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Abstract: As a simple clustering method K-means is known as an algorithm of choice 
for many clustering challenges due to its performance of clustering large data sets. 
However, it has two major drawbacks, the random selection of initial cluster centers and 
the pre estimation of ‘K’ value in advance. Here, we propose a method that overcomes 
these problems with the help of Voronoi diagram. To resolve the random selection of 
initial cluster centers, we use Voronoi diagram. The vertices in the Voronoi diagram are 
located first and then merged iteratively to converge to ‘k’ number of points which can 
be treated as initial cluster centers for K-means. The second problem of inputting ‘K’ 
value in advance is enhanced by taking a limit on the radius of Voronoi circle. The 
experimental results carried out on various synthetic and biological data sets are proved 
the efficiency of the proposed method.. 

  
 
1. Introduction 
 
Data mining, or knowledge discovery in databases 
is the technique of analysing data to discover 
previously unknown information. Clustering [1] is 
one of the primary data analysis methods refers to a 
task of partitioning the given set of patterns into 
homogeneous disjoint groups called clusters and 
can be defined as regions in which the density of 
the objects is locally higher than in other regions. 
Therefore, a cluster is a collection of objects that 
are similar among themselves and dissimilar to the 
objects belonging to other clusters. Clustering do 
not make any statistical assumptions to data. Hence 
it is an example of unsupervised classification. It 
helps in finding hidden patterns and describes the 
underlying knowledge form a large data set. 
Various algorithms have been developed to solve 
different type of clustering problems.  As a result 
clustering has variety of applications in various 
domains such as image processing [2], wireless 
sensor networks [5], bioinformatics [3] and 
knowledge discovery [4]. Clustering algorithms are 
mainly categorized into two types, Hierarchical 
algorithms and Partition algorithms. In hierarchical 

clustering [6] the given data set divided into smaller 
sub sets in hierarchical fashion. Hierarchical 
clustering does not require us to specify the number 
of clusters in advance and most hierarchical 
algorithms that have been used are deterministic. 
Hierarchical algorithms are divided into two types, 
agglomerative and divisive. Unlike hierarchical, 
partitional clustering [7] algorithms attempts to 
directly decompose the data set into a set of disjoint 
clusters. Much attention is paid in case of 
partitional clustering techniques and number of 
clustering algorithms have been proposed. A 
commonly used partitional clustering method is K-
means [1]. It is one of the most used iterative 
clustering algorithm used in variety of domains 
because of its simplicity and effectiveness. The K-
means algorithm attempts to find the cluster 
centres, (c1,…,ck), such that the sum of the squared 
distances (this sum of squared distances is termed 
the Distortion, D) of each data point (xi) to its 
nearest cluster centre (ck) is minimized. Here the 
distortion is defined as follows. 
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However, K-means suffers from two major 
problems namely, the random selection of initial 
cluster centers and estimation of output number of 
clusters in advance. The in appropriate selection of 
initial cluster centers or the k value affects the 
clustering results significantly. Various attempts 
[8], [9], [10] have been made to select the initial 
cluster centers and to estimate the k value exactly. 
But they do not fulfil all the requirements in terms 
of efficiency, fastness and time complexity etc. 
Therefore, we propose a novel algorithm that finds 
the good seeds to act as initial clusters and to 
estimate the k value in advance with the help of 
Voronoi diagram [11]. It is a well known technique 
from computational geometry, especially popular 
for nearest neighbor problems. It has been used for 
cluster analysis and few algorithms [12], [13] have 
been developed. The Voronoi diagram is used to 
form the initial cluster centers with the help of 
voronoi vertices and circles. A threshold limit on 
the radius of the Voronoi circle is given to form k 
points that are treated as initial cluster centers to K-
means. The proposed algorithm is tested on various 
synthetic and real world data sets and the results are 
compared with the classical K-means and improved 
K-means algorithms to show the efficiency of the 
proposed method. The rest of the paper is structured 
as follows. The useful terminologies are discussed 
in section 2 and the related work is described in 
section 3. We formulize the proposed algorithm in 
step 4. Finally experimental results are shown in 
section 5 followed by conclusion in section 6. 
 
2. Basıc Termınologıes 
 
We first discuss some terminologies that can 
help in understanding our proposed algorithm 
as follows. 
 
