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For the steel manufacturing sector, steel defect diagnostics is crucial since it has a direct 

impact on both production efficiency and product quality. Although product quality 

control is less automated and unreliable in identifying steel imperfections in the surface, 

it suffers from a real-time diagnostic capacity. This paper introduces a Recurrent Neural 

Network (RNN) approach for detecting defects in steel plate manufacturing. The steel 

manufacturing plants may encounter a variety of flaws, including scratches, holes, 

crazing, and dirt. In the proposal, the first step is to take a different number of defective 

and non-defective images and then extract the feature using the wavelet transform. 

Prepare a feature matrix with 13 features for each image. The completed data set is fed 

into an RNN to assess the suggested algorithm's effectiveness during testing and 
training. The proposed method is evaluated using both online and industry data. Also 

feeding different numbers of images to determine the accuracy of suggested algorithms. 

The proposed approach is implemented using MATLAB software. The proposed 

 strategies have an accuracy of 98.25% based on empirical data.  
 

1. Introduction 

Defect detection in the manufacturing field is a 

critical aspect of ensuring product quality, reducing 

waste, and maintaining customer satisfaction. In an 
era where precision and efficiency are paramount, 

manufacturers must employ advanced techniques 

and technologies to identify and rectify defects in 
real-time[1]. This comprehensive study delves into 

the intricacies of defect detection in the 

manufacturing industry, covering its importance. 

Various methods and technologies employed, 
challenges faced, and the future prospects of defect 

detection. Manufacturing is the backbone of many 

industries, ranging from automotive to electronics, 
pharmaceuticals to aerospace. The quality of 

products produced directly impacts on a company's 

reputation, customer satisfaction, and bottom line. 

Defects can lead to costly recalls, warranty claims, 
and legal issues, not to mention the damage to 

brand image[2]. Thus, effective defect detection is 

paramount for several reasons: Oxidation produces 
defect on the surface that can be removed by 

descaling processes. Longitudinal surface defects 

caused by improper rolling that can occur on the 

surface due to thermal stresses or mechanical 
forces. Mechanical damage to the surface from 

handling or processing. Overlapping layers of metal 

due to improper rolling. Non-metallic particles such 
as oxides, sulphides, or silicates trapped within the 

steel, affecting its mechanical properties. Non- 

uniform distribution of alloying elements, leading 

to localized variations in properties. Small voids 
caused by trapped gases during solidification, 

reducing the material's strength. Larger voids 

formed by gases during solidification[3]. Cracks 
that occur beneath the surface, often due to 

improper cooling or stress during solidification. 

Stresses remaining in the steel after processing, 

which can lead to warping or cracking. Localized 
areas of increased hardness due to uneven heat 

treatment. Localized areas of reduced hardness due 

to uneven cooling or heat treatment. As steel 
production processes get advanced, maintaining 

high quality and ensuring defect-free products have 

become progressively critical. Defects in steel 
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products not only compromise structural integrity 

but can also lead to catastrophic failures, financial 
losses, and safety hazards. Consequently, the need 

for effective and efficient methods for detecting and 

diagnosing steel defects has never been greater[4]. 
Traditionally, steel defect detection has relied on a 

combination of visual inspection, ultrasonic testing, 

magnetic particle testing, and eddy current testing. 

While these techniques have been instrumental in 
identifying surface and subsurface defects, they 

often come with limitations. Visual inspection, for 

instance, is highly dependent on the skill and 
experience of the inspector and can be prone to 

human error. Ultrasonic and magnetic particle 

testing, is more reliable and are generally time- 

consuming and require specialized equipment and 
trained personnel[5]. The advancement of 

technologies and methodologies is therefore 

necessary to address these challenges and improve 
the accuracy and efficiency of defect detection in 

steel manufacturing. In recent years, the integration 

of artificial intelligence (AI) and machine learning 
(ML) has emerged as a transformative approach to 

defect detection across various industries. These 

technologies leverage data-driven techniques to 

enhance the accuracy and speed of inspections, 
offering significant improvements over traditional 

methods. Among many machine learning 

techniques, Recurrent Neural Networks (RNNs) 
have gained considerable attention due to their 

ability to model sequential data and capture 

temporal dependencies, which are crucial for tasks 
involving time-series data or sequences. RNNs are 

a class of neural networks designed to recognize 

patterns in sequences of data, making them well- 

suited for tasks where the order and context of data 
points are essential[6]. This characteristic is 

particularly advantageous in the context of steel 

defect detection, where the sequential nature of 
sensor readings or inspection data can provide 

valuable insights into the presence and nature of 

defects. By analysing sequences of data over time, 

RNNs can identify anomalies and patterns that may 
not be apparent through static inspection methods. 

