

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 11-No.2 (2025) pp. 3428-3451
http://www.ijcesen.com

ISSN: 2149-9144

 Research Article

Centralized Logging and Observability in AWS- Implementing ELK Stack for

Enterprise Applications

Naga Murali Krishna Koneru*

Hexaware Technologies Inc, USA
* Corresponding Author Email: nagamuralikoneru@gmail.com - ORCID: 0009-0009-0923-6363

Article Info:

DOI: 10.22399/ijcesen.2289

Received : 08 February 2025

Accepted : 07 May 2025

Keywords :

Centralized Logging,

ELK Stack

AWS Services

Abstract:

Modern enterprise environment requires complex, distributed infrastructures, and

centralized logging is essential for managing such systems. Consolidating log data from

applications, servers, and network devices to a single central location allows

organizations to improve system performance, security, and scalability and realize more

efficient logging and archival of system events. As an alternative, it presents a quicker

way to try and resolve or at least detect system issues by utilizing a single, high-level

view of the system. Centralized logging also supports regulatory compliance for

creating an audit trail of access and potential security breaches. In a cloud-native

environment, there are distinctive challenges of data fragmentation, varied log formats,

and log correlation across distributed goods. Those are amplified in a highly dynamic

environment, such as microservices, containers, and multi-cloud environments. These

problems can add up to delayed incident detection and increase downtime. They can

have an impact on the customer experience as well as the reliability of the system itself

without centralized logging. Centralized logging and observability can be implemented

easily using the ELK Stack (Elasticsearch, Logstash, Kibana), especially in AWS. The

ELK Stack integrates with AWS services such as Lambda, CloudWatch, ELK Stack,

and Elasticsearch Service and provides real-time log collection, processing, and

visualization at scale. This study explores implementing ELK Stack in enterprise

applications to enhance the system observability and performance and adherence to the

best practices, security, and trends in logging and observability research.

1. Introduction

Centralized Logging has become a founding piece

of any modern IT system, particularly for

organizations that strive to manage complex,

distributed infrastructures. A business log

consolidates the loop on various components,

including applications, servers, and network

devices, into a single overriding location to ensure

greater system performance and health visibility.

With this approach, teams can cut through the

monitoring and troubleshooting process with much

less effort and time, as the log data from various

systems can be accessed and analyzed from a single

point. Centralized Logging has more than one

operational benefit since it helps improve security

and regulatory compliance. This enables

organizations to keep an audit trail of all access,

suspicious activities, and security breaches.

Additionally, in the case of large enterprise

deployments, centralized Logging also facilitates

scalability. It allows organizations to view

performance metrics at a distributed, dynamic cloud

infrastructure at an aggregate level to monitor the

system's performances as operations grow.

Enterprise applications have gone beyond being

completely distributed in microservices, containers,

and multiple cloud environments — and log

management has grown correspondingly complex.

In such an environment, managing logs faces

different challenges: consistent log formats, data

fragmentation, and correlation of logs across

components are just some of them. Without a

centralized logging system, these problems

compound, making it much harder for IT teams to

see the whole system. The lack of visibility

hampers real-time monitoring, and incidents are

detected later, which in turn causes prolonged

downtimes and a negative impact on customer

experience. Moreover, even when the services do

not scale dynamically and can tolerate failures,

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com

Naga Murali Krishna Koneru / IJCESEN 11-2(2025)3428-3451

3429

ensuring continuous log collection in a distributed

system is even harder. When Logging is

decentralized, the issue of troubleshooting takes

ages to solve because logs reside in different

systems and locations, making it difficult to

identify the origin of the problem. Therefore, poor

performance bottlenecks, including security threats

and system failures, may remain unnoticed or not

addressed for an extended period.

Proactive monitoring and debugging of large

complex systems are observed to be based on a key

principle. It is the ability to measure and understand

the systems internal state, given metrics, logs, and

traces. When properly implemented, observability

gives people an end-to-end view of how an

application behaves and talks to its environment.

Teams can use these logs, performance metrics, and

traces to dissect the problems and avoid turning that

issue combatively into user-facing problems before

they lose much of their time. With observability,

you can know what is likely to be the reason for the

performance anomaly, resource constraint, or error.

It focuses on logs, which provide an important

source of information, such as system events or

application performance-related details, that teams

can correlate and infer patterns. Application

performance monitoring (APM) tools are then

added to the application, which brings a richer

observability experience by solving problems

outside of error detection. The use of the proactive

monitoring approach, on the other hand, leads to

higher operational efficiency, better resource

allocation, and better user experience.

AWS provides a robust ecosystem of tools for

centralized logging and observability in its cloud

heterogeneous environment. Integration with the

ELK stack is the best for logging with AWS

services such as CloudWatch, Lambda, and ELK

service, making the ELK stack good for collecting,

processing, and analyzing log data at scale. It is a

centralized service for monitoring and Logging that

can collect logs for various AWS resources, such as

EC2 Instances, Lambda functions, and

containerized applications. With AWS Lambda in

serverless architecture, it is possible to process

these logs in real-time, routing and transforming

logs before they are stored in Elasticsearch for

analysis. Amazon Elasticsearch Service is a fully

managed service that makes Elasticsearch cluster

deployment and management easy so you can more

easily index, search, and visualize log data.

Integrating with ELK Stack is a scalable, flexible,

and cost-effective log management that enables

businesses to increase amounts with high

performance and security.

With the ELK Stack integration possible in AWS,

this study focuses on implementing the same in

enterprise applications. The study focuses on

challenging the organizations by managing the log

across multiple distributed systems, how we can

reduce AWS service limitations to do so, and the

best practices to maximize the efficiency of ELK

Stack to scale and perform. It will also look at

practical use cases of centralized Logging in the

real world and give step-by-step instructions on

setting it up in a real-world system. It will contain

basics like using AWS services in ELK Stack,

securing logs, keeping the running code stable, and

changing the environment dynamically on a cloud.

The study will also dive deep into the future tracks

for centralized LoggingLogging and observability

and the integration of AI-driven analytics for

automatic anomaly detection and predictive

monitoring. The structure of the study includes an

overview of the ELK Stack, the implementation of

the ELK stack in AWS, the guidelines for

implementation, the case studies, and future

development discussions in the field.

2. Overview of the ELK Stack

The ELK stacks consist of Elastic Search, Logstash,

and Kibana, forming the norm for centralizing

LoggingLogging and observability in enterprise

applications. ELK is an open-source collection,

analysis, and visualization of various log data sets.

It is about solving the problem of mountains of logs

and turning them into actionable insights with high

availability and scalability.

2.1 Definition of the ELK Stack (Elasticsearch,

Logstash, Kibana)

ELK Stack is a tool that handles and analyzes logs

in real-time. However, in this case, you have the

three core elements (Elasticsearch, Logstash,

Kibana) working together to be a great solution for

logging from a single place. ELK Stack's heart is

Elasticsearch. It is a log data index that is stored

and distributed and is a RESTful search engine.

Elasticsearch's ability to handle both structured and

unstructured data and its scalability makes it very

suitable for managing the second mutation, the vast

volumes of log data produced by modern

applications. The engine enables data retrieval on

the fly (real-time querying and analytics) for fast

and efficient data retrieval. Elasticsearch is a

horizontally scalable system that manages growing

log volumes while retaining performance, vital for

large-scale enterprise deployments [1].

The ELK Stack data pipeline component, log stash,

collects, parses, and transforms its log data from a

collection of sources. Logstash can collect logs

from many sources, and out of the box, log stash

Naga Murali Krishna Koneru / IJCESEN 11-2(2025)3428-3451

3430

supports multiple input plugins, starting from

reading logs from file systems and Syslog servers

and going all the way to AWS Cloudwatch. Once

you have the logs, Logstash will process them with

filters but with patterns such as grok to parse and

structure the data. It forwards the enriched logs to

Elasticsearch for index and storage. Logstash's

strength is the ability to deal with all kinds of log

formats and perform necessary transformations.

ELK Stack includes Kibana as its visualization

layer. Users can then view and examine the log data

stored in Elasticsearch through a web interface [2].

The mission of Kibana is to create powerful tools to

search and explore data, create visualizations, and

create and share dashboards in a friendly and

interactive manner. As a significant element in

transforming raw data logs from raw to actionable

insights for teams, it helps monitor system

performance, identify problems, and react to

anomalies in real-time.