2.1  K-means  
 
K-means [1] algorithm finds the clusters by 
partitioning the given data set by minimizing 
the squared error between the empirical mean 
of a cluster and the points in the cluster. Let Ck 
denote the kth cluster of the data set: {x1, 
x2,…, xn}. Then if µj is the mean of the cluster 
Cj, the squared error between µk and the point 
xi within Cj is as follows.               

∑
∈

−
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C
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The aim of K-means is to reduce the sum of 
squared error for all the ‘K’ clusters. i.e., to 
minimize S(C).   
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The algorithm is as follows [14].  

Step 1: Select K initial cluster centers c1, 
c2,…,cK randomly from the given n 
data points {x1, x2,…, xn}, K≤n. 

Step 2: Assign each point xi, i =1, 2, …,n  to 
the cluster Cj corresponding to the 
cluster center cj, for j = 1, 2, …,K  iff 

piji c - xc - x ≤
 
p = 1, 2, …,K and  j 

≠ p. 
Step 3: Compute new cluster centers c1*, 

c2*,…,cK* as follows  

             ci*  =   ∑
∈ ijx

j
i C

x
n
1    for  i = 1, 2,…,K. 

             where ni is the number of data points 

belonging to the cluster Ci. 

Step 4:  If ci* =  ci, i = 1, 2,…,K, then  
terminate. Otherwise continue from step 2. 
 
2.2  Voronoi Diagram 
 
Given a set of points, Voronoi diagram [11] is 
a partition of space into cells, each of which 
consists of the points closer to one particular 
object than to any others. It is formally defined 
as follows.  
Let S = {p1, p2,…,pn} be a set of  n points in a 
d-dimensional Euclidean space and d(a, b) 
denotes distance between the points a and b in 
this space. Then the Voronoi diagram of S (see 
Fig. 1) is defined as the subdivision of the 
space into n cells, one for each point in S. A 
point u lies in the cell corresponding to the 
point pi iff d(u, pi) < d(u, pj) for each pj ϵ S and  
j ≠ i. We denote the Voronoi diagram of S by 
Vor(S) and the cell corresponding to the point 
pi by V(pi). We call the vertices of a Voronoi 
diagram as Voronoi vertices. There are 
maximum 2n-5 Voronoi vertices in a Voronoi 
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diagram of n points.  It is obvious from the 
definition that for each point pi ϵ S, V(pi) 
contains all the points that are closer to  pi than 
to other points of S. For a Voronoi vertex v, we 
define the largest empty circle of v (see Fig. 2) 
with respect to S, as the largest circle with v as 
its centre that contains no point of S in its 
interior. We denote this circle by CirS(v). The 
Voronoi vertices have the property that a point 
q is a vertex of Vor(S) iff CirS(q) contains 
three or more points of S on its boundary. A 
point p is said to be covered by a vertex q if 
and only if p lies on the boundary of CirS(q). 
 

 
Figure 1. Voronoi diagram of given points.   

 

 
Figure 2.  Voronoi diagram with Voronoi 

circles (all circles are  not shown) 
                    
In our proposed algorithm we use the Vornoi 
vertices to represent all the given points and then 
these vertices are further merged to form ‘k’ 
number of points where each point represents a 
cluster center. The merging of the closer vertices is 
done by reconstructing the Voronoi diagram with 
these vertices. we input a limit on the radius of the 
Voronoi circle to terminate the process and the 
resultant points are the required initial cluster 
centers for K-means. 
 
 

2.3   Dynamic Validity Index 
 
Validity index is used to measure the quality of the 
clusters formed, especially in case of multi-
dimensional data. Many validity indices have been 
proposed so far. In our algorithm, we use dynamic 
validity index (DVI) [15] defined as follows. Let N 
be the number of data point, K be the pre-defined 
upper bound number of clusters, and zi be the 
center of the cluster Ci. The dynamic validity index 
is given by 
 
 

)}(*)({min
,,,,,2,1

kInterRatiokIntraRatioDVI
Kk

γ+=
=  

where  
 

MaxInter
kInterkInterRatio

MaxIntra
kIntrakIntraRatio )()(,)()( ==

 
))((max,1)(

,...,2,11

2 iIntraMaxIntrazx
N

kIntra
ki

k

i Cx
i

i
== −

=−= ∑ ∑

 

∑
=

=
≠ 


















∑ −




 −






 −

=
k

i
k

j
jijiji

jiji

zzzzMin

zzMax
kInter

1

1

22

2
, 1)(

  
 and      ))((

.,...,2,1
iInterMaxMaxInter

ki=
=  

 
Here, Intra Ratio stands for the overall 
compactness of clusters scaled from Intra term, 
where as Inter Ratio represents overall separation 
of clusters scaled from Inter term. The Intra term is 
the average distance of all the points within a 
cluster from cluster center. Then we have Inter term 
which is composed of two parts, both of them based 
on cluster centers. The value of Inter increases with 
the increment in k. 
 