Despite the promising potential of RNNs, their 

application to steel defect detection remains an area 
of active research and development[7]. This 

research article aims to explore the capabilities and 

limitations of RNN-based approaches in detecting 
defects in steel products. It will delve into the 

fundamental principles of RNNs, discuss their 

relevance to defect detection, and present a 

comprehensive analysis of their performance in 
comparison to traditional methods[8]. The paper 

begins with an overview of the current state of steel 

defect detection technologies. This is followed by a 
detailed examination of RNNs, including their 

architecture, training mechanisms, and advantages 

in processing sequential data[9]. The subsequent 
sections will focus on the specific application of 

RNNs to steel defect detection, discussing how 

these networks can be trained and optimized to 
enhance detection accuracy. To provide a thorough 

understanding of RNN-based defect detection, this 

article will also present case studies and 

experimental results from recent research[10]. 
These examples will illustrate how RNNs have 

been applied to real-world steel defect detection 

scenarios, showcasing their effectiveness and 
potential areas for improvement. Furthermore, the 

paper will address the challenges associated with 

implementing RNNs in industrial settings, 

including data acquisition, preprocessing, and 
model deployment. The ultimate goal of this 

research is to contribute to the development of 

more robust and efficient steel defect detection 
systems. By leveraging the strengths of RNNs and 

integrating them with existing inspection 

technologies, it is possible to achieve higher levels 
of accuracy and reliability in defect detection. This 

not only benefits the steel manufacturing industry 

by reducing defects and improving product quality 

but also has broader implications for safety and 
economic efficiency[11]. 

Robots equipped with advanced sensors and vision 

systems can conduct precise inspections on 

complex products, improving accuracy and speed. 
Blockchain can be used to create immutable records 

of product quality, ensuring transparency and 

traceability throughout the supply chain. AR and 
VR systems can assist human inspectors by 

overlaying digital information on the physical 

product, highlighting potential defects [12]. As 3D 

printing becomes more prevalent, specialized defect 
detection methods for additive manufacturing like 

multilevel neural network are emerging. Before 

discussing about the RNN, first clear the basic 
neural network analysis technique CNN. 

Convolutional Neural Networks (CNNs) are 

powerful tools for detecting steel defects[13]. High- 
resolution images of steel surfaces are captured 

using cameras or scanners during or after 

production. Defects in these images are annotated 

manually or using semi-automated tools to create a 
labelled dataset. Adjust the pixel values to a 

standard range (e.g., 0-1 or -1 to 1). Ensure all 

images are of uniform size suitable for the CNN 
architecture [14]. The transformations such as 

rotations, flips, and zooms are applied to increase 

dataset variability and improve model robustness 
except pre-processed images. The filters are applied 

to extract features such as edges, textures, and 

patterns. The dimensions of the defect images are 

reduced to attain the important features, typically 
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through max pooling. The extracted features are 

combined to make predictions that provides the 
final classification (e.g., defect type) or detection 

(e.g., defect location) output. Typically, cross- 

entropy loss for classification or mean squared error 
for localization tasks. The optimizers like SGDM, 

ADAM and RMS Prop are used to minimize the 

loss function. The dataset is segmented into 

training, testing and validation to analyse the 
performance and ignore overfitting. The CNN 

classifies are used for each image to categorise the 

defect classes e.g., cracks, inclusions, scratches. 
Measure the proportion of correctly identified 

defects. Evaluate the balance between false 

positives and false negatives [15-17]. The model 

performance is analysed on the different types of 
defects. The trained CNN model into the 

production lines for real-time defect detection. The 

defective pieces are automatically detected to give 
an alarm to human inspectors. CNNs can achieve 

high accuracy by learning complex patterns in 

images. Once trained, CNNs can process images 
quickly, enabling real-time detection and reduces 

human error and acquire variability in defect 

detection. The defects are easily scalable and use 

high-quality, well-annotated data that is crucial for 
training effective models. For training CNNs 

requires significant computational power. The CNN 

makes decisions which can be challenging [18-20]. 
By leveraging CNNs, manufacturers can enhance 

the accuracy and efficiency of defect detection in 

steel production, leading to improved quality 
control and reduce the computation time. 

 

2. Literature Review 

This section will discuss the diverse study related to 

the concept of defect detection of metal sheets. 

Zhang et al. (2017) employed faster RCNN to 
detect surface defects on hot-rolled steel strips. 

They reported a high detection accuracy and 

emphasized the importance of fine-tuning the 

network for specific defect types. Automatic steel 
surface defects detection method based on deep 

learning. Two deep learning models for defect 

detection are evaluated. The experimental results 
show that the evaluated methods can detect steel 

surface defects. Yang et al. (2020) proposes a 

hybrid RNN-LSTM model to enhance the detection 
of metal surface defects. The RNN component 

processes sequential sensor data, while the LSTM 

component captures long-term dependencies and 

patterns. The combination allows for a more 
comprehensive analysis of defect progression over 

time. The hybrid model demonstrated superior 

accuracy compared to standalone RNN or LSTM 
models. It effectively identified both transient and 

persistent defects in metal surfaces. Li et al. (2021) 

integrates Convolutional Neural Networks (CNNs) 
with RNN-LSTM networks to detect defects in 

metal sheets. CNNs handle spatial feature 

extraction from defect images, while the RNN- 
LSTM model processes the temporal data to 

capture defect evolution. The CNN- RNN-LSTM 

model achieved high detection accuracy by 

leveraging both spatial and temporal features. The 
approach showed significant improvements in 

identifying complex defects that evolve over time. 