2.2 Core Components of the ELK Stack and

Their Roles

The centralized logging process involves each ELK

Stack component, which performs distinct

functionalities to collect, store, and analyze logs

analyzer effective logging together. The ELK Stack

has an Elasticsearch as the core component, being a

distributed search engine. Its purpose is to store and

index log data and make it possible to run complex

queries fast on large datasets. Its distributed nature

allows such a scale, and as such, those large

enterprises that generate a huge amount of log data

can trust Elasticsearch to perform fast and reliable

searches. Full-text search, aggregation, and

complex query are essential to Elasticsearch's

ability to search to extract valuable insights from

raw log data.

The pipeline to be used is the log stash pipeline,

which is used as the ingestion and transformation

pipeline. It takes data from various logging sources,

filters the data it receives to structure and add to the

data, and passes the data onto Elasticsearch.

Logstash is simple and flexible, with many

available input and output plugins. As a result, it

can process logs from various systems,

applications, and services. Logstash can further

analyze this big structured dataset, as it ensures the

log data sent to Elasticsearch is in a format that is

easily queryable and can be analyzed. The

Elasticsearch itself is nothing more than a normal

text file. Kibana is responsible for the visualization

and analysis of the data that goes to Elasticsearch.

This makes it an easy-to-use interface for users to

create dashboards, execute queries, and create

visual reports. Using the visualization tools

provided in Kibana, organizations can turn complex

log data into easy and understandable data. Kibana

has become a valuable monitoring tool for the

system's health, bottlenecks, and anomalies [3].

2.3 Why ELK stack is the Preferred Choice for

Centralized Logging

For centralized logging, the purpose of logging all

things, the most widely used and popular stack is

the ELK, boasting robust features, ease of

integration, and scalability. Among the many

reasons why ELK is currently so popular is because

of its scalable search engine. However, the volume

of the log generated increases exponentially along

with the organization's size. Elasticsearch can be

horizontally scaled, and additional nodes will be

added to the system. ELK Stack can handle and

maintain query performance for large and growing

datasets. Since such enterprise applications require

high-performance logging infrastructure, it is

important.

The extended plugin ecosystem of ELK Stack is

another reason for its success, as it has very rich

and strong community support. The ELK stack is

an open-source project, which means that it has

many contributions from a big community of

developers who are constantly developing the

platform and enhancing its features of the platform.

It becomes better simultaneously, offering a

plenitude of plugins that users can integrate to

extend the stack's functionality to what they

require. It includes even the integration of ELK

Stack with third-party tools like AWS CloudWatch,

Docker, Kubernetes, or machine learning plugins

for anomaly detection. This flexibility of the ELK

Stack caters to the needs of many use cases.

Since the ELK stack is highly available and fault-

tolerant when deployed on AWS, it is a good

choice for mission-critical applications. However,

the ELK stack will still work even if a failure

occurs, as we use AWS to get us a robust, scalable

infrastructure to host our Elasticsearch clusters on

many AZs. Auto-scaling and load balancing within

AWS allow organizations to use their logging

infrastructure to handle traffic spikes and for that

environment to remain performant.

2.4 Key Benefits of Using the ELK Stack for

Enterprise Applications

Among the many advantages, the ELK Stack is a

desirable platform for centralized logging and

observability for enterprise applications [4]. The

ELK stack is one of the greatest benefits because it

allows you to monitor and find the root causes of

Naga Murali Krishna Koneru / IJCESEN 11-2(2025)3428-3451

3431

the real-time logs. Logging from different places

can be centralized to Elasticsearch, and issues can

be easily found and fixed. Users have powerful

query and visualization tools on Kibana that they

can use to query logs for real-time insights about

the system's performance and health. Such

companies can obtain information on how and why

issues occur to reduce downtime and protect their

end users as much as possible.

The ELK Stack offers a scalable architecture

capable of processing many logs. On the ELK side,

since less logging is good and more is better, as

organizations grow, the number of log entries

grows, and ELK can scale infinitely, so distributed

is the way to go. Enterprises can spread their

logging infrastructure throughout the environment

by adding new Elasticsearch nodes and increasing

Logstash and Kibana instances. This scalability is

necessary if the organizations depend on

continuous monitoring and require processing huge

amounts of log data with no performance

degradation.

Elasticsearch's search and query flexibility means

users can analyze logs from different data sources.

Whether these logs come from microservices, the

cloud infrastructure, or on-premise systems, you

can mix and match these sources with complex

queries in Elasticsearch. Previous studies have

shown that such capability to correlate logs from

different systems enhances the organization's view

and enables faster detection of issues and more

informed decision-making [5]. Centralized logging

and observability are the things the ELK Stack

provides; your solution is powerful, scalable, and

flexible. Every corner of its functionality, from

real-time log collection, storage, analysis, and

visualization, depends on the three core

components of Elasticsearch, Logstash, and

Kibana. However, the ELK stack is highly scalable

and robust, with strong community support and

high availability, making it the de facto choice for

enterprise applications, which gives organizations

the advantage of monitoring and maintaining their

systems effectively.

3. AWS Services Supporting ELK Stack

Implementation

3.1 Key AWS Services for ELK Stack (EC2, S3,

Lambda, CloudWatch)

To implement the ELK stack on AWS, we must

utilize a group of AWS services to help us have

flawless operation, scalability, and flexibility. The

deployment and operation of the ELK stack in the

enterprise requires EC2 instances, Amazon S3,

AWS Lambda, and Amazon CloudWatch to carry

out these tasks. The tool that powers many

companies is the ELK stack. In addition, it is also a

set of tools that rely on EC2 instances as a base to

host Elasticsearch and Logstash. This is still

relatively CPU and resource-intensive, so when you

have thousands of logs written per second, the

logging process will begin to starve other services

regarding the resources available. It is a good fit for

running such services in a production environment.

Once the EC2 users can choose an instance type

according to their workload needs, they are

compute-optimized and memory-optimized based

on the log ingestion rates and the query complexity

needed for the performance tuning. This is where

Flexiblat comes in because it will enable enterprises

to scale the ELK stack with changing applications

while maintaining high operational efficiency.

Amazon S3 is a good way to save your log data and

support cost-effective storage and scalability to

massive volumes of log data for long periods. Large

logs can be stored on S3 for the enterprise to relieve

long-term data retention policy overheads on your

on-premise storage. Since they are infrequently

accessed, logs that can be re-audited quickly for

audits for compliance or forensic investigations can

be archived into S3’s cheaper storage classes, such

as S3 Glacier. Integrating S3 with the ELK stack

allows for the batch processing of historical logs

that are enterprise-friendly and cost-effective for

storing and analyzing large data sets.

AWS Lambda is a serverless computing service

critical to real-time processing logs. Integrating

Lambda with the ELK stack allows one to run log

transformations, filtering, and routing without

provisioning any dedicated infrastructure.

However, lambda functions can also respond to

events other AWS services generate (such as

Cloudwatch or S3), where logs are generated and

invoked to clean and parse them before we send

them to Logstash to be processed further. Lambda

adds to the ELK stack by performing log

transforms in a highly efficient and scalable

manner, reducing the Labor intensity.

The importance of Amazon CloudWatch becomes

obvious when it comes to collecting and monitoring

log data from various AWS resources. EC2

instances and other convenient AWS services, such

as Lambda functions, can stream logs into the ELK

stack with CloudWatch Logs. This allows us to

centralize the analysis when CloudWatch and ELK

stack integration of organizations provide real-time

visibility of their application and infrastructure's

performance. CloudWatch allows you to create

custom log filters, generate metrics logs, and set up

alarms for certain log patterns. This is very

important as no log generated from any AWS

resource would be missed, and they can be directly

Naga Murali Krishna Koneru / IJCESEN 11-2(2025)3428-3451

3432

ingested into the ELK stack and streamlined for

processing [6].

3.2 Integrating AWS Services with the ELK

Stack for Seamless Data Flow

Several integration techniques are required to

ensure data flows well between AWS service

providers and the ELK stack. AWS CloudWatch,

Lambda, and S3 make for a combined log

collection, processing, and storage platform without

fear of missing any action through a process that

does not require extra effort or resources. You

could also configure CloudWatch to stream the logs

into Logstash to be processed and transformed

before indexing them in Elasticsearch. Usually,

integration involves the setup of CloudWatch Log

Groups and adding subscriptions to redirect log

shipments to Logstash targets. Logstash will parse,

filter, and enrich the logs with the help of Grok

filters and custom transforms. Such a setup ensures

that the real-time log data from multiple AWS

services is captured and processed correctly.