3.   Related Work 
 
3.1   K-means clustering algorithm 
 
K-means algorithm developed by MacQueen [16] is 
one of the most popular nonhierarchical and 
squared error clustering technique that belongs to 
partitioning methods of clustering. It is a very 
robust technique and its convergence has always 
been proved. As we have discussed in Section 1 
that it sometimes suffers from the global optima 
due to arbitrary selection of initial cluster centers. It 
also suffers from the estimation of correct number 
of clusters in advance. Many researches proposed 
various methods to overcome these problems, a 
good review of which can be seen from [9]. A 
recursive method for the initialization of cluster 
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centre is proposed by Duda and Hart [17]. The 
algorithm proposed by Fisher [18] generates good 
seeds by constructing initial hierarchical clustering 
groups. Both Higgs et al., [19] and Snarey et al. 
[20] developed a method using MaxMin algorithm 
to choose a subset of the original database as initial 
cluster centers. Bradley et al., [21] formed the 
initial clusters based on the bilinear program, 
provided that the sum of the distances of each point 
to its nearest center is minimized. Khan and Ahmed 
[22] proposed an algorithm for resolving the 
problem of random selection. Considering all these 
issues, still there is no universal clustering 
technique that can initialize the cluster centers for 
K-means, due to the dissimilar characteristics of 
various problem domains. MacQueen, [16] 
introduced an online learning strategy that 
determines a set of cluster seeds based on the 
calculation of mean vector.  But this method is 
costly in case of large data sets because of the 
repetitive calculation of mean vector every time a 
new point added. Tou and Gonzales [23] 
recommended another method based on the 
distance between the successive seeds and a 
threshold value. But this method entirely depends 
on the order of the points in the database and a user 
defined threshold value.  Linde et al., [24] proposed 
a method based on Binary Splitting (BS) which 
splits the cluster centre using a small random 
vector. This method is computationally expensive 
as K-means is to be implemented after each split. 
Also the cluster quality mainly depends on the 
selection of random vector which determines the 
direction of the split. Kaufman and Rousseeuw [25] 
developed a method which is based on the 
reduction in the Distortion. Here the seeds that 
increase the reduction in the distortion are chosen 
for the next step. Babu  and  Murty [26] proposed a 
technique for the near optimal seed selection based 
on genetic programming. Although this method can 
find the optimal solution, yet it faces the problem of 
repetitive run of K-means until given number of 
clusters formed. This is also not robust in case of 
very large data bases. Huang and Harris [27] 
projected a method called Direct  Search Binary  
Splitting  (DSBS) which is same as the BS 
algorithm with a small change. Here the splitting is 
done efficiently through the Principle Component 
Analysis (PCA) which is based on the vector of 
Linde et al., [24] for the splitting. Thiesson et al., 
[28] introduced a method that depends on the mean 
value of the whole given data set which creates a 
set of K-points around the mean of the data. 
Bradley and Fayyad [29] proposed an initialization 
approach for K-means in which the given data 
points are randomly divided into few data sets and 
then K-means is applied on each set with the initial 

cluster centers chosen from Forgy’s  method. They 
again apply K-means algorithm on the centers of 
the clusters formed and repeat the step. Finally the 
centre points left are for the initialization of K-
means for the entire dataset. 
 
