

 Copyright © IJCESEN

International Journal of Computational and

Experimental Science and Engineering
(IJCESEN)

Vol. 1-No.2 (2015) pp. 20-23
http://dergipark.ulakbim.gov.tr/ijcesen

ISSN: 2149-9144

Research Article

An Optimization of Lambda Type assignments via Resource Control#

Jelena IVETIĆ1*, Silvia GHILEZAN1, Nenad SAVIĆ1

1University of Novi Sad, Faculty of Technical Sciences, Novi Sad - Serbia

* Corresponding Author : jelenaivetic@uns.ac.rs

Presented in ”2nd International Conference on Computational and Experimental Science and Engineering (ICCESEN-2015)”

Keywords
Lambda calculus
Type assignment
Resource control
Optimization

Abstract: The size of a lambda term’s type assignment is traditionally
interpreted as the number of involved typing rules, but can be also assessed using some
finer-grained measures such as the number of involved type declarations (TD). We
propose a type assignment method that relies on the translation of a typeable lambda
term to the corresponding term of a modified resource control lambda calculus. The
translation output of a given lambda term is often syntactically more complex, therefore
more rules need to be used for its type assignment in the target calculus. However, we
show that TD measure decreases when types are assigned to terms satisfying a certain
minimal level of complexity, thus our method represents an optimization of the lambda
calculus’ type assignment.

1. Introduction

The untyped λ-calculus is a simple formal system
for expressing all effectively computable functions
(equivalent to Turing machine). Typed λ-calculus
[1] is a restricted system, where application is
controlled by objects (types) assigned to λ-terms.
Typed λ-calculus has played an important role in
the development of programming languages, proof
theory, evaluation strategies, mathematical
linguistics, etc... Today, a variety of λ-based calculi
and type systems have found application in
programming languages for certified compilers,
automated theorem provers and proof assistants,
software verification, etc...
In the λ-calculus, complexity of computation refers
to the number of required reduction rules in order to
reach the normal form (if possible). For example, in
[4], a particular subclass of λ-terms that reduce to
normal form in polynomial time is characterized by
means of typeability in a system corresponding to
light affine logic. Complexity of type assignment,
on the other hand, measures the size of type

assignment (TA). It can be assessed via different
measures, such as: the number of applied TA rules
(length of the proof) - time complexity; the number
of used type declarations (weight of the proof) -
space complexity; the number of used type
variables (also weight of the proof, but not
interesting for simple types where the type of a
given term is unique). The problem of the weight of
the proof reducing is interesting for applicative
purposes, since it corresponds to the required
memory for the type assignment or type checking.
The goal of this paper is to investigate the
optimization of the lambda type assignment by
using the lambda calculus with resource control, λ®,
proposed in [2].

1 RESOURCE CONTROL IN TYPE
ASSIGNMENT OPTIMIZATION

The λ®-calculus is an extension of the λ-calculus
with operators that perform quantitative control of
variables by explicitly denoting duplication and
erasure of each variable, which on the logical side
corresponds to structural rules of weakening and

http://dergipark.ulakbim.gov.tr/ijcesen
http://dergipark.ulakbim.gov.tr/ijcesen
mailto:jelenaivetic@uns.ac.rs

J. Ivetic/ IJCESEN 1-2(2015)20-23

contraction. The weakening operator denotes that
the variable x does not appear in the term M,
whereas the contraction operator denotes that two
variables x and y play the same role in M, therefore
one may think of them as of one duplicated variable
z. A detailed account on the λ®-calculus can be
found in [3].
Each λ-term can be represented in the λ®-calculus
using a mapping []rc. In general, a correspondence
between sets of λ-terms and λ®-terms is “one-to-
many”. It can be showed that the mapping []rc is
constructed in a way that resource operators are put
in positions which are optimal from the TA point of
view and their interaction is disabled:
Proposition 1. For each λ-term M, the
corresponding λ®-term [M]rc is in the γω-normal
form.
Simple types are assigned to λ®-terms by the TA
system λ® →. Its main differences with respect to
the system λ → (of simply-typed λ-calculus) are the
following: (i) two new TA-rules; (ii) minimal form
of axiom; (iii) context-splitting style for the rule
with two premises (where Γ,∆ is disjoint union of
two bases Γ and ∆). Systems λ → and λ® → are
represented in Figure 1.
λ →:

λ® →:

Figure 1. Type assignment rules for simply typed λ-
calculus and for λ®-calculus

It is easy to prove the preservation of the type of a
λ-term in the system with resource control:

Proposition 2. If Γ ⊢ M : α in λ→, then Γ′ ⊢ [M]rc
: α in λ® →, for some Γ′ ⊆ Γ.

Our work plan is as follows. For a given λ-term M:

(i) we translate it to corresponding λ®-
term [M]rc;

(ii) proposition 2 ensures the preservation
of type;

(iii) due to Proposition 1, we can separately
investigate the effects of explicit
weakening and contraction on the
complexity of TA.