S3 is an excellent choice for storing historical logs

if we are talking about batch processing. Stored

logs on S3 can be processed periodically with

Logstash or Lambda functions [7]. These functions

get log data from S3, parses the proper bits out, and

push the log into Elasticsearch for analysis.

Enterprise can perform the history log analysis on a

huge amount of data without putting pressure on

the real-time system because S3 can take the batch

processing ability. This integration also helps with

a lot of lifetime logging while allowing data

processing workflows to stay agile and scalable for

a long time [8]. Using Lambda functions, you can

have log processing tasks using custom log filters,

custom log parses, and custom log enrichments

based on specific log events. This event-driven

model means logs are processed as and when

generated without latency. Lambda's serverless

nature means you do not have to maintain the

infrastructure associated with processing log data,

and you can scale the amount of processing log data

that needs to be carried out based on demand. For

instance, Lambda can instantly remove the logs that

do not apply in the ELK stack or conditionally add

metadata on the logs that need to be delivered to the

ELK stack.

3.3 Leveraging AWS ElasticSearch Service for

Scalability and Reliability

AWS Amazon ES is a service that allows the

deployment and management of an Elasticsearch

cluster without the complexity of installing and

maintaining such servers. Being completely

managed, Amazon ES does not require

infrastructure scaling or patching. Besides AWS

services, this managed service works very well and

removes the user's pain of getting elasticity without

maintaining the cluster manually. Amazon ES

enables users of an enterprise with few resources to

manage and handle Elasticsearch clusters on-

premises for logging and application development

concerns.

With Amazon ES, built-in auto-scaling is available,

which adjusts cluster size based on the volume of

data coming into the cluster. This guarantees that

Elasticsearch can process traffic spikes without any

manual intervention and further help from

Elasticsearch. Performance tuning options like

tuning indices and configuring cluster settings

allow the service to run at the highest possible read

speed. Amazon ES is a candidate log data

management tool for enterprise applications that

need to scale along with large stores of data

because it does autoscaling and is tuned for

performance. High Availability is the most

important factor in mission-critical applications.

Multi-AZ deployments are possible in Amazon ES,

where Elasticsearch data is replicated across

multiple availability zones (AZ). With this

configuration, data is now highly available despite

the failure of an AZ; hence, there is fault tolerance

and less downtime. Any deployment of Make

logging is particularly useful, especially for an

enterprise that needs logging infrastructure to

perform reliably through continuous uptime and

resilience [9].

3.4 Security and Compliance Considerations

when Using AWS with ELK

The data stored in log data is sensitive and subject

to various regulatory requirements. Thus, securing

the data and complying with industry standards is

important. AWS gives plenty of choices for data in

transit and at rest encryption. We can encrypt

Elasticsearch data using AWS Key Management

Service (KMS) for crypto protection so that your

sensitive information cannot be abused without

permission. At the same time, when data in transit

between AWS services gets encrypted, the log data

stays secure as it moves across the network.

Organizations that handle sensitive data should

have these security features to comply with data

protection regulations such as GDPR and HIPAA

[10].

IAM enables organizations to implement fine-

grained access controls over the log data. This can

help enterprises define roles and policies by which

only authorized users, and services can access

Naga Murali Krishna Koneru / IJCESEN 11-2(2025)3428-3451

3433

certain logs. This helps implement the principle of

the least privilege, thereby ensuring that the users

can access the data required for their roles only. It

helps deny unauthorized access and helps you

follow internal and external security policies.

Organizations can meet regulatory compliance

needs such as GDPR and HIPAA using AWS's

various tools. Enabling the logging environment

with the ability to configure the audit trails with

AWS Cloud trail, encrypting log data using KMS,

and ensuring the logs are in compliance regions

helps enterprises maintain logging with a secure

and compliant logging environment. AWS provides

a broad range of terms and conditions on

compliance and security in order to facilitate safety

for organizations.

4. Setting up ELK Stack in AWS

4.1 Planning the Architecture for ELK Stack in

AWS

Building a fault-tolerant and scaleable architecture

for deploying the ELK Stack (Elasticsearch,

Logstash, and Kibana) on AWS would require

some decisions, such as selecting the right AWS

resources and high availability and fault tolerance.

In order to accomplish this, organizations

commonly use AWS EC2 instances to run the

components of the ELK stack, AWS S3 for

persistable logs storage, and Amazon Elasticsearch

Service (Amazon ES) to administrate an Elastic

Search cluster. Elasticsearch can be scaled to

handle large numbers of logs, while Logstash

should be allowed to collect and transform log data

from different sources in real-time.

The ELK stack must be spread across multiple

regions and availability zones to have high

availability. As a result, if any part of the system

fails, the system does not cripple traffic that can be

sent elsewhere. AWS Auto Scaling also manages

journals with fluctuating workloads and enables us

to increase or decrease the number of resources

whenever there is demand. Setting up virtual

private clouds (VPCs) and security groups is also

critical. It is important to keep them separate from

the ELK Stack components and separate them

securely [11].

4.2 Step-by-Step Guide to Deploying

Elasticsearch on AWS EC2

Firstly, while you are deploying Elasticsearch on

AWS EC2, you need to select the AWS EC2

instance type for deploying Elasticsearch

accordingly as per the expectation of the load

carried out by Elasticsearch. Running an EC2

instance with enough resources, such as the M5 or

the C5 family, will be used for computing-intensive

tasks. After the EC2 instance is launched, the

second step involves installing

Elasticsearchinstalling with a high-performance

configuration. The lifesaver of Elasticsearch

performance is that JVM heap sizes must be

adjusted, as the bigger a heap, the bigger the

garbage collection. Elasticsearch replication and

sharding configuration are important after

installation to avoid losing data and ensure smooth

performance. Replication is used to create a

replica(s) of the data to have the data for whatever

issues might occur and divide the data into smaller

usable units by sharding. By default, Elasticsearch

will give five primary shards and one replica shard,

but this can be altered depending on how many logs

they need to process and how much redundancy

they need. Finishing the above configuration, the

Elasticsearch cluster can be set up for multi-AZ

(Availability Zone) deployment, which gives it

more resilience and is crucial for enterprise apps

that should be 24x7.

4.3 Configuring Logstash to Ingest Data from

Various Sources

The ELK stack includes a log stash, handy for

collecting, parsing, and transforming log data to

Elasticsearch. Since one of the EC2 instances'

operating systems is set to install Logstash, locate

and install log stash using apt or yum. After

installation, configurations for Logstash must be

customized to grab data from different sources,

such as AWS CloudWatch Logs, application logs,

system logs, or third-party APIs.

One of the most common use cases is Configuring

the input plugin to collect logs coming from AWS

CloudWatch. The system can stream log data from

AWS services in real time by utilizing the cloud

watch-logs input plugin in Logstash, and this

integration can be achieved. The logs are then

filtered, and grok patterns are used to parse and

transform the logs into a structured format that

Elasticsearch can easily index. Grok filter is highly

useful for parsing the unstructured logs and

transforming them to a structured format for

analysis. It is, however, necessary to process the log

data in large, which does not overload the system

[12].

4.4 Kibana Setup for Visualizing Logs and

Metrics

Therefore, Kibana is part of the ELK Stack as the

visualization layer, and it offers great tools for

monitoring, analyzing, and interpreting log data in

Naga Murali Krishna Koneru / IJCESEN 11-2(2025)3428-3451

3434

real-time. The first step to running Kibana is to get

it working and installed on an EC2 instance and

then make sure it is reachable to the elastic search

cluster. It sets the Elasticsearch URL mentioned in

the Kibana configuration file to the Elasticsearch

endpoint. Once Kibana is connected to

Elasticsearch, one can create operational

dashboards using real-time log data.

Significant customization of the dashboard,

allowing it to display myriad visualizations such as

time series graphs, histograms, pie charts, and so

on, offers a taste of the system performance,

application errors, and security incidents by

operational teams. There is also a powerful tool

called Kibana query language, which users can

utilize to filter, aggregate, and analyze logs until we

can get to the bottom of the insights. For example,

Kibana gives users its DSL (Domain Specific

Language) query to help them find where to focus

and run complex queries on the log data.

4.5 Ensuring Proper Permissions and Security

Settings for Each Component

An important point when using the ELK Stack on

AWS is ensuring that each component is secured

[6]. Securing the stack involves creating AWS

Identity and Access Management (IAM) roles to

control required resource access. For the sake of an

example, we can create separate IAM roles for

Elasticsearch, Logstash, and Kibana to grant only

the services and users permission to access

sensitive log data access to log data. The least

privilege principle states that each component

should have the minimum permission with which

the component can work properly.