Experimental results show that our method is 
superior to existed methods in the detection 

accuracy for the internal defects of arc magnets, 

and the diagnosis time per a single arc magnet is 

controlled at the millisecond, making it appropriate 
for real-time applications. Zhang et al. (2019) 

explores the use of RNN-LSTM networks for real- 

time defect detection in rolling mills. The model 
processes time-series data from vibration sensors to 

detect anomalies and predict potential defects. The 

RNN-LSTM network successfully detected defects 
in real-time with high precision. The model was 

effective in identifying anomalies that could lead to 

defects in the rolling process. One- dimensional 

time-series vibration signals are first converted into 
two-dimensional images. Then, Gated Recurrent 

Unit (GRU) is introduced to exploit temporal 

information of time-series data and learn 
representative features from constructed images. A 

multilayer perceptron (MLP) is finally employed to 

implement fault recognition. Kim et al. (2020) 
investigates a hybrid approach combining RNN and 

LSTM networks for sequential defect detection in 

metal sheets. The RNN captures short-term 

dependencies, while the LSTM focuses on long- 
term patterns, enhancing the model's ability to 

detect defects over time. The hybrid RNN-LSTM 

model improved defect detection accuracy and 
robustness. It provided better insights into defect 

patterns and progression compared to traditional 

methods. Pan et al. (2022) shows the enhanced 

RNN-LSTM networks for defect detection by 
incorporating attention mechanisms. The attention 

mechanism helps the model focus on important 

features and temporal sequences, improving 
detection performance. The RNN-LSTM model 

with attention mechanisms achieved higher 

detection accuracy and reduced false positives. It 
demonstrated improved capability in handling 

complex and subtle defects. the results show that, 

compared with other deep learning models, DAN- 

DeepLabv3+ based on the Xception backbone 
exhibits the best segmentation performance under 

the mean intersection over union (IoU) of 89.95% 

and the frequency-weighted IoU of 97.34%. 
Besides, the F1-score for the three kinds of defects 
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can reach 86.90%, 99.20%, and 92.81%. From the 

comparative study, it has been found that the 
adoption of the dual attention module and 

DeepLabv3+ contributes to boosting the 

segmentation performance. The significance of the 
proposed hybrid model lies in the enhancement in 

accurately detecting single or multiple steel defects, 

which has proven to outperform other classical 

methods. Xu et al. (2021) combines RNN and 
LSTM networks for predictive maintenance and 

defect detection in metal manufacturing. The model 

predicts potential defects based on historical data 
and time-series analysis. The RNN-LSTM model 

effectively predicted maintenance needs and 

detected defects early. It contributed to reducing 

downtime and improving operational efficiency. In 
this study, the author has developed a real-time 

laser welding data acquisition system to collect 

plasma density, laser intensity, and molten pool 
temperature data during the welding process. 

Additionally, we established a neural network 

based on a combination of LSTM and CNN models 
to rapidly detect laser welding defects. The 

experimental results demonstrate that this method 

can effectively identify welding defects with an 

average accuracy rate of 96%. Chen et al. (2020) 
presents a hybrid RNN-LSTM model for 

classifying defects in steel plates. The model 

combines the strengths of RNNs and LSTMs to 
process defect images and time-series data. The 

hybrid approach improved classification accuracy 

for various types of defects. It demonstrated 
robustness across different steel plate conditions 

and defect types. The Multilayer perceptron 

through NAS technology is used to classify defects 

with different depths. The Experiments have proved 
that the time-series temperature feature is very 

effective when used in the depth classification of 

defects, and the accuracy rate can reach 93% under 
the verification of traditional machine learning 

methods. The NAS technique used in this paper can 

search 100 multilayer perceptron’s in a minimum of 

121s and achieve 100% defect classification 
accuracy. Patel et al. (2022) proposes the periodical 

defect detection method based on a convolutional 

neural network (CNN) and long short-term memory 
(LSTM) is proposed to detect periodic defects, such 

as roll marks, according to the strong time- 

sequenced characteristics of such defects. Firstly, 
the features of the defect image are extracted 

through a CNN network, and then the extracted 

feature vectors are inputted into an LSTM network 

for defect recognition. The experiment shows that 
the detection rate of this method is 81.9%, which is 

10.2% higher than a CNN method. In order to make 

more accurate use of the previous information, the 
method is improved with the attention mechanism. 

The improved method specifies the importance of 

inputted information at each previous moment, and 
gives the quantitative weight according to the 

importance. The experiment shows that the 

detection rate of the improved method is increased 
to 86.2%. Huang et al. (2023) This research 

combines RNN and LSTM networks with data 

augmentation techniques to enhance defect 

detection in metal sheets. Data augmentation helps 
the model generalize better across different defect 

scenarios. The combined RNN-LSTM model with 

data augmentation achieved high detection 
accuracy and generalization. It effectively handled 

diverse defect types and manufacturing conditions. 

Zixiang et al. (2021) focuses on optimizing RNN- 

LSTM networks for defect detection in high-speed 
metal processing environments. The study 

addresses challenges related to processing speed 

and data volume. the output accuracy and stability 
of digital model built by the network with two 

LSTM hidden layers are exceedingly better than 

that of traditional linear regression model. The 
average error of the LSTM digital regression model 

is only 1.4%, and the maximum error is only 6%. Li 

et al. (2018) used a combination of machine 

learning and image enhancement techniques to 
improve the detection of small and subtle defects in 

steel plates. Their approach demonstrated improved 

detection performance over traditional methods. the 
proposed approach achieves a near-perfect 

detection performance at 99.44% and 0.99 

concerning the accuracy and F-1 score metric, 
respectively. The results are better than other 

shallow machine learning algorithms, i.e., support 

vector machine and logistic regression under the 

same validation technique. Zhu et al. (2018) 
implemented Mask RNN for detecting and 

segmenting multiple defect types on steel surfaces. 