3.2 Voronoi-based clustering algorithms 
 
The Voronoi diagram [11] is an efficient technique 
from computational geometry that plays an eminent 
role for data clustering. It has been especially 
designed for nearest neighbor problems and applied 
extensively on cluster analysis. Few clustering 
algorithms [12], [13] have been developed based on 
Voronoi diagram. A brief survey of them is as 
follows. Haowen Yan et al.[30] proposed an 
algorithm to generate point clusters based on 
Voronoi diagram by considering four types of 
information. They are statistical, thematic, 
topological, and metric information’s.  Jana et al. 
[31] proposed another clustering algorithm using 
Voronoi diagram and the cluster density proposed 
by Daxin Jiang [32].  In this method the clusters are 
formed by exploiting the Voronoi diagram as 
follows. 1) The Voronoi vertices are used as the 
initial centroids (cluster centres) and the points on 
its largest empty circles are used to form the initial 
clusters. 2) Only the neighbouring clusters that 
share a Voronoi edge are merged to produce the 
best clusters for the next iteration. Therefore, there 
is no need of searching the entire set and the overall 
run time of the proposed algorithm is reduced.  
Bishnu et al.[12] developed a method with the help 
of K-means and Voronoi diagram. In the first phase 
K-means algorithm is used to create a set of small 
clusters. Then in the next phase the actual clusters 
are formed with the help of Voronoi diagram. A 
novel clustering technique for uncertain data has 
been proposed by Ben kao et al.[33]. They 
developed few pruning techniques based on 
Voronoi diagram to reduce the number of expected 
distance calculation and then formed the clusters. 
Motivated with all these clustering methods, we 
propose a method based on K-means and Voronoi 
diagram. 
 
4.   Proposed Algorıthm 
 
The main scheme behind the proposed technique is 
summarized as follows. Given the set of n data 
points, say S, the Voronoi diagram Vor(S) is first 
constructed. First of all, we find the minimum 
number of Voronoi vertices to cover all the given 
points. i.e., we represent all the given points by its 
closer Voronoi vertex. To find such useful Voronoi 
vertices, the Voronoi circles surrounding all the 
vertices are traced out. Then these Voronoi circles 
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are sorted in ascending order with respect to the 
radius of their largest empty circle. We now 
consider the Voronoi circle with least radius and 
represent the points on its circumference with its 
vertex. Since we started with least radius Voronoi 
circle, this vertex is closer compared to all the other 
vertices. Then the next least radius circle is taken 
and the points on its boundary are taken to be 
represented by its vertex. If any point is already 
covered by a vertex, we ignore that point and 
proceed further. Because the Voronoi circles are 
sorted with respect to their radius in ascending 
order, hence, the points are covered by its closer 
vertices. We repeat the same step unless all the 
given ‘n’ points are covered by its closer vertices. 
Now the Voronoi diagram is reconstructed with the 
help of these Voronoi vertices. and repeat the same 
process. A limit on the radius of the Voronoi circle 
is given to terminate the procedure. If there is no 
Voronoi circle whose radius is less than that limit, 
then there is no further formation of new vertices to 
cover the points. We stop the process and store the 
resultant vertices (assume ‘k’) in a set. We then run 
K-means algorithm on the given data set with these 
‘k’ points taken as the initial cluster centers. We 
now formalize the pseudo code as follows. 
 
Algorithm VK-means: 
Input: X[n][d], µ 
Output: C1, C2,…,Ck 

 
Functions and Notations used:  
S: Given set of n points and d dimension 
Vor(S): It constructs the Voronoi diagram for the 
data set S and stores the Voronoi vertices 
vi : Voronoi vertex i =1, 2,…, 2n-5 (max.) 
CirS(v): It finds the largest empty circle of  vertex v 
R(CirS(v)): It finds the radius of the Voronoi circle 
CirS(v).  
K-means(S, S´): It runs K-means algorithm for the 
set S of ‘n’ points and with the set S´ of ‘k’ initial 
cluster centers.  
r: a temporary variable. 
µ: Threshold value on the radius of the Voronoi 
circle to separate the cluster centers. 
 
Step 1: Given a set S of ‘n’ points, construct the 

Voronoi diagram Vor(S).   

Step 2: Sort all the Voronoi vertices vi in ascending 

order with respect to the radius of their largest 

empty Voronoi circle’s CirS(vi), i = 1,2, …, 2n-5 

(max.) and store them in an array V[].                            

Step 3: Repeat steps 4 through 7 for i = 1, 2,…, 2n -

5  

Step 4: Assign the radius of CirS(V[i]) to ‘r’, i.e,  r 

= R(CirS(V[i]))                   

Step 5: If r ≤ µ then locate all the points lying on 

the boundary of CirS(V[i]). If any point is already 

covered by a circle then ignore that point.  

Else go to step 7. 

Step 6: Store the vertex V[i] in a set S´.  i=i+1 

Step 7: If r > µ then store the uncovered points (if 

any) in the set S´ and exit the loop.                

Step 8: If  S = S´ then go to step 9 

             Else construct the Voronoi diagram Vor(S') 

for   the set S' and go to step 2.  

Step 9: Call K-means(S, S´) to obtain the set of 

clusters, say {C1, C2, …, Ck }. 

