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Abstract: The size of a lambda term’s type assignment is traditionally 
interpreted as the number of involved typing rules, but can be also assessed using some 
finer-grained measures such as the number of involved type declarations (TD). We 
propose a type assignment method that relies on the translation of a typeable lambda 
term to the corresponding term of a modified resource control lambda calculus. The 
translation output of a given lambda term is often syntactically more complex, therefore 
more rules need to be used for its type assignment in the target calculus.  However, we 
show that TD measure decreases when types are assigned to terms satisfying a certain 
minimal level of complexity, thus our method represents an optimization of the lambda 
calculus’ type assignment. 
 

  
 
1. Introduction 
 
The untyped λ-calculus is a simple formal system 
for expressing all effectively computable functions 
(equivalent to Turing machine). Typed λ-calculus 
[1]  is a restricted system, where application is 
controlled by objects (types) assigned to λ-terms.  
Typed λ-calculus has played an important role in 
the development of programming languages, proof 
theory, evaluation strategies, mathematical 
linguistics, etc... Today, a variety of λ-based calculi 
and type systems have found application in 
programming languages for certified compilers, 
automated theorem provers and proof assistants, 
software verification, etc...  
In the λ-calculus, complexity of computation refers 
to the number of required reduction rules in order to 
reach the normal form (if possible). For example, in 
[4], a particular subclass of λ-terms that reduce to 
normal form in polynomial time is characterized by 
means of typeability in a system corresponding to 
light affine logic. Complexity of type assignment, 
on the other hand, measures the size of type 

assignment (TA). It can be assessed via different 
measures, such as: the number of applied TA rules 
(length of the proof) - time complexity; the number 
of used type declarations (weight of the proof) - 
space complexity; the number of used type 
variables (also weight of the proof, but not 
interesting for simple types where the type of a 
given term is unique). The problem of the weight of 
the proof reducing is interesting for applicative 
purposes, since it corresponds to the required 
memory for the type assignment or type checking. 
The goal of this paper is to investigate the 
optimization of the lambda type assignment by 
using the lambda calculus with resource control, λ®, 
proposed in [2]. 

1 RESOURCE CONTROL IN TYPE 
ASSIGNMENT OPTIMIZATION 

The λ®-calculus is an extension of the λ-calculus 
with operators that perform quantitative control of 
variables by explicitly denoting duplication and 
erasure of each variable, which on the logical side 
corresponds to structural rules of weakening and 
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contraction. The weakening operator denotes that 
the variable x does not appear in the term M, 
whereas the contraction operator denotes that two 
variables x and y play the same role in M, therefore 
one may think of them as of one duplicated variable 
z. A detailed account on the λ®-calculus can be 
found in [3].  
Each λ-term can be represented in the λ®-calculus 
using a mapping [ ]rc. In general, a correspondence 
between sets of λ-terms and λ®-terms is “one-to-
many”. It can be showed that the mapping [ ]rc is 
constructed in a way that resource operators are put 
in positions which are optimal from the TA point of 
view and their interaction is disabled: 
Proposition 1. For each λ-term M, the 
corresponding λ®-term [M]rc is in the γω-normal 
form. 
Simple types are assigned to λ®-terms by the TA 
system λ® →. Its main differences with respect to 
the system λ → (of simply-typed λ-calculus) are the 
following: (i) two new TA-rules; (ii)  minimal form 
of axiom; (iii)  context-splitting style for the rule 
with two premises (where Γ,∆ is disjoint union of 
two bases Γ and ∆). Systems λ → and λ® → are 
represented in Figure 1. 
λ →: 
 

 
 

λ® →: 

 
 

Figure 1.  Type assignment rules for simply typed λ-
calculus and for λ®-calculus 
 

It is easy to prove the preservation of the type of a 
λ-term in the system with resource control: 

Proposition 2.  If Γ ⊢ M : α in λ→, then Γ′ ⊢ [M]rc 
: α in λ® →, for some Γ′ ⊆ Γ. 

Our work plan is as follows. For a given λ-term M:  

(i) we translate it to corresponding λ®-
term [M]rc;  

(ii) proposition 2 ensures the preservation 
of type;  

(iii) due to Proposition 1, we can separately 
investigate the effects of explicit 
weakening and contraction on the 
complexity of TA.  