The segmentation masks provided additional 
information about defect shapes and sizes, aiding in 

detailed analysis. The result shows that our model 

achieves 79.89% mAP on NEU-DET and 78.44% 

mAP on self-made detection dataset. Our model 
can detect at 23f/s when the input image size is 416 

× 416 × 3. The detection performance of our model 

is significantly better than other models. The results 

show that the proposed method has better 

performance and can be used for real-time 
automatic detection of workpiece surface defects. 

Dong et al. (2019) proposed an enhanced faster 

RNN model incorporating multi-scale feature 
extraction to better handle varying defect sizes. 

This approach resulted in improved detection 

accuracy across different defect scales. we use deep 

learning CNN with Xception architecture to detect 
steel defects from images taken from high- 

frequency and high-resolution cameras. There are 
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two techniques used, and both produce respectively 

0.94% and 0.85% accuracy. The Xception 
architecture used in this case shows optimal and 

stable performance in the process and its results. 

Kang et al. (2019) integrated Faster RNN with a 
transfer learning approach, leveraging pre-trained 

models to reduce training time and enhance 

detection accuracy. This method proved effective 

for real-time defect detection in steel manufacturing 
lines. Our experimental findings on the 

Northeastern University dataset (NEU) proved our 

technique's efficacy, including six surface defects. 
The resulting classification accuracy was 99.44%, 

surpassing other existing methods. The success of 

our method can be attributed to the combination of 

a powerful feature extractor and a well-designed 
CNN classifier. Alaa et al. (2020) explored a hybrid 

approach combining Faster RNN with traditional 

image processing techniques for pre- processing 
and post-processing stages. 

Texture is an important feature for defining the 

defects in steel. It is an efficient approach for 

differentiating the defects. The study [21] planned 
the general texture elaboration operator, which is 

known as general binary design. This operator has 

several advantages such as light, variance and 
insensitive behaviour in geometrical condition of 

the design. It is also used in several domains. 

In real-world steel production lines, defect 

detection systems need to operate in real-time to 
prevent defective products from passing through 

the quality control process. CNN-based models 

such as YOLO and SSD (Single Shot Multibox 
Detector) are optimized for real-time performance 

by balancing accuracy with speed, ensuring that 

steel defects can be detected and flagged as early as 

possible[22]. Research into more sophisticated data 
augmentation techniques, including domain 

adaptation and synthetic data generation using 

GANs, is expected to continue to play a vital role in 
addressing data limitations. Since acquiring 

labelled data is expensive, unsupervised learning 

techniques are being investigated, where models 
detect anomalies or defects without prior labelled 

training data. Autoencoders and unsupervised 

clustering techniques have shown promise in this 

regard[23]. Transfer learning from models trained 
on different industries or similar manufacturing 

processes may provide useful insights into steel 

defect detection, allowing for faster model 
development without the need for large amounts of 

labelled steel data. 

CNN and RNN models, with effective use of data, 

have proven to be powerful tools in steel defect 
detection. While CNNs excel in image-based tasks 

by extracting detailed spatial features, RNNs 

(particularly LSTMs) contribute significantly to 

time-series data analysis and hybrid models[24]. 

The combination of these models, along with data 
augmentation, transfer learning, and synthetic data, 

continues to advance the field toward more accurate 

and efficient defect detection in steel 
manufacturing. However, challenges related to data 

availability, imbalance, and real-time constraints 

remain areas for further research. With the help of 

this technique. The Production, production, and 
cost both can be improved drastically. As for the 

research has used the enhancement strategy, the 

enhancement strategies on data on various Levels 
Can be extracted from various input data so that it 

can be estimated. At what strength and what time. 

of life time the steel can get damaged or degraded 

this is used by the effect of CNN level in the 
processing[25]. And Resnet fif5ty network model is 

used to get the accuracy of ninety four percent 

approximately. This Research is carried out on the 
platform of center net as internet needs a very 

limited did input applications Resnet50 Yes Used to 

enhance these inputs and extract more significant. 
Frequent and which is as valuable trade, valuable 

traits while ignoring the unnecessary ones. This 

mechanism is capable to function one twenty-four 

frames per second with the efficiency of seventy 
five percent. There is a research area scared 

according to the deep learning baseball core. Ethan, 

which is approximately used in each and every 
steel. Industrial appliances affection. 

Manufacturing. It is using a data set which is 

namely termed as few shots NEU-DET [26]. The 
technique Here is dividing different types of flaws 

in a subcategory manner It is training the system in 

such a way to detect small faults in a small of time. 

But it is still a time consuming one. To effectively 
detect defects in metal sheets, it is crucial to 

understand the various types of defects that can 

occur during the manufacturing process or during 
service. The most common defects include. 

• Surface Defects: Surface defects 

encompass scratches, dents, surface cracks, and 

corrosion. These defects can affect the aesthetics, 
corrosion resistance, and mechanical properties of 

the metal sheet. 

• Subsurface Defects: Subsurface defects 

include laminations, inclusions, voids, and internal 
cracks. These defects may not be visible on the 

surface but can compromise the structural integrity 

of the metal sheet. 