Security groups and VPCs are also used to create

network isolation. Security groups help us control

the ingress and egress traffic to the ELK Stack

components and only allow us to allow trusted

sources to try to dig into the logs. Thus, the VPC is

created to separate ELK Stack components and add

another obstacle between ELK Stack and other

parts of the cloud environment. Moreover, it has the

advantage of making it secure to communicate

Elasticsearch, Logstash, and Kibana to and from

one another, and our log data is not tampered with

or listened in on [13]. Elasticsearch indices and S3

encrypted bucket policies are recommended to be

enabled for log storage to protect data at rest. In

fact, with that option, all the logs for that AWS

environment will be encrypted and will not be able

to be accessed by any other person than the

authorized one.

When it comes to deploying Elasticsearch and

Logstash on the ELK Stack in AWS EC2 instances

and configuring Kibana for logging visualization,

one should carefully plan the architecture of the

ELK Stack. Once the enterprise has taken this

route, log best practices, such as high availability,

security, and tuning log performance, can be

applied to create a strong, centralized solution to

handle heavy amounts of log data. Network

isolation and permissions should be authenticated

to secure and protect the log data from

unauthorized use.

5. This post describes merging logs from

multiple sources into ELK Stack

5.1 Logs to be Collected (Application, Server,

Network, Security)

Logs are crucial in an enterprise application, as they

monitor performance, troubleshoot, and increase

security. The entries in the logs may come from the

various parts of the system itself, and each one may

add information about a specific part of the

architecture. Application logs, system logs, network

logs, and security logs are the primary types of logs

that come with various purposes. Application Logs

are generally about data that this application runs,

exceptions, performance metrics, and events

resulting from users/ systems. The logs are

indispensable for an idea of how an application

performs and the capacity to detect errors or

diminish performance bottlenecks. Stack traces,

error messages, and even business transaction logs

are a way to determine where flaws reside in the

application code [14].

The System Logs have information regarding the

health of / performance of the operating system,

hardware, and infrastructure on which applications

run. The details mentioned are system events,

process crashes, resource utilization (CPU,

memory), and disk space. Application infrastructure

must remain functional and optimized by these.

Network Logs monitor activity on traffic between

systems and offer network communication patterns

in the form of packet analysis, connection attempts,

and data transfer metrics. These logs can debug

network-related problems, detect an unauthorized

access attempt, or any latency and bandwidth-

related problems.

Security Logs record the activities related to the

system security, such as user login attempts,

authorization failures, and changes in the access

control. Activities may appear to be suspicious.

Security logs are essential in shielding corporate

apps from attacks, guaranteeing concatenation for

compliance requirements, and serving as support

lists for post-incident investigations. Together, they

contribute to a larger span of observability from the

perspective of different system layers, resulting in

Naga Murali Krishna Koneru / IJCESEN 11-2(2025)3428-3451

3435

full-stack observability [24]. Organizations can use

these logs to integrate them into a unified system to

correlate data and data from disparate sources and

improve troubleshooting and system performance.

5.2 Using Logstash to Collect, Parse, and

Transform Logs

It is a powerful tool to aggregate, transform, and

parse log data from different sources. A pipeline

gathers logs, processes them, and sends them to

Elasticsearch for indexing and analysis [15]. The

ability of Logstash to deal with a huge diversity of

data sources is one of the key features of Logstash

in complex enterprise environments. The first step

in collecting logs from multiple sources is

configuring Input Plugins in Logstash. Input

plugins in Logstash can be the Syslog, HTTP, AWS

services like CloudWatch and S3, and custom

inputs. They provide plugins that allow Logstash to

consume logs from sources like EC2 instances,

containers, and network devices. Once these inputs

are properly set up, the real-time logs can be

collected periodically, depending on the use case

that needs such logs.

Transforming raw logs into good data is an

important step called advanced parsing and

enrichment, of Advanced Parsing and Enrichment.

Logstash provides filter types like grok to parse the

nonstructured logs into organized data. For

instance, syslog messages can be groked to extract

fields such as timestamp, IP address, and error code

to make them easily searchable and analyseable.

The key data points can also be extracted through

regular expressions to match some log patterns.

Plugins on GeoIP also enrich the log by adding

geographical information from IP addresses to the

log and adding context to the log. By allowing you

to parse and enrich logs before they are sent to

Elasticsearch, you vastly increase the quality and

utility of the logs, giving you better search and

analysis [25]. This guarantees that logs are

structured, but contextual data that would help with

troubleshooting or security monitoring is added.

5.3 Real-Time Log Collection Using AWS

CloudWatch Logs

ELK Stack is natively integrated with AWS

CloudWatch Logs, which can collect, monitor, and

store logs of many AWS resources. CloudWatch

Logs is very useful for enterprises that use the

AWS platform to run applications, apart from the

ability to integrate nicely with AWS services and

other third-party tools such as Logstash.

CloudWatch Logs setup requires configuring AWS

services like EC2 instances, Lambda functions, and

AWS API Gateway to send logs to CloudWatch. To

get these logs, you can forward them to Logstash

and do more processing and indexing. One example

is that CloudWatch Logs can take real-time log data

of applications deployed on EC2 instances or log

entries with AWS service S3 and Dynamo DB.

AWS Kinesis is used to stream CloudWatch data in

real-time to Logstash. Real-time log streaming is

provided by Kinesis, which means the logs are

continuously consumed and processed by ELK

Stack as soon as they are generated. This is

especially handy for companies who need the latest

and most relevant data on which their applications

are performing and with what level of security. A

couple of advantages of the native integration of

CloudWatch with ELK are good log management,

faster time for log ingestion, and the ability to

correlate AWS resource metrics with log data in

Elasticsearch. Moreover, this integration simplifies

log source management since logs are kept in a

single location (AWS). It has also helped improve

operation responsibility and provide better

observability [16].

5.4 Managing Log Volumes and Ensuring Data

Integrity

Effective management becomes a huge challenge

with the massive volumes of log data enterprises

generate. Integrated into ELK Stack with Logstash,

the ELK Stack can be used as a strong solution

when processing large numbers of logs, and it still

performs very well. There are techniques for

managing large log volumes that help optimize the

Logstash pipeline for high throughput. However,

you can do this by storing logs temporarily within

Logstash using the persistent queue feature when

there is a backlog for processing. To efficiently

distribute the load and process log, you can

implement multi-threading and shard indexing in

Elasticsearch.

Data integrity and the reliability of the logging

system are of utmost importance. The logs must be

accurate, complete, and untampered to be

actionable. One of the best practices to prevent data

integrity issues is to verify constant logs during

transmission, and efficiently doing that would be to

hash the files during transmission. Logstash will

check and validate incoming logs to ensure they

have not been tampered with or corrupted during

transmission. SSL/TLS protocols can also encrypt

the log, keeping the integrity of the data in case the

log is sent over an insecure network.

Implementing this log retention policy in log data

management is another important point. Retention

policies are defined within Elasticsearch, allowing

organizations to retain only the needed period of

Naga Murali Krishna Koneru / IJCESEN 11-2(2025)3428-3451

3436

logs in Elasticsearch. Archiving logs for cheaper

storage, like AWS S3 or auto-delete logs, after the

specified expiration time after log retention. They

would be the storage policies used to manage

storage costs and keep the data within the regulated

boundaries (for instance, GDPR or HIPAA).

Integrating multiple log sources into the ELK Stack

is an effective strategy for supercharging enterprise

observability. However, deep insights into how the

system works and how you can fix it faster while

securing your infrastructure requires organizations

that can parse, filter, collect, and enrich their logs.

For log collecting with large amounts of logs in an

effective real-time manner, Logstash, AWS

CloudWatch, and Elasticsearch all work to provide

a good solution for real-time log collecting, and the

logging solutions are scalable and reliable.

Table 1. Core Components of the ELK Stack

Component Description Role in Centralized Logging

Elasticsearch
 A distributed search engine that stores and indexes log data,

enabling real-time querying and analytics.

Stores and indexes logs for fast

querying.

Logstash
 A log pipeline tool that collects, parses, and transforms log

data before sending it to Elasticsearch.

Processes and transforms logs from

various sources.

Kibana
 A data visualization tool that works with Elasticsearch to

visualize and analyze log data.

Provides dashboards, visualizations, and

alerts for log analysis.