Obviously, the number of TA rules will increase 
because the system λ® → consists of more rules 
which reflects the more complex syntax of the λ®-
term, but what about the number of type 
declarations? 
The effect of explicit weakening is firstly 
investigated on a simple example of a term with n 
void lambda abstractions (M ≡ λxnxn−1 ...x1.y) 
whose counterpart in the λ®-calculus contains n 
weakenings ([M]rc ≡ 
λxn.xn⊙(λxn−1.xn−1⊙(...(λx1.x1⊙y)...)) ). The type 
αn → αn−1 →···→ α1 → β can be assigned to both M 
and [M]rc, but the complexity of TA differs. In the 
system λ→, the number of applied TA rules is n + 
1 and the number of used TD is (n + 1)(n + 2)/2. On 
the other hand, in the system λ® →, the number of 
applied TA rules is 2n + 1 but the number of used 
TD is 3n + 1. Therefore, despite of the increased 
number of applied TA rules, the total number of 
used TD is smaller in the presence of explicit 
weakening for all terms with n > 3. 
Even in the more general case where n void 
abstractions (i.e. weakenings) are distributed along 
the term, we obtain that in the system λ → the 
number of TD behaves as O(n2), whereas in the 
system λ® → number of TD  behaves as O(n).  
Next, in order to explore the effect of explicit 
contraction, we firstly analyze an example of the λ-
term with n repetitions of the same variable. This is 
Church numeral representing the natural number N: 
N ≡ λf.λx.fn(x). The type int: (α → α) → α → α can 
be assigned to both N and its resource sensitive 
counterpart [N]rc which contains n-1 contractions. 
In the system λ →, the number of applied TA rules 
is 2n + 3; the number of TD: 4n + 3. In the system 
λ® →, the number of TA rules is 3n + 2; the number 
of TD: 6n − 1. In both cases the number of TD 
behaves as O(n),  but without explicit contraction it 
is smaller for n ≥ 2. Therefore, in spite of the 
presence of the context splitting rule for application 
which decreases number of TD, explicit contraction 
in general does not contribute to the optimization of 
the type assignment complexity. An explanation for 
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this phenomenon lies in the fact that apart from the 
additional TA rules, the number of TD is enlarged 
because all fresh variables need to be declared. This 
neutralizes the positive effect of the context-
splitting rule. 
Conclusion of analysis of effects: In case of the 
explicit weakening, it is not possible to separate 
two additional features of the system λ® →: the 
minimal axiom and the new rule (Weak). But, in 
case of the explicit contraction, it is possible to 
separate two additional features of the system: 
context splitting form of the rule (→E) and the new 
rule (Cont). Thus, we can build a novel, hybrid 
system λo→, collecting only those features that 
reduce the number of TD:  

(i) explicit weakening;  
(ii) implicit contraction;  
(iii) partial context-splitting form of the rule 

(→E) (with ordinary union Γ∪∆ 
instead of disjoint one Γ,∆).  

Syntax 
Pre-terms:  

 
Terms are pre-terms that satisfy the condition:  

in  

 
Reductions 
 

 
Mapping from λ 
 

 
 
System λo→ 

 
 

Figure 2.  The  λo – calculus 

The syntax and reduction rules of the λo-calculus, 
the mapping [ ]o from λ to λo , and type assignment 
system  λo→ are given in Figure 2. 
Turning back to Church numeral N and the type 
assignment of its corresponding term [N]o in the 
system λo→, we obtain the following results: the 
number of TA rules is 2n + 3; the number of TD: 
3n + 2 (which is less than in λ→ for all n). Finally, 
some additional results for several randomly chosen 
terms, typed in parallel in the systems λ→ and λo→ 
are given in Table 1. Since some terms are too long 
to fit in the table, we will give their standard 
interpretation instead of the syntax. For example, 
we will write 3 for λf.λx.f(f(fx)), MULT for 
λx.λy.λz.x(yz), FALSE for λx.λy.y, etc… We will 
also use prefix notation for binary operations. For 
example, PLUS 10 (MULT 5 2) stands for 10 + 
5*2. 

Table 1.  Some empirical results 

(meaning of) 
the term 

Number 
of TD in 

λ→ 

Number 
of TD in 

λo → 

% of 
improvement 

MULT 3 2 44 30 32% 
PLUS 10 

(MULT 5 2) 137 90 34% 
AND TRUE 
FALSE 17 14 18% 

λw.(λx.yz)( 
uv) 47 26 45% 

 

2 CONCLUSION 

The λo-calculus is a modified version of the λ®-
calculus, which preserves good properties of the 
system λ® → relevant for the optimization issues. 
Except for the limited number of simple terms, it 
reduces the type assignment procedure in terms of 
the number of type declarations, thus optimizing 
required space ( = memory) for type checking, 
which makes it suitable for applications. To review 
the full extent of the proposed optimization method, 
we will in the future conduct semi-automated 
testing with large-scale terms. Also, it would be 
interesting to extend the proposed method to more 
complex type-systems (such as intersection types, 
polymorphic types, dependent types,...) and to other 
lambda-based formal calculi. 
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