• Welding Defects: In welded metal sheets, 
defects like weld cracks, porosity, incomplete 

penetration, and heat-affected zone (HAZ) issues 

can occur, potentially leading to joint failures. 
• Dimensional Deviations: Deviations in 

thickness, width, or length of metal sheets can also 
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be considered defects, affecting their suitability for 

specific applications 

 

3. Challenges and Emerging Trends 

While these advanced techniques have significantly 

improved defect detection in metal sheets, several 
challenges persist: 

• Real-Time Processing: In industries with 

high-speed production lines, real-time defect 

detection is essential to catch defects as they occur. 

Achieving real-time processing remains a challenge 
[26]. 

• Data Quality: Machine-based systems rely 

on high-quality data. Dust, dirt, or poor lighting 

conditions can affect the accuracy of detection[27]. 
• False Positives and Negatives: Striking a 

balance between detecting genuine defects and 

avoiding false alarms remains a challenge, 
especially in complex industrial environments[28]. 

• Adaptability: Manufacturing processes are 

dynamic and may change frequently. Defect 
detection systems must be adaptable to new product 

designs and production methods[29]. 

• Cost: Implementing advanced defect 

detection systems can be expensive, particularly for 
smaller manufacturers[30]. 

• Training: Machine learning-based systems 

require extensive training datasets and ongoing 
maintenance to remain accurate[31]. 
Emerging trends in defect detection include: 

• Artificial Intelligence (AI): AI and machine 

learning  algorithms  are  becoming  more 

sophisticated, improving defect detection accuracy 

and adaptability[32]. 

• Big Data Analytics: Manufacturers are 
leveraging big data analytics to collect and analyze 

vast amounts of production data, enhancing defect 

detection and process optimization[33]. 
• Internet of Things (IoT): IoT sensors 

provide real-time data from manufacturing 

equipment, enabling predictive maintenance and 

defect detection[34]. 
• Augmented Reality (AR): AR systems are 

being used to assist human inspectors by overlaying 

digital information on physical products, 
highlighting potential defects[35]. 

Blockchain Technology: Blockchain is being 

explored to create immutable records of product 
quality, ensuring transparency and traceability in 

the supply chain[36]. The RPN is a fully 

convolutional network that generates region 

proposals directly within the CNN architecture, 
eliminating the need for an external region proposal 

algorithm like Selective Search. RPN uses anchor 

boxes of different scales and aspect ratios to 
generate region proposals, which are then refined to 

propose bounding boxes that likely contain objects 

(or defects in the case of defect detection). 

 

4. Proposed Methodology 

The proposed methodology consists of following 

steps. 

 
 

 

Non-Defective 

 

Hole 

 

Dirt 

 

Scratch 

 

Scale 

 

Crazing 

Figure 1. Different type of Defects 
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Figure 2. Different structural presentation for types of machine learning 

 

 

 

Figure 3. The architecture of the region proposal network or RNN 
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Figure 4. The signal decomposition process using DWT; g(n) is the low-pass filter, h(n) is the high- pass filter [26] 

 

Table 1. Accuracy of Industrial data (10 Features) 

No. of 

Images 

Accuracy Precision Recall F- 
Measure 

500 90.25 92.14 86.32 89.1351 

1000 92.65 93.56 88.14 90.7692 

1500 94.56 95.86 89.96 92.8163 

2000 96.28 97.25 90.87 93.9518 

 

Figure 5. Training performance parameter with 

Industrial Data set 

Table 2. Testing Accuracy with Industry Dataset (10 

Features) 

No. of 

Images 

Accuracy Precision Recall F- 

Measure 

500 90.32 91.63 86.23 88.8480 

1000 92.84 94.25 87.05 90.5070 

1500 94.42 95.45 88.36 91.7683 

2000 95.06 95.87 89.41 92.5274 

3000 96.98 96.87 90.65 93.6568 

 

 

 

Figure 6. Testing Accuracy of proposed with Industrial 

Data set 
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Figure 7. Training Accuracy of Kaggle data set with 

proposed work 
 

Figure. 8 Testing Accuracy of Kaggle data set with 

proposed work 

Table 3. Training Accuracy with Kaggle Dataset (10 

Features) 

No. of Images Accuracy Precision Recall F-Measure 

500 90.85 91.05 86.35 88.64 

800 92.95 93.65 87.54 90.49 

1000 93.89 94.56 88.27 91.31 

1200 94.65 96.85 89.31 92.93 

 

and yield the intended outcomes Pre-processing is 

required to get image data ready for input into the 
model. For example, the fully linked layers of 

convolutional neural networks required all the 

images to be in identically sized arrays. 

Furthermore, model pre-processing could accelerate 
model inference and reduce model training time. 

Reducing the size of the input photographs will 

drastically cut down on the training time of the 

model without compromising its functionality, 
especially if the images are very large. 