Obviously, the number of TA rules will increase
because the system λ® → consists of more rules
which reflects the more complex syntax of the λ®-
term, but what about the number of type
declarations?
The effect of explicit weakening is firstly
investigated on a simple example of a term with n
void lambda abstractions (M ≡ λxnxn−1 ...x1.y)
whose counterpart in the λ®-calculus contains n
weakenings ([M]rc ≡
λxn.xn⊙(λxn−1.xn−1⊙(...(λx1.x1⊙y)...))). The type
αn → αn−1 →···→ α1 → β can be assigned to both M
and [M]rc, but the complexity of TA differs. In the
system λ→, the number of applied TA rules is n +
1 and the number of used TD is (n + 1)(n + 2)/2. On
the other hand, in the system λ® →, the number of
applied TA rules is 2n + 1 but the number of used
TD is 3n + 1. Therefore, despite of the increased
number of applied TA rules, the total number of
used TD is smaller in the presence of explicit
weakening for all terms with n > 3.
Even in the more general case where n void
abstractions (i.e. weakenings) are distributed along
the term, we obtain that in the system λ → the
number of TD behaves as O(n2), whereas in the
system λ® → number of TD behaves as O(n).
Next, in order to explore the effect of explicit
contraction, we firstly analyze an example of the λ-
term with n repetitions of the same variable. This is
Church numeral representing the natural number N:
N ≡ λf.λx.fn(x). The type int: (α → α) → α → α can
be assigned to both N and its resource sensitive
counterpart [N]rc which contains n-1 contractions.
In the system λ →, the number of applied TA rules
is 2n + 3; the number of TD: 4n + 3. In the system
λ® →, the number of TA rules is 3n + 2; the number
of TD: 6n − 1. In both cases the number of TD
behaves as O(n), but without explicit contraction it
is smaller for n ≥ 2. Therefore, in spite of the
presence of the context splitting rule for application
which decreases number of TD, explicit contraction
in general does not contribute to the optimization of
the type assignment complexity. An explanation for

21

J. Ivetic/ IJCESEN 1-2(2015)20-23

this phenomenon lies in the fact that apart from the
additional TA rules, the number of TD is enlarged
because all fresh variables need to be declared. This
neutralizes the positive effect of the context-
splitting rule.
Conclusion of analysis of effects: In case of the
explicit weakening, it is not possible to separate
two additional features of the system λ® →: the
minimal axiom and the new rule (Weak). But, in
case of the explicit contraction, it is possible to
separate two additional features of the system:
context splitting form of the rule (→E) and the new
rule (Cont). Thus, we can build a novel, hybrid
system λo→, collecting only those features that
reduce the number of TD:

(i) explicit weakening;
(ii) implicit contraction;
(iii) partial context-splitting form of the rule

(→E) (with ordinary union Γ∪∆
instead of disjoint one Γ,∆).

Syntax
Pre-terms:

Terms are pre-terms that satisfy the condition:

in

Reductions

Mapping from λ

System λo→

Figure 2. The λo – calculus

The syntax and reduction rules of the λo-calculus,
the mapping []o from λ to λo , and type assignment
system λo→ are given in Figure 2.
Turning back to Church numeral N and the type
assignment of its corresponding term [N]o in the
system λo→, we obtain the following results: the
number of TA rules is 2n + 3; the number of TD:
3n + 2 (which is less than in λ→ for all n). Finally,
some additional results for several randomly chosen
terms, typed in parallel in the systems λ→ and λo→
are given in Table 1. Since some terms are too long
to fit in the table, we will give their standard
interpretation instead of the syntax. For example,
we will write 3 for λf.λx.f(f(fx)), MULT for
λx.λy.λz.x(yz), FALSE for λx.λy.y, etc… We will
also use prefix notation for binary operations. For
example, PLUS 10 (MULT 5 2) stands for 10 +
5*2.

Table 1. Some empirical results

(meaning of)
the term

Number
of TD in

λ→

Number
of TD in

λo →

% of
improvement

MULT 3 2 44 30 32%
PLUS 10

(MULT 5 2) 137 90 34%
AND TRUE
FALSE 17 14 18%

λw.(λx.yz)(
uv) 47 26 45%

2 CONCLUSION

The λo-calculus is a modified version of the λ®-
calculus, which preserves good properties of the
system λ® → relevant for the optimization issues.
Except for the limited number of simple terms, it
reduces the type assignment procedure in terms of
the number of type declarations, thus optimizing
required space (= memory) for type checking,
which makes it suitable for applications. To review
the full extent of the proposed optimization method,
we will in the future conduct semi-automated
testing with large-scale terms. Also, it would be
interesting to extend the proposed method to more
complex type-systems (such as intersection types,
polymorphic types, dependent types,...) and to other
lambda-based formal calculi.

REFERENCES

[1] H. P. Barendregt, W. Dekkers, and R. Statman.
Lambda Calculus with Types. Perspectives in logic.
Cambridge University Press, 2013.

22

J. Ivetic/ IJCESEN 1-2(2015)20-23

[2] S. Ghilezan, J. Ivetić, P. Lescanne, and S. Likavec.

Intersection types for the resource control lambda
calculi. In A. Cerone and P. Pihlajasaari, editors, 8th
International Colloquium on Theoretical Aspects of
Computing, ICTAC ’11, volume 6916 of Lecture
Notes in Computer Science, pages 116–134.
Springer, 2011. DOI: 10.1007/978-3-642-23283-
1_10

[3] S. Ghilezan, J. Ivetić, P. Lescanne, and S. Likavec.
Resource control and intersection types: an intrinsic
connection. CoRR, abs/1412.2219, 2014.

[4] P. Baillot, K. Terui. Light types for polynomial time
computation in lambda calculus. Information and
Computation, volume 207, pages 41-62. Elsevier,
2009. DOI:10.1016/j.ic.2008.08.005

23

	143
	1 REsource control in type assignment optimization
	2 conclusion
	REFERENCES