Step 10: Stop 

 
Complexity Analysis 
 
Step 1 requires O(n log n) time for the construction 
of the Voronoi diagram of the n data points. Step 2 
also requires O(n log n) time for sorting. Steps 4 
through 6 are repeated at most 2n – 5 time in which 
each of the steps 4, 5, and 6 requires constant time 
and thus they require  O(n) time in total. Step 7 
requires linear time. Therefore steps 2 through 7 
require O(n log n) time in total. However, steps 2 
through 8 are repeated a finite number of times, say 
k times in which construction of the Voronoi 
diagram is the dominating computation. Step 9 
requires O (nτ) to run K-means clustering. 
Therefore the overall time complexity of the 
proposed algorithm is O(kn log n)+ O(nτ). 
 
5.   Experimental Results 

 
This section establishes the practical efficiency of 
the proposed algorithm. We tested its performance 
on a number of data sets. These included both 
synthetically generated data and data used in real 
applications taken form UCI machine learning 
repository. The useful experimental setup to 
implement the proposed scheme is as follows. We 
have used Intel Core 2 Duo Processor machine with 
T9400 chipset, 2.53 GHz CPU and 2 GB RAM 
running on the platform Microsoft Windows Vista. 

13 
 



Damodar REDDY et al. / IJCESEN 2-1(2016)9-18 

 
We now briefly describe the data sets taken for the 
experiments. 
 
Synthetic Data 
 
Triple-form data with outliers:  There is a 
circular ring, a rectangle and a triangle. We insert 
seven outlier points. The size of this data set is 
1007. 
4–band data: There are four clusters in this data 
type where all the clusters are in the form of 
parallel bands. The size taken here is 600. 
 
4-Ldata with outliers: There are four clusters in 
this data set and they are all of L-shaped. We insert 
here sixteen outlier points.  Each cluster represents 
two perpendicular lines and size of this data set is 
1216.   
 
2-non-convex data: The two clusters of this data 
set are of non-convex shape with 250 points of size 
each.  
 
The proposed method is applied on all these data 
sets and the results are compared with classical K-
means [16], improved K-means [34] and Fuzzy C-
means [35]. It can be observed that for the Triple-
form data set, the K-means, and Fuzzy C-means are 
failed to obtain the desired clustering results 
whereas the improved K-means and our proposed 
algorithm are able to do so as depicted in Figs. 3(a)-
3(d) in which all the points within a cluster are 
shown by same color. For the rest of the synthetic 
data sets, the K-means, Fuzzy C-means and the 
improved K-means all are failed to produce the 
desired clusters and also unable to detect the 
outliers. On the other hand the proposed algorithm 
works well on these data sets as shown in Figs. 4-6. 
The outliers are shown by small hollow circles in 
Fig. 3 and Fig. 5. It is important to note that the K-
means, Fuzzy C-means and the improved K-means 
are unable to detect. They treat the outliers as the 
points of the other clusters as depicted by the same 
colors as the cluster points. For examples, in Fig. 
3(a) all the outliers are the part of the ring cluster. 
Similarly, in Fig. 3(c), two outliers belong to the 
ring cluster and the remaining outliers belong to the 
triangle clusters. Whereas, our proposed algorithm 
successfully detects the outliers which are treated 
separately from the cluster points as depicted by the 
color different from any cluster point.  
 

      
(a) 

 
  (b)                                                                                 

   
     (c) 

 
(d) 

Figure 3. Clustering results on Triple-form data of 1007 
points: (a) result of K-means clustering; (b) result of 
Fuzzy  C-means clustering; (c) result of Improved K-
means clustering; (d) result of proposed algorithm. 
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(a)                                                                                     

 

 
(b) 

    
(c)                                                                                                       

 

 
(d) 

Figure 4. Clustering results on 4-band data of 600 
points: (a) result of K-means clustering; (b) result of 
Fuzzy C-means clustering; (c) result of Improved K-
means clustering; (d) result of proposed algorithm. 
 
 
 

 

  
(a)                                                                    

 
 (b)   

 
     (c)                                                                                 

 
 (d) 

Figure 5. Clustering results on 4-L data of 1216 points: 
(a) result of K-means clustering; (b) result of Fuzzy C-
means clustering; (c) result of Improved K-means 
clustering; (d) result of proposed algorithm. 
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(a)                                                                                   

 
 (b) 

 
   (c)                                                                                 

 
 (d) 

Figure 6. Clustering results on 2-non-convex data of 
500 points: (a) result of K-means clustering; (b) result of 
Fuzzy  C-means clustering; (c) result of Improved K-
means clustering; (d) result of proposed algorithm. 
 