While pre-processing techniques include geometric 

image transformations (rotation, scaling, and 
translation), their main objective is to improve the 

image data by reducing inadvertent distortions or 

enhancing certain image features that are important 
for further processing 

During fine-tuning, these weights and biases are 

adjusted based on the steel defect dataset using 

backpropagation: The loss function LLL (typically 
a combination of classification loss and bounding 

box regression loss) is minimized using gradient 

descent: 

1. Loss Function LLL: 

o For classification, cross-entropy loss is 
commonly used. 

o For bounding box regression, smooth L1 
loss is used. 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 + ƛ𝐿𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 
 
 

2. Gradient Descent: 

o Update weights WWW and biases bbb: 
𝛛𝐿 

o 𝑊 ← 𝑊 ← 𝜂 
𝛛𝑊 

𝛛𝐿 

1. Preprocessing 

o 𝑏 ← 𝑏 ← 𝜂 
 

 

𝛛𝑊 

2. Feature Extraction 

3. Data Preparation 
4. Training system 

5. Testing System 

6. Performance Parameter Calculation 

Preprocessing – Images need to be pre-processed 

before we can be used for inference and model 
training. This covers alterations to the colour, size, 

and orientation, among other things. Pre-processing 

is done to improve the quality of the image so that 

we can analyse it more efficiently. Pre-processing 
enables us to enhance certain attributes that are 

crucial for the application we are working on and 

remove undesired distortions. These attributes may 
vary based on the intended use. Pre-processing an 

image is necessary for software to operate properly 

The core of feature extraction in RCNN involves 
applying convolutional operations, activation 

functions, and pooling to extract meaningful 

features from input images. These operations are 

governed by the formulas for convolution, 
activation, and pooling. When using a pre-trained 

CNN, transfer learning and fine-tuning adjust the 

network parameters to optimize performance. 
Feature extraction is a step in the dimensionality 

reduction process that divides and reduces an initial 

collection of raw data to more manageable 
categories. As a result, processing will be simpler. 

The most crucial feature of these enormous data 

sets is the large number of variables. These 

variables need a significant amount of 
computational power to process. As a result, feature 

extraction aids in obtaining the best feature from 
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large data sets by selecting and merging variables 

into features, effectively lowering the amount of 
data. These features are simple to process while 

accurately and uniquely describing the real data set. 

The classification model utilizes image and a 
textual dataset which are received at the input 

component of the model. The distinct datasets are 

preprocessed through the removal of noise and 

redundancy for the purpose of obtaining enhanced 
input. In case of the image dataset, the 

preprocessing and augmentation involve whitening 

of image samples, after their up sampling, its 32 by 
32 crop size was selected [37]. While, the textual 

dataset during preprocessing were grouped into 

similar clusters [38], and conversion textual 

information into vectors or numeric values, and 
removal of infrequent classes using semantic and 

syntactic association of words by mean of natural 

language processing (NLP) [39]. 
Recurrent Neural Networks (RNNs) are a class of 

neural networks specifically designed to process 

sequences of data. Unlike traditional feedforward 
neural networks, RNNs have connections that form 

cycles, allowing information to persist across time 

steps. This makes them ideal for sequence data 

where the order of information is important, such as 
time-series data or any context where past inputs 

influence future outputs. 

However, traditional RNNs suffer from the issue of 
vanishing gradients, making it difficult for them to 

retain long-term dependencies. This is particularly 

problematic when patterns or defects in data 
sequences span over long intervals[40]. To address 

this, Long Short-Term Memory (LSTM) networks 

were developed. 

LSTMs are a specialized form of RNNs that solve 

the problem of vanishing gradients and improve the 
model's ability to learn from long-term 

dependencies. By using a memory cell and gate 

mechanisms (input, forget, and output gates), 
LSTMs can maintain and update relevant 

information over long sequences, making them 

highly effective for tasks involving time-series data 
or any data where temporal dependencies are 

critical. Steel surfaces can exhibit a variety of 

defects such as cracks, inclusions, or surface 

irregularities, which may not always be detectable 
from a single data point[41]. The sequential nature 

of sensor readings (e.g., acoustic emission sensors, 

thermal imaging, or sequential images) makes 
LSTMs an excellent choice for defect detection in 

steel. LSTM- based models, as a subset of RNNs, 

are well-suited for detecting steel defects where the 
input data is sequential or exhibits temporal 

dependencies. By leveraging the memory cell 

architecture and the ability to retain important 

information  over  long  time  intervals,  LSTMs 

outperform traditional methods in identifying 

subtle, evolving defect patterns[42]. This makes 
LSTM a powerful tool for industrial quality control, 

ensuring early and accurate defect detection in steel 

manufacturing processes. 

The process component undertakes feature 
extraction, feature selection and classification after 

training procedures. These are achieved with deep 

learning algorithms of LSTM-RNN situated within 

the process component of the model. The output 
component provides the results of the evaluation 

carried out by the distinct 

deep classification models of LSTM-RNN using a 
test dataset, that is, a portion of the input dataset. 

The results are expressed in error rates and 

percentage of accuracy. Discrete Wavelet 
Transform is used for feature extraction is used. 

The most popular technique for time-frequency 

filtering is the discrete wavelet transform (DWT) 

[42]. Both the frequency and time domains have 
good resolution thanks to DWT's minimization of 

additive noise. The DWT approach splits the 

discrete signal x(n) into low- and high-frequency 
components, enabling multi- resolution analysis. 

An iterative Mallat algorithm can be used to 

calculate DWT [43]. Data is collected form one 
steel manufacturing unit and using Kaggle data 

also. All data is in the form of images. 5000 images 

collected form steel plant and 1000 images are 

downloaded from Kaggle website. Data is divided 
into two part one is defect and second one is non - 

defected. Recurrent Neural Network (RNN) is a 

class of powerful deep neural network using its 
internal memory with loops to deal with sequence 

data. The architecture of RNNs, which also is the 

basic structure of LSTMs. For a hidden layer in 

RNN, it receives an input vector, and generates the 
output vector. RNNs exhibit the superior capability 

of adapting themselves to predict nonlinear time 

series problems. Though, certain RNNs are bound 
to reach the vanishing with the Backpropagation 

coefficient learning, thereby making them 

unsuitable for long period lags learning nor 
accounting for long-term dependencies. These 

short-lived the widespread usage of RNNs, which 

gave rise to more improved approaches including 

the Long short-term memory (LSTM) and Gated 
Recurrent Unit (GRU) architectures. In recent 

applications, the LSTMs have shown promise on 

sequence-based computations with long-term 
dependencies. Through GRU is an abridged LSTM 

architecture, which is a relative innovation in 

machine translation tasks such as SemSeq4FD 
Recurrent neural network (RNN) is a class of 

neural network designed to handle sequential data. 

