets that are fixed in the 

system are represented by fixed nodes, which are 

indicated by circles. The input for the current layer 

is made up of the output data from the nodes in the 

preceding layers. 

To update the model parameters, ANFIS uses the 

hybrid-learning technique, which combines the 

"gradient descent" and "least squares" methods. 

This hybrid learning process consists of a forward 

pass and a backward pass for each epoch. The node 

output advances to layer 4 in the hybrid learning 

procedure's forward pass, where the ensuing 

parameters are determined using the least squares 

approach. The error signal propagates backwards 

during the backward pass, and gradient descent is 

used to update the premise parameters. 

Total 16 input parameters of the ANFIS that are 

being taken into consideration in the current study. 

The EAN is the output. Data containing the chosen 

parameters for accident prediction were imported 

into the ANFIS using the Gaussian input parameter 

membership function. 

Data were split into two groups for modelling: 

training data and testing data. The ANFIS was 

trained using the training data. The performance of 

the model was evaluated using the testing data. As 

a modelling tool for this work, the MATLAB Fuzzy 

Logic Toolbox ANFIS GUI was employed. 

Subtractive clustering (SC), a clustering algorithm, 

is used to create membership functions with a 

Gaussian shape automatically. This method creates 

if-then rules that are hazy. A quick, one-pass 

approach for determining the number of clusters 

and cluster centres in a piece of data is subtractive 

clustering. Iterative optimization-based clustering 

techniques and model identification techniques like 

ANFIS can both be initialised using the cluster 

estimates that were acquired. For the available data 

sets in this investigation, 3 cluster centres were 

identified. The number of fuzzy rule sets, each of 

which represents a different attribute of the cluster, 

would be equal to the number of cluster centres. 

The details on various parameters, and their values 

taken for modelling methods are given in Table 2. 

Table 2: Parameter values for clustering based ANFIS 

Parameters 

Membership function = Gaussian 

Number of clusters = 3 

Number of rules =45 

Influence range= 0.5 

Squash factor =1.25 

Accepted ratio = 0.5 

Rejected ratio = 0.15 

 

Models’ evaluation 

We quantitatively assessed the models using five 

statistical indicators. Following is the calculation 

for these metrics. 

Mean Square Error (MSE):  The mean of the 

squared difference among the original and 
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predicted values of the data set, as displayed in 

equation (1).   It calculates the residuals' variance. 

𝑀𝑆𝐸 =
1

𝑁
 ∑(𝑦𝑖 −  ŷ)2 … … … . . (1)

𝑛

𝑖=1

 

Root Mean Square Error (RMSE):  The mean 

square error's square root is RMSE equation (2). 

The standard deviation of the errors that happen 

when a prediction is made based on a dataset is 

known as RMSE. 

𝑅𝑀𝑆𝐸 =  √𝑀𝑆𝐸 =  √
1

𝑁
 ∑(𝑦𝑖 −  ŷ)2

𝑁

𝑖=1

… … … . (2) 

The coefficient of determination or R-squared:  The 

percentage of the dependent variable's variation that 

the linear regression model can explain is indicated 

by the coefficient of determination, also known as 

R-squared.  It is a scale-free score, therefore 

depending on the values little or huge, the R square 

value will be below one. It is calculated using the 

equation (3). 

𝑅2 = 1 − 
∑(𝑦𝑖 −  ŷ)2

∑(𝑦𝑖 −  ȳ)2
… … … … . . (3) 

Where ŷ is forecast value of y and  ȳ is average 

value of y. 

 

4. Results and discussion  

A hybrid method combining gradient descent back 

propagation and mean least squares optimisation 

methods is used by the ANFIS to work on the 

model and tune it. An error measure, which is the 

total of the squared difference between the output 

that occurs and what is desired, is decreased at each 

epoch. The overall EAN was calculated as a linear 

combination of the learnt values of the underlying 

premise parameters. Figure 4 depict the pattern of 

variance and distribution of the actual and predicted 

EAN for testing data, here, the blue dots represent 

real output while the red stars show EAN 

predictions.  

 

Figure 4. Distribution of Actual and Predicted EAN 

The Figure 5 shows a Fuzzy Inference System 

(FIS) Rule Viewer from MATLAB, displaying how 

16 input variables interact through fuzzy rules to 

produce an output. The yellow areas indicate active 

membership levels, helping visualize how each 

input contributes to the overall decision based on 
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41 rules. The scatter plots Figures 6 and 7 illustrate 

the performance of the accident prediction model 

during both training and validation phases. The 

training data yielded a lower R² value of 0.269, 

indicating a weaker correlation between predicted 

and actual values, possibly due to noise or 

overfitting limitations. In contrast, the validation 

data showed a significantly improved R² of 0.6828, 

reflecting a stronger fit and better generalization of 

the model to unseen data. The red dotted trendlines 

in both plots visually represent the relationship 

between predicted and actual outcomes, 

emphasizing the model’s potential in real-world 

accident prediction scenarios.

 

 

Figure 5. Set of Rules for the prediction of EAN 

 

 

Figure 6. Scatter plot of training data 
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Figure 7. Scatter plot of testing data 

5. Conclusion  

This study underscores the vital role of identifying 

key determinants influencing accident severity to 

strengthen road safety initiatives in Karnataka. 

Utilizing data from 67 blackspots, the application 

of fuzzy subtractive clustering and regression 

methods demonstrated the effectiveness of machine 

learning in predicting accident likelihood. With an 

R² value of 0.67 indicating strong predictive 

performance, the findings support the integration of 

intelligent data-driven models into traffic 

management frameworks. Such approaches can 

significantly enhance decision-making, enabling 

targeted safety interventions and contributing to 

evidence-based policy formulation. 

Future research can expand this study by 

incorporating real-time traffic, weather, and 

vehicular data to enhance the predictive accuracy of 

the model. Integration of GIS and spatial analysis 

tools can help visualize accident-prone zones more 

effectively. Additionally, comparing the 

performance of other advanced machine learning 

models such as XGBoost, LSTM, or hybrid 

ensemble techniques may offer deeper insights. 

Collaboration with traffic enforcement agencies can 

enable the deployment of these models in 

intelligent transportation systems, leading to 

proactive accident prevention strategies. Lastly, 

extending the analysis to a wider range of 

geographic regions can improve the generalizability 

and robustness of the model. 
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