 
 

Real World Data 
 
Here we consider few data sets from the UCI 
machine learning repository [36]. These data sets 
are multi-dimensional; hence we show the resultant 
clusters with the help of validity index.  
Iris data: This is a famous data set used often in 
many clustering algorithms. It has three classes 
namely Setosa, Versicolor and Virginica.  The set 
consists of 150 points with 50 instances for each 
class. Each point is described by a set of four 
attributes viz sepal length,  sepal  width,  petal  
length  and  petal width. Our objective is to separate 
the points of different classes.  
Spect heart data: This data set describes about 
cardiac Single Proton Emission Computed 
Tomography (SPECT) images. Each patient 
classified into two categories: normal and 
abnormal. There are 187 instances (SPECT image 
sets) taken with 22 attributes (binary feature 
patterns) 
Wine data: This data is the result of a chemical 
analysis of wines to determine the origin of wines. 
We take the data set of 178 instances with 13 
attributes and three classes. The analysis 
determined the quantities of 13 constituents found 
in each of the three types of wines. The three 
classes have 59, 71 and 48 instances respectively. 
All these classes are separable. 
(Statlog) heart data: This dataset is a heart disease 
database similar to the Spect-Heart data set, but 
with small difference. Here the two classes 
represent the absence and presence of cost matrix. 
The data set taken here is of 270 points with 13 
attributes each. 
Pima-India-Diabetics (PID) data: This dataset 
donated by Vincent Sigillito, and is a collection of 
medical diagnostic reports of 768 examples from a 
population living near Phoenix, Arizona, USA. 
They used 576 training instances and obtained a 
classification of 76% on the remaining 192 
instances. Here, the number of classes is two with 
576 and 192 instances respectively. The number of 
attributes is 8. 
Soybean (small) dataset: This is a Michalski's 
famous soybean disease database of 47 instances 
each of which has 35 attributes and belongs to four 
classes.  
Breast Tissue: This is a dataset with electrical 
impedance measurements of freshly excised tissue 
samples from the breast. The number of instances 
taken here are 106 with 9 attributes per each. Here 
the numbers of classes is 2. 
 
All these data sets are experimented by the 
proposed technique and the experimental results are 
compared with classical K-means and improved K-
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means by means of dynamic validity index [15]. It 
is obvious to observe that the proposed scheme 
performs well in all the cases compared to the 
existing techniques K-means, fuzzy-c means and 
improved K-means. The comparison results are 
shown in table 1 (Appendix-1). 
 
6.    Conclusion 
 

In this paper we proposed a novel K-means 
algorithm that solves the major problems faced by 
classical K-means. We solve the problem of 
random selection initial cluster centers with the 
help of Voronoi diagram. The initial cluster centers 
have been traced out iteratively by locating the 
nearest Voronoi circles of each point. Here we need 
not input the output number of clusters in advance 
as the ‘k’ initial cluster centers  are automatically 
located with the help of threshold limit given on the 
radius of Voronoi circle. The experiments carried 
out many synthetic and multidimensional biological 
data sets show the efficient formation of clusters 
over the existing techniques. 
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Appendix 1: 

Table 1: Comparison chart of the proposed scheme with K-means, Fuzzy C-means 
and improved K-means using Intra-Inter ratio validity index. 

 

 

 

 
 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Name No of 
Attributes 

Data 
Size 

Cluster 
No. 

Val_index           
(K-means) 

Val_index    
(Fuzzy C-means) 

Val_index 
(Improved         
K-means) 

Val_index 
(Proposed 
algorithm) 

Iris 4 150 3 0.2930 0.3223 0.2888 0.0836 

S. Heart 22 187 2 2.9122 5.8464 2.3846 0.5101 

Wine 13 178 3 0.1895 0.1766 0.1895 0.1153 

S. log 
(heart) 

13 270 2 0.2632 0.2991 0.2611 0.0323 

P.-India-
Dia. 

8 768 2 0.1549 0.1828 0.1549 0.0344 

Soyabin 35 47 4 0.6324 1.9656 0.7010 0.2843 

Breast 
Tissue 

9 106 2 0.0522 0.1111 0.0057 0.0052 
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