Unlike traditional feedforward neural network, 

RNNs have connections that form directed cycles, 
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allowing them to maintain a form of memory. This 

makes them particularly useful for tasks where the 
order and context of inputs matter, such a time 

series prediction, natural language processing, and 

speech recognition. 

An RNN processes sequences of input one elements 
at a time while maintaining a hidden state captures 

information about previous elements. This hidden 

state is updated at each time step based on the 

current input and the previous hidden state. 
1. Hidden state update 

At each time step t1 the hidden state ht is updated 
based on the previous hidden state ht-1 and the 

current input Xt. The update is given by 

ℎ𝑡 = tanh(𝑊ℎ ℎ𝑡−1 + 𝑈ℎ𝑋𝑡 + 𝑏ℎ) 

where : 

• Wh is the weight matrix for the hidden 

state from the previous time step 

• Uh is the weight for the current input. 

• Bh is the bias term 

• tanh is the 

activation function, 

commonly used to 

introduce non- 

linearity. Output 

calculation 

The output yt at time step t is computed from the 

hidden state ht using: 

 
𝑦𝑡 = 𝑊𝑦ℎ𝑡 + 𝑏𝑦 

 
where 

• Wy is the weight matrix for the output 

layer. 
•   By is the bias term for the output layer. 

Training an RNN involve adjusting its weight and 

basis to minimize the error in its predictions. This is 

done using a method called Backpropagation 
Through Time (BPTT), which us an extension of 

the standard backpropagation algorithm for 

Training feedforward network. Basic RNN suffer 
from  the vanishing and exploding  gradient 

problems, which make training difficult for long 

sequences. The vanishing gradient problem occurs 
when gradients become very small, making it hard 

to learn long-term dependencies. The exploding 

gradient problem occurs when gradients become 

excessively  large, causing  unstable training. 
Advanced RNN architectures. To address these 

issue, advanced architectures like long short-term 

memory (LSTM) network and gated recurrent units 
GRUs were developed. LSTM networks 

LSTMs include special units called gates that 

regulate the flow of information: For gate Gate: 

 

𝑓𝑡 = σ(𝑊𝑓ℎ𝑡−1 + 𝑈𝑓 𝑋𝑡 + 𝑏𝑓) 
Input Gate: 

𝑖𝑡 = σ(𝑊𝑖ℎ𝑖−1 + 𝑈𝑖𝑋𝑡 + 𝑏𝑖) 
𝑒𝑛𝑒𝑤 = tanh(𝑊𝑐 ℎ𝑡−1 + 𝑈𝑐𝑋𝑡 + 𝑏𝑐) 

Cell State Update: 

𝑐𝑡 = 𝑓𝑡 ʘ 𝑐𝑡 + 𝑖𝑡 ʘ 𝑐𝑛𝑒𝑤 
Output Gate: 

𝑜𝑡 = σ(𝑊𝑜ℎ𝑖−1 + 𝑈𝑜𝑋𝑡 + 𝑏𝑜) ℎ𝑡 = 𝑜𝑡 ʘtanh(𝑐𝑡) 
 

5. Results and Discussions 

Main Algorithm in this work have been solved 

using MATLAB R2022. Additionally, MATLAB is 

installed on a laptop running Windows 10 with an 
Intel Core 2.5 GHz CPU and 8 GB of RAM. Two 

types of data sets are prepared to better test the 

suggested algorithm's performance. In the first type, 

ten features are selected for training and testing. In 
the second type dataset, all 13 features are used to 

train and test the suggested method. Images of steel 

plate surfaces are sourced from the industry and the 
Kaggle website. The results showing the accuracy 

of both two-type data set which is using to perform 

training and testing of proposed methodology. To 
analyses the proposed system different number of 

images are used for training and testing. In this 

section, only ten features are used to train the 

proposed algorithm, as well as to test it. The table 
below shows the accuracy when various numbers of 

photos are used to train the proposed system. This 

type of system analysis takes into account industry- 
specific data. 

To determine the performance of the proposed 

technique, many parameters have been determined, 

including precision, recall, and F-Measure. These 

characteristics also indicate the performance and 
dependability of the proposed system. The F- 

measure is based on precision and recall levels. 