Figure 1. Laravel Log Management using Filebeat + ELK (Elastic Search, Logstash and Kibana)

Table 2. Key AWS Services for ELK Stack Implementation

AWS Service Role in ELK Stack Purpose

Amazon EC2
Runs Elasticsearch, Logstash, and Kibana instances in a

cloud environment.

Hosts ELK components for scalable log

processing.

Amazon S3
Provides storage for logs and backups, supporting cost-

effective long-term storage.

Stores logs for archival and batch

processing.

AWS Lambda
Processes logs in real-time by filtering, routing, and

transforming data before sending it to Logstash.
Offers serverless log processing at scale.

Amazon

CloudWatch

Collects and monitors log data from various AWS

resources like EC2 and Lambda.

Streams logs directly into the ELK Stack

for centralized processing.

Naga Murali Krishna Koneru / IJCESEN 11-2(2025)3428-3451

3437

Figure 2. Logging best practices on AWS

Figure 3. Amazon Elastic Compute Cloud

Table 3. Log Types Collected for ELK Stack

Log Type Description Purpose

Application

Logs

Logs related to application performance, errors, and user

events.

Helps track application behavior and

troubleshoot errors.

System Logs
Logs detailing the health and performance of the operating

system and infrastructure.

Provides insights into system health and

resource utilization.

Network Logs
Logs detailing network traffic and communication patterns

between systems.

Useful for detecting network issues and

security breaches.

Security Logs
Logs that track security-related activities such as login

attempts and authorization failures.

Essential for auditing and detecting

potential security threats.

Figure 4. Security Log management

Naga Murali Krishna Koneru / IJCESEN 11-2(2025)3428-3451

3438

Figure 5. Kibana – Overview

Figure 6. Monitoring With Elk

Figure 7. Centralized Logging with Elastic search, Kibana, Logstash and Filebeat

Table 4. Best Practices for Implementing ELK Stack on AWS

Best Practice Description Expected Outcome

High Availability

Setup

Distribute ELK Stack components across multiple

Availability Zones (AZs).

Ensures continuous availability even in

the case of AZ failure.

Data Retention

Policies

Implement log rotation and retention strategies to

manage storage costs and ensure compliance.

Reduces unnecessary storage costs and

ensures data integrity.

Auto-Scaling for

Elasticsearch

Use AWS Auto Scaling to handle fluctuating log

ingestion and query demands.

Automatically adjusts resources to

accommodate traffic spikes.

Security Measures
Encrypt logs at rest and in transit using AWS services

like KMS and SSL/TLS.

Protects log data from unauthorized

access.

Naga Murali Krishna Koneru / IJCESEN 11-2(2025)3428-3451

3439

Figure 8. Demystifying the ELK Stack

Table 5. Key Challenges and Solutions in ELK Stack Implementation

Challenge Solution Outcome

Log Volume

Overload

Implemented time-based indexing and auto-scaling

for Elasticsearch clusters.

Ensured efficient log management during

high traffic periods.

Delayed Log

Processing

Integrated AWS Lambda for real-time log

transformation and routing.

Reduced latency in log processing,

enabling faster insights.

Security and Access

Control

Utilized IAM roles and encryption at rest and in

transit.

Secured log data and ensured compliance

with access controls.

6. Analyzing Logs with Kibana for

Improved Observability

Kibana is a great open-source tool for analyzing

and visualizing log data in Elasticsearch. This is an

important puzzle piece for precisely better

observability for enterprise applications. Integrating

Kibana with Elasticsearch allows different

organizations to obtain actionable insights from

large amounts of data.

6.1 Key Features of Kibana for Log Analysis and

Visualization

Kibana’s user interface also makes it easy to

aggregate, filter, and visualize log data [3]. As it

can aggregate the logs over time, this is one of its

main features since it makes it easier to find trends

and anomalies. Users can view log data over

multiple periods using the time series method of

analysis in Kibana to see the status of a system and

operational problems. The users can track the

frequency of errors or performance degradation

(with the frequency of performance degradation

decreasing) over time and pinpoint exactly where

the problem with performance was starting to

degrade the system performance.

Kibana is also capable of data filtering. Thus, users

can filter log data for the most pertinent

information. This becomes very helpful in

retrieving actionable data from the logs received

from multiple sources in a large-scale environment.

Filters also allow filtering many log attributes, like

log levels or error types per filter or even an

application component per filter. The graphical

visualization also provided by Kibana, which

includes elements like pie charts, histograms, and

maps, also provides a way of interpreting log data.

By making the complex log data quickly digestible,

these visualizations help them use these log data.

Moreover, pie charts are good for showing the

proportions, such as percentages of log severity

types, and histograms are good at seeing trends in

error rates over time. On the other hand, a Map can

visualize the geographic data of logs to provide

teams with insights into where the incidents are

located or to monitor performance in numerous

regions [17].

6.2 Creating Dashboards for Real-Time

Monitoring

However, you cannot have dashboards in Kibana to

monitor real-time key infrastructure metrics. It

gives a central view of system health and allows the

team to monitor application performance and other

co-related elements of the infrastructure. To begin

with, set up a Kibana dashboard and select the

proper visualization representing the log data you

care about. Error rates, response times, server

performance, or user activity are examples. In a

step-by-step guide, one must determine what

metrics must be tracked with Kibana dashboards

from these business KPIs and operational goals.

Naga Murali Krishna Koneru / IJCESEN 11-2(2025)3428-3451

3440

The values of some of these may be request rates,

error frequencies, or user session durations. Once

the metrics are identified, some interesting

visualizations can be added to the dashboard, like

line charts showing the performance trends or bar

charts of the error counts [18].

The dashboard needs to be aligned with the

business objectives. For example, a healthcare

application could enhance its focus on response

times to user queries or server availability. At the

same time, an e-commerce platform could ensure

that it is monitoring transaction errors or payment

gateway performance. This allows organizations to

customize dashboards according to these specific

needs, making the most critical data visible and

accessible immediately to operations teams. Kibana

facilitates the development of custom alerts for

specified threshold conditions or log patterns. It

makes it easy for teams to receive instant alerts

when a metric reaches a given threshold. For

instance, error rates go up, or response times go

down. With the alerts set up in Kibana, issues are

detected and solved before reaching the end user.

6.3 Setting Alerts and Automating Responses to

Anomalies

Automatic anomaly detection is extremely

important and can be achieved with Kibana's

alerting features. To configure these alerts,

threshold values and/or a set of log patterns to

trigger a notification are specified here. For

example, if the error rate is above a certain

percentage, Kibana can send the related team a

notification via email, Slack, or AWS SNS.

However, this feature is especially handy in a

dynamic environment where problems may occur at

any moment, and live system stability and user

experience are important.

Kibana integrates with these Elasticsearch queries

so that actions begin when specific anomalies occur

[19]. Automated workflows can be defined for

starting the remediation process, such as restarting

the service or running a diagnostic script. In this

way, the time between detection and resolution

minimizes manual intervention and results in a

more efficient overall process. At the same time,

Kibana also allows for fine-tuning of thresholds on

alerts that are based on historical data and alerts

only when there is a meaningful thing [20].

Defining baseline alert thresholds based on the data

in the historical log should prevent false positives.

In addition, alert configurations should be adjusted

to the system's growth and changing operational

requirements. Organizations keep their alerting

system effective by continuously looking into and

adjusting these thresholds so that alerts provide

relevant, visible signals.

6.4 Using Kibana's Query Capabilities for

Detailed Analysis

One of the most powerful features of Kibana is the

ability to query Elasticsearch data through Lucene

query syntax or Elasticsearch Query DSL. Such

advanced queries allow the user to do detailed log

analyses and locate the exact points where wrong

actions have been taken. By writing complex

queries in Kibana, users can filter logs by multiple

criteria like time ranges, the log severity, and even

specific error messages, if any, to get a deeper

insight into the system's performance. As a

hypothetical example, suppose that an application

suffers from intermittent downtime. The users need

to find out what error types occurred during

particular timeframes or even identify a specific

period when the application was down.

Kibana offers functionality like filtering,

aggregation, and visualization to help refine things

to the root cause by hunting down log entries linked

to the problem. Thus, it is important to embrace

application error troubleshooting for the following

scenarios: database connection trials, application

crashes, and API timeout situations. It helps

troubleshoot with Kibana’s search. A user can see

these patterns and recurring issues quickly through

visualizations provided by some log data that have

been aggregated, and these log data are offered as a

way to solve any issues that may present. For

instance, if the cause of the problem is suspected to

be a performance bottleneck, Kibana can help you

visualize the latency by asking over time to see if

certain components or time spans correlate with the

problem. Because Kibana includes query

capabilities, you can troubleshoot the current

problem using log data and predict the future with

the help of data trends in log data over time.

Kibana is no longer a valuable tool for observing

and optimizing the clouds of logs in complex

enterprise applications. Its features, including time

series analysis, data filtration, advanced

visualizations, creation of real-time real-time

dashboards, and automation of alerts, are also

requirements for being used by a centralized

logging system. It provides the team with a deeper

insight into application performance. It helps them

to determine ways to troubleshoot issues more

efficiently and establish a proactive approach to

application monitoring from the application to its

server events [21].

7. Troubleshooting and Performance Tuning

with ELK Stack

Naga Murali Krishna Koneru / IJCESEN 11-2(2025)3428-3451

3441

The ELK Stack, Elasticsearch, Logstash, and

Kibana are widely used to aggregate, process, and

visualize the logs over distributed systems using it.

However, in a large-scale enterprise environment, it

is required to manage and tune the performance of

the ELK Stack.

7.1 Identifying and Resolving Common Log-

Related Issues

Some problems when working with ELK prevent

the system from being used. Common problems

include a lack of malformed log entries and entries

and too much log volume, which severely degrade

the capability of monitoring and analyzing system

status. Most of the time, the reason behind missing

logs is a misconfigured log ingestion pipeline due

to incorrect file paths and permission in Logstash or

Cloud Watch. Malformed log entries can also

happen similarly if Logstash is not set up properly

or inappropriate parsing or filtering is applied. This

will cause logs to be sent to the Logstash pipeline

much faster than Elasticsearch can read and index

them, causing the Elasticsearch cluster and the

Logstash pipeline to slow down or the data to end

up lost.

Effective tools and practices for diagnosing such

issues are required. In order to find missing logs

and Logstash configuration files, Kibana

dashboards require a thorough inspection to check

whether logs are being captured and indexed

properly. Errors in the data pipeline can be

monitored in logstash logs. Analysis of the pattern

of log entries in Kibana's query interface can detect

if an entry is malformed and find faulty data that

quickly fails to follow the format expectation.

Malformed log entries can also be mitigated by

properly filtering the rules and the appropriate grok

patterns to match the right fields. Log retention

policies must be set for the log volume. ILM must

be configured on Elasticsearch to prioritize the logs

so that only some are stored, optimizing storage and

querying. Best practices to avoid a reoccurrence of

these issues would be validating your log quality on

a routine basis, enabling comprehensive logging

across the company, and testing your ingestion

pipeline to ensure logs are ingested properly and

efficiently [22].

7.2 Optimizing Elasticsearch for Faster Search

and Query Performance

Elasticsearch performance is extremely critical for

fast log search and query response. Some

techniques are available to raise its efficiency.

Tuning heap size is one of the prime methods.

However, Elasticsearch is a very memory-hungry

application, and when there is not sufficient heap

space, Elasticsearch searches can be slow, and very

rarely, it can crash the entire system. Ensuring the

heap size is properly configured is important; half

of the available system memory is usually used at a

binding of less than 32 GB. One technique is

segment merging, which is defined as merging

smaller, older segments into larger ones. The fewer

segments, the better, as Elasticsearch will also

perform better if it reduces the number of segments

to search. Fragmentation may degrade performance

and should be prevented by periodically scheduling

merge operations.

It also plays an important role in performance

tuning the cache settings. To reduce most of the

calculation jobs, Elasticsearch uses caching

mechanisms to store frequently accessed queries

and results [23]. By tuning the cache settings (for

example, adjusting the filter cache and query

cache), it is possible to reduce the impact of

repeated queries and, most of the time, avoid full

index scans. In addition, the data structure can also

be optimized using index templates, and the

searchformance is enhanced. Can beta search also

provide Index templates, which allow us to

configure index templates for the fields, mapping

types, and index settings? At the same time,

Elasticsearch will work well with large datasets. To

monitor our Elasticsearch cluster's performance,

one of the built-in tools to help us understand the

real-time performance stats for metrics is query

latency, heap, and indexing rate via Kibana

dashboards and the Elasticsearch Monitoring API.

These tools help system administrators identify

performance bottlenecks and make proper

arrangements based on them.

7.3 Tuning Logstash Pipelines for High-Volume

Data Ingestion

This data is collected, parsed, transformed, and sent

to Elasticsearch by Logstash. In large-scale

environments, the ingestion rate can be so high that

the system cannot keep up, and as a result, the

system could incur high latency and even data loss.

You can optimize the logstash performance by

setting input/output buffer sizes and enabling

multithreading. Increasing the buffer size in

Logstash helps bypass block or drop data for larger

incoming logs. Also, multiple worker threads allow

Logstash to process the logs in parallel, yielding a

much higher throughput.

If the scenario involves processing a high volume

of logs, one can integrate AWS Lambda and

Kinesis into the Logstash pipeline to offload log

processing. These AWS services stream logs into

Naga Murali Krishna Koneru / IJCESEN 11-2(2025)3428-3451

3442

Logstash asynchronously without overloading

Logstash's processing capacity, and they are

scalably ingestible. Millions of terabytes can be

processed without performance degradation using

Lambda functions for trivial log transformations

and Kinesis for aggregating logs written in real

time. The latency between log collection and

storage should be minimized. Buffering strategies

and asynchronous processing in Logstash should be

used to reduce this latency. Logstash's batch

processing settings should also be modified so that

inspection does not delay indexing [26].

7.4 Managing and Scaling Kibana for Large-

Scale Enterprise Use

Kibana is the front-end interface used to ingest and

visualize log data while playing as the front end of

the observability stack. To scale Kibana for

enterprise use, it is important to plan carefully as

the capability to simultaneously serve a large

number of concurrent users while keeping the

response time acceptable. When taking large-scale

data, the first step in scaling Kibana is distributing

its workload across multiple nodes. The

deployment of Kibana in a cluster allows for better

management of the demand for queries and

visualizations.

It should also be noted that Kibana dashboards need

to be optimized for dashboard management to

perform well. Large datasets can be queried or

aggregated, and heavy-hitting queries in dashboards

can negatively impact user experience if more

people are on the dashboard at once. These are best

practices for managing Kibana dashboards, what is

best to optimize regarding queries, how much data

to visualize at once, and how you would use

aggregation filters to help discuss how much data

will come back from Elasticsearch. In a multi-

availability zone (AZ) configuration, Kibana can

achieve high availability and fault tolerance.

Organizations can eliminate the risk of downtime

by broadly disseminating Kibana instances across

different AZs, thus making sure there is always

some Kibana instance available for logs and

metrics. Built-in health checks and Kibana's

Monitoring UI will allow you to preemptively

identify scaling issues and take corrective action

before users notice disruptions.

By applying these best practices of managing and

scaling Kibana, organizations can deliver the best

user experience, irrespective of exponential growth

in data log volumes and users. In order to

troubleshoot and perform performance tuning of the

ELK Stack, Elasticsearch, Logstash, and Kibana,

they should be monitored continuously with

systematics to optimize and ensure their proper

functioning. When applied to the techniques

discussed—such as heap size tuning, segment

merging, pipeline optimization, and scaling

Kibana—these techniques preserve ELK Stack as

an efficient, high-performing solution for

centralized logging and observability in large-scale

enterprise environments.

8. Security Considerations for Centralized

Logging with ELK in AWS

Security is the most important thing as enterprises

move towards centralized logging solutions like the

ELK stack for managing logs spread over

geographically dispersed environments. Proper

security has to be enforced within industry

standards and government regulations to enforce

log integrity, confidentiality, and availability.

8.1 Ensuring Log Integrity and Preventing

Tampering

Log-keeping was necessary to detect and prevent

malicious activities. Changing logs can severely

coat the trustworthiness of logged data in such

systems, making it impossible to monitor and fire

invalid incident responses. Implementing checksum

or cryptographic techniques is the most effective

way to keep the logs intact. In this way,

organizations can use hash functions (such as SHA-

256) to check if the computed hash equals the

original hash. This helps prevent tampering with

the logs while they are transmitted and stored.

It is a good friend to the integrity and security of

the logs and allows the storage of a very detailed

record of all API calls to the AWS environment.

This service allows entities to track which users

access which services to aid in compliance and, in

case of need, a historical audit trail for any security

investigation.

Cloud Trail also alerts admins when something

suspicious is happening in the log activity, and they

can take immediate action if any security threat

occurs [27].

Encryption and access controls are needed to

prevent unauthorized tampering. Log files are

further protected by using AWS Identity and

Access Management (IAM) to set very tight user

and service access policies. Only permitted entities

can make changes or deletions to log files.

Additionally, the data is encrypted when at rest and

in transmission.

Using Amazon S3 bucket policies with server-side

encryption (SSE), for example, you can be sure that

logs will be stored securely, inaccessible, and

untempered.

Naga Murali Krishna Koneru / IJCESEN 11-2(2025)3428-3451

3443

8.2 Implementing Role-Based Access Control

(RBAC) for Secure Access

This fundamental security principle in ELK stack

security is called role-based access control

(RBAC), which defines who can view what data.

This prevents log data that is too sensitive from

ending up in unqualified hands, thus lowering the

odds of a data breach due to malicious alteration by

the wrong users or services. The Kibana and

Elasticsearch RBAC in AWS utilizes AWS IAM

roles and policies. Fine-grained access control on

logs can be enforced by giving various permissions

to various users or service roles such that only those

authorized to see or change the log data can access

it.

There are best practices regarding permissions

management over the ELK Stack, which is an

ideology to apply the principle of least privilege

(PoLP), which means that people should only get as

many permissions as they need to do their jobs. It

helps to reduce the surface that an attacker can

attack and can prevent exposing sensitive data.

Elasticsearch also has RBAC capabilities whereby

users can be allocated roles such as 'read-only' or

'admin', which Admin can use to dictate which

controls, dashboards, and visualizations a user can

access in Kibanonfront.

AWS Cognito can also be used to federate identity

management because it is another way. AWS

Cognito lets organizations control and verify user

sign-in with your identity provider and other

external providers, such as Active Directory and

social login systems. It facilitates a centralized

identity management solution, as well as easy use

of the access control. It provides security using a

single authentication mechanism for all AWS

services and applications.

8.3 Encrypting Logs and Data in Transit and at

Rest

Securing log data in transit and at rest is integral to

encryption security. Because the logs must be sent

across the network, they must be encrypted with

TLS/SSL encryption to prevent logs from being

intercepted or tampered with. This will ensure that

the organization does not care about log data,

ensuring that the data is confidential and protected

from man-in-the-middle attacks while for

transmission. AWS has built-in support for TLS

encryption: set the EC2 instances, Lambda

functions, and other cloud-based resources to

encrypt and enable log flow via encrypted flow.

Storing the logs on the cloud in services like

Amazon S3 or Elasticsearch is as important as

securing log data at rest. An existing widely

adopted industry standard protects the logs while in

storage – AES-256 encryption. Server-side

encryption with AES 256bit encryption can also be

enabled by storing log data in the S3 buckets,

which Amazon S3 supports. Additionally,

Elasticsearch allows people to encrypt the data at

rest so the Elasticsearch cluster securely possesses

logs across the cluster. That is especially true for

sensitive log data where end-to-end encryption is

essential. Second, the issuance of encryption at

transmission and rest time can help to guarantee log

security from cradle to grave for organizations.

However, even if unauthorized entities can

intercept or access the storage location, they are

still prevented from accessing logs with this layered

approach.

8.4 Compliance with Industry Standards and

Regulations (e.g., GDPR, HIPAA)

Personal data must be safe, so each system needs to

stay up to date and maintain a centralized logging

system that adheres to many industry regulations

and compliance standards. Organizations can use

centralized logging solutions that store logs

securely and take good care of stored and sterilized

logs to meet these requirements. For this, AWS has

a lot of tools and services like AWS CloudTrail,

AWS Config, and AWS Identity and Access

Management (IAM). CloudTrail can keep an

auditable history of all AWS API calls made in an

organization to satisfy compliance with the General

Data Protection Regulation (GDPR), Health

Insurance Portability Privacy Accountability Act

(HIPAA), and others. Recording log data using

CloudTrail allows tools to be set up to record the

changes to log data, thereby producing the correct

audit logs to allow you to prove your compliance

during regulatory audits.

AWS Config is another compliance tool that tracks

the changes in AWS resources [28]. It enables an

organization to monitor its infrastructure to check

whether they have its logging practice or if its

logging practice is compliant. AWS provides

compliance programs that aid organizations in

developing several standards like PCI DSS, SOC1,

and SOC2 to reinforce the security position of a

central logging method. By defining what data

should be retained and what is available for

deletion, these log retention policies will allow

organizations to enforce policies based on

regulations that dictate how data should be retained

and what data can be deleted.

To protect themselves from falling into data

retention compliance, enterprises can set up their

S3 or Elasticsearch with automated lifecycle

Naga Murali Krishna Koneru / IJCESEN 11-2(2025)3428-3451

3444

policies to store logs for a while and then come out

of existence. To procure a common logging

structure using ELK stack in Amazon Web

Services, researchers opt for tradesmanship to log

integrity, access control and encryption, and

compliance with regulations. To a great extent,

organizations can use AWS services to protect logs

from unauthorized access and tampering, apply data

confidentiality, and meet compliance requirements.

9. Best Practices for Implementing

Centralized Logging and Observability with

ELK Stack

9.1 Structuring Your ELK Stack for Scalability

and Reliability

Scalability and reliability are two features that are

crucial when implementing an ELK Stack for

centralized logging in AWS. Managing multiple

Elasticsearch clusters is one of the best practices,

and one of them is to dedicate each cluster to

(possibly) distinct tasks or locations. This also

makes it possible for distributed processing to

reduce the load on any single one of the clusters

and increase performance. For example, an

enterprise may separate different kinds of logs into

their clusters (application logs, security logs, and

system logs) to enable better efficiency and

performance of queries.

Another important aspect is the design of fault-

tolerant architecture. Deployments in multi-region

and multi-AZ (Availability Zone) are a robust

strategy on AWS. Through the use of these AWS-

enabled features, logs are replicated in different

data centers to ensure that there will be high

availability and, thus, minimum time loss.

Specifically, if one of the AZs runs into trouble,

Elasticsearch can failover to another secondary AZ

to keep log ingestion and processing continuous

and without delay. Besides, multi-region

deployment can provide you with the DR option,

which could mean storing your logs in

geographically separated places so that if there is a

disaster in your primary place, you can still access

them. Use index templates and log rotation to

improve the performance of Elasticsearch and

efficiently manage the lifecycle of logs. Index

templates define index structures in advance to

organize the logs correctly. However, log rotation

prevents the system from getting overwhelmed by

old logs, which is done by automatically archiving

or deleting logs based on pre-configured policies. It

prevents performance degradation from high log

volumes in Elasticsearch clusters due to the new

data [29].

9.2 Setting up Backup and Disaster Recovery

Strategies for Logs

When ELK Stack fails or the logs become

corrupted, it is important to have a well-established

backup and disaster recovery strategy to prevent the

loss of the logs. In short, one of the best practices is

to back up with Elasticsearch snapshots

automatically. Snaps can be used regularly to

backlog to a secure location, like Amazon S3.

Periodically snap your indices up using snapshots,

which will help restore your data in the event of a

failure so that less data is lost. The above processes

must be automated using Elasticsearch snapshot

lifecycle management (SLM) without manual

intervention. In addition to snapshots, it is

important for disaster recovery that log replication

occurs across many AWS regions.

This keeps logs available even in the case of an

outage in one region, as logs are kept in another.

Organizations can increase the durability and

availability of log data by replicating logs across

regions with AWS services like Amazon S3 and

Amazon Elasticsearch Service. Backup strategies

are also crucial because log data must be archived

and retrieved. Setting policies for logs to be

archived if desired (for example, after 30 days) and

stored so they can be retrieved if necessary will

allow logs to be stored efficiently without

burdening the primary Elasticsearch clusters. For

instance, the Amazon S3 Glacier could move older

logs into long-term storage since it is less expensive

and reliable.

9.3 Implementing Efficient Log Retention

Policies

It is important to put a log retention policy in place,

which will help ensure logs are only kept for a

required time or otherwise deleted or archived.

Ideally, these policies match the requirements of

business and regulation. Some financial

organizations may need to save logs for seven years

for legal requirements, or other industries based on

data governance policies can go with different

retention periods. Log retention cannot work

without log automation. Organizations can

automate log retention and deletion using Curator

for Elasticsearch or AWS Lambda for another

cloud platform.

Curator is a beautiful index management tool in

Elasticsearch, as it automates removing (or

archiving) old log data from your indices according

to policy. As the logs age, they can be moved to

other storage solutions (such as Amazon S3) with

AWS Lambda, which can keep only the last few

Naga Murali Krishna Koneru / IJCESEN 11-2(2025)3428-3451

3445

important logs. Retention strategies do a good job

of managing storage costs at a tiered level. For

instance, Elasticsearch will store recent logs for fast

querying and analysis, and older logs can be moved

to cheaper storage solutions such as Amazon S3.

Logs can be stored in Amazon S3 Glacier for long-

term retention, and infrequent logs can be archived

to take advantage of lower storage costs.

9.4 Leveraging AWS Auto-Scaling to Handle

Traffic Spikes

One of the most important best practices is auto-

scaling Elasticsearch clusters and Kibana instances

to ensure they can manage traffic surges without

impacting performance. Organizations can

automatically add and remove the number of

instances in AWS Auto Scaling for Elasticsearch

clusters to adjust to traffic load changes. For

instance, at times with increased log ingestion, we

can spin up additional Elasticsearch nodes to have

more resources to handle the increase in log load.

Once traffic slows down, the additional instances

are automatically terminated to save cost. CPU and

memory usage should be monitored to trigger

scaling events. In Auto Scaling, you can integrate

the AWS CloudWatch metrics to automatically

scale up or down the resources based on their

utilization. One example involves AWS Auto

Scaling launching additional Elasticsearch nodes if

CPU utilization reaches a given level to distribute

the load evenly. It is scaled smoothly during peak

load without affecting the performance and logging,

and logging continues to work without any delays

and with no data loss. Such a scaling mechanism

allows organizations to bypass manual intervention

and ensure that the ELK Stack is always ready to

handle high demand.

9.5 Optimizing Cost Efficiency when Using ELK

Stack in AWS

When the ELK Stack is implemented in AWS for

the enterprise scale, it is a good point to consider

for cost optimization. Right-sizing EC2 instances

means selecting the appropriate instance types

based on workload requirements. Assuming that

organizations choose EC2 instances with enough

computing power and memory to serve

Elasticsearch demands and avoid over-

provisionings will result in unnecessary costs. One

can further reduce costs by using spot instances.

Spot instances allow users to bid for unused EC2

capacity at a lower price, which is good for users

not interested in this project's workload, like log

processing. However, the workload should tolerate

interruptions, as spot instances can be terminated as

the capacity is needed elsewhere.

Another important factor is the management of log

storage costs. Efficient storage of logs is important,

and older logs no longer required to operate on

Elasticsearch should be stored in Amazon S3.

Researchers propose implementing data lifecycle

policies that allow data movement from high-cost

storage to lower-cost solutions in an automated

way. A practical use case for this is if once the logs

are of a certain age, they can be transferred into

Amazon S3 Glacier for long-term storage, which

offers a cheaper solution for keeping logs but still

minimizing the expensive Elasticsearch storage

usage [30].

10. Successful Case Study: Implementing

ELK Stack for a Global E-Commerce

Platform

Figure 9. Elasticsearch-kubernetes

Figure 10. AI Agents for Multi-dimensional Data

Analysis

10.1 Overview of the Case Study and Business

Requirements

In the case study, a global e-commerce platform

that operates on different continents and has a daily

number of users and transactions in the millions is

considered. As the platform scaled, it was no longer

suitable, and the existing logging infrastructure was

insufficient to cope with the business's needs.

Tracking and monitoring system performance,

detecting issues in real-time, and ensuring that the

operation was efficient on a distributed system

Naga Murali Krishna Koneru / IJCESEN 11-2(2025)3428-3451

3446

architecture were all daunting challenges for the

business.

A centralized logging solution was needed for the

business to scale with the massive volume of logs

coming from diverse publishers, such as web and

app servers, application servers, databases, and

network devices. It was needed to solve the real-

time visibility for application health, user behavior,

and system performance to enable teams to

discover anomalies and fix issues at new speed

levels. Since the platform's customer base was

becoming increasingly large and the volume of

transaction data was continuously expanding,

scalability was a major factor. Integration with

AWS was an added requirement for this solution to

integrate seamlessly with AWS's scalability and

security features while minimizing overhead.

10.2 Implementation Steps Taken for Deploying

ELK in AWS

In order to meet these business requirements, the e-

commerce platform decided to use the ELK Stack

(Elasticsearch, Logstash, and Kibana), which is

hosted on AWS. The stacks were implemented in

several detailed steps, which were implemented in a

high availability, reliable, and scalable manner.

Proceeding first, the core components of the ELK

Stack were run on AWS EC2 instances, though

Elasticsearch was put on an Auto Scaling group to

handle traffic spikes. To achieve high availability

and make management as easy as possible, we used

Amazon ElasticSearch Service (Amazon ES).

Previously, the teams reviewed and searched logs

spread across hundreds of regions and

approximately 300 systems via the platform's logs,

but the logs were now centralized in Elasticsearch.

Logstash collected logs, which were logs from

application logs, web server logs, and infrastructure

logs from AWS Conld Watch and EC2 instances,

separated based on the source [31]. The main

aggregation point for AWS service logs was AWS

CloudWatch Logs. To log in to these logs, logstash

was configured to parse, filter, and enrich them

before forwarding them to Elasticsearch. Finally,

the integration with AWS Lambda gave real-time

log transformation alongside routing without

manual intervention. Kibana was configured for

visualization and dashboard creation to allow users

to interact with the logs efficiently. Real-time

insights for system health, application performance,

and user activity were provided through Kibana

dashboards, and the business and technical team

had hands to monitor and investigate anomalies.

AWS CloudWatch metrics were also integrated into

Kibana to create full-stack monitoring dashboards

so the platform's teams can react quickly to the self-

service aspect of the platform when performance

degrades or outages happen.

10.3 Key Challenges Faced During

Implementation and Their Solutions

A critical issue in implementation was getting the

scale of log data generated by the platform under

control. During the peak period, high log ingestion

rates to the platform put much load on the

Elasticsearch cluster. The number of logs increased,

and as the system began to slow down in indexing

or querying, real-time monitoring and

troubleshooting experienced delays. To combat

that, the team healed the Elasticsearch cluster by

appropriately tuning the configurations about

sharding and indexing. They adopted a time-based

indexing strategy to handle many logs, enabling the

logs to be indexed to improve query performance.

Elasticsearch's auto-scaling was also used to scale

cluster capacity in real time to match real-time

demand and avoid performance degradation as log

volume peaks.

Another challenge was turning raw log data from

multiple sources, AWS services were one, into real-

time for effective analysis. Since our log processing

had to be done for many different purposes, we ran

into trouble with filtering and parsing the logs, and

there used to be too much time lag in the pipeline

between receiving the log and processing. AWS

Lambda functions were added to the Logstash

pipeline to process and transform logs before they

went to Elasticsearch automatically. This approach

improves log transformation accuracy and the

ability to simultaneously process data from multiple

sources.

Security was also a huge problem, including the

control of access and integrity of log data. Logging

infrastructure had to be kept secure, and access

should be restricted to users with authorized access

only. To overcome this security concern, they

implemented AWS IAM roles that care for

Elasticsearch and Kibana's access control.

Additionally, encryption for data at rest and even in

transit was handed out, meaning all log data was

stored securely and carried out within the protected

envelope.

10.4 Results Achieved Post-Implementation

(Efficiency, Cost-Reduction, Monitoring)

After implementation, the e-commerce platform

greatly improved efficiency, troubleshooting, and

feeling of cost. Aggregated and centralized log data

would be one of the main benefits of deploying the

ELK Stack. Finally, the same source of truth for log

data meant the engineering and operations team

Naga Murali Krishna Koneru / IJCESEN 11-2(2025)3428-3451

3447

could quickly and accurately determine when issues

had occurred. Mean time to resolution (MTTR) for

incidents was faster due to easier troubleshooting;

thus, the system uptime and user experience

increased.

Another important achievement was real-time

anomaly detection. Depending upon Kibana

dashboards and CloudWatch metrics in ELK Stack,

the team has been able to monitor critical system

health indicators and get alerted very early on

issues that are coming up, as there could be sudden

large spikes in error rates or latency. This proactive

monitoring contributed to minimizing downtime

and managing the issues before they could interfere

with the users. It also cuts down on costs. The

platform reduced the operation overhead, avoiding

the