Precision = TP/ (TP + FP) (1) 
Recall = TP/ (TP + FN) (2) 

F-measure = 2 x [(Precision x Recall) / (Precision + 

Recall)] (3) 
When testing of this sort of dataset is completed, 

the accuracy for each number of images is 

displayed in Figure 6. Table 2 shows the 

correctness of the suggested system's testing results. 
It is apparent that the accuracy of output data values 

increases as the number of images increases. The 

exceptionally high F-measure value additionally 
indicates the proposed system's dependability and 

effectiveness. In this section total number are 

features are used for both training testing process. 
Also, comparison of both data sets accuracy is 

showing under it.Tables V and VI point out the 
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accuracy results for both the training and testing 

processes using two types of datasets. Fig.9 and 10 
displays the training accuracy for both industrial 

and online datasets. It is obvious from the figure 

that when industrial data sets are used to train the 
suggested system, greater accuracy values are 

produced. However, online datasets are less 

accurate than industrial datasets. This is due to the 

fact that industrial datasets are more precise and 
lucid than those found online. The testing 

procedure also yields the same results. When 

evaluating the suggested algorithm on an industrial 
dataset, accuracy is more important. The number of 

pictures and the type of dataset also have an impact 

on accuracy values. If both the number of input 

images and the image quality are good, the 
accuracy of any advanced algorithm will be quite 

high.The proposed system parameters are 

calculated in all of the following tables to 
determine their robustness and dependability. The 

precision, recall, and F-Measure scores are used to 

calculate the robustness of the training and testing 
processes. Precision and recall values are used to 

calculate the F-measure. The proposed algorithm 

exhibits a higher F-measure, suggesting that the 

proposed technique is more accurate in 
distinguishing between images that are defective 

and those that are not.The performance of the 

proposed method employing thirteen features and 
industrial data is displayed in figures 9 and 10 

below. Thirteen features make up the feature 

matrix, which is subsequently input into the 
classification network. Figure 11 depicts the 

comparative curve between the proposed 

classification technique's testing accuracy when 

trained on industrial and online data, respectively. 
When industrial data is utilized to train the 

suggested methodology, the accuracy is quite high, 

at 98.25. The quantity of images in the online data 
set is lower than that in the industrial data set, but 

the accuracy is 96.28 percent. Based on the 

information that is accessible, it is obvious that the 

proposed approach is far more reliable and precise 
in classifying defective and non-defective steel 

plates in steel producing plants. 
 

Figure 9. Performance Parameter of industrial 

dataset with 13 Features 

 

 

 

Figure 10. Testing Accuracy industrial dataset with 

13 features 
 

 

Figure 11. Comparative Analysis of Testing Accuracy 

between industrial and online dataset 

 

 

Table 4. Testing Accuracy with Kaggle Dataset (10 

Features) 

No of 

images 

Accuracy Precision Recall F- 

Measure 

500 93.65 92.14 88.25 90.15 

600 94.20 93.54 89.37 91.41 

700 95.38 95.24 90.12 92.61 

800 96.03 95.68 90.87 93.21 

1000 96.76 96.01 91.23 93.56 

 

 

Table 5. Training Accuracy of Industrial Dataset (13 

Features) 

No. of 

Images 

Accuracy Precision Recall F- 

Measure 

500 93.25 91.36 88.78 90.05 

1000 94.98 92.95 89.36 91.12 

1500 95.78 93.65 90.19 91.89 

2000 96.45 94.08 90.57 92.29 
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Table 6. Testing Accuracy of Industrial Dataset (13 

Features) 

No. of Images Accuracy Precision Recall F-Measure 

500 92.65 90.73 85.93 88.8480 

1000 93.19 92.05 86.63 90.5070 

1500 94.75 92.95 87.06 91.7683 

2000 95.77 93.37 88.01 92.5274 

3000 98.25 95.87 90.65 93.6568 

 

 

Table 7. Testing Accuracy Comparison (13 

Features) 
 

No. of 

Images 

Industrial Dataset 

Accuracy 

Online Dataset 

Accuracy 

500 92.05 90.65 

700 94.87 92.03 

900 96.20 94.62 

1000 98.25 96.28 

 

6. Conclusions 

• In this study, we provide a unique 

technique for classifying defective and non- 

defective defect detection in steel manufacturing 
plants. In the proposed RNN technique, features are 

extracted from distinct data sets and classified as 

defective or non-defective images. 

• The dataset consists of both defective and 
non-defective photos of steel plates. All data are 

taken from a steel manufacturing factory. Then it 

will use a feature extraction approach based on 
wavelet transformations. Following that, a feature 

matrix for the entire dataset is created, which is fed 

into the suggested RNN algorithm. 
• The proposed work has been split into two 

parts. In the first part, only 10 features are 

considered for feature extraction and preparing the 

feature matrix, however in the second part, 13 
features are taken from each image of the dataset to 

generate the feature matrix. 

• The accuracy of both training and testing is 

calculated and displayed in tables as the number of 
images taken changes during the training and 

testing processes. According to performance 

statistics, the outcomes with 13 features outperform 

the other technique, which only includes 10 
features for training. 
• The section's accuracy is lower than when 

13 features are evaluated. When 13 features are 
used to generate a feature matrix for the training of 

the proposed approach. The results are more 

accurate and consistent. Precision, Recall and F- 
Measure values are also showing results of 

proposed system for considering 10 features and 13 

features respectively. Experimental results are 
showing accuracy, precision and recall of proposed 

RNN technique. The suggested technique achieves 

an overall accuracy of 98.25%, indicating robust 

performance of the algorithm in classifying and 
providing more precise findings. 

• An approach based on region-based fault 

identification has been suggested to improve its 

performance. Because a single unit of steel plate 
can withstand multiple types of defeats. Thus, if 

region-based algorithms are employed in the future 

for various forms of defect identification. Accuracy 
will then improve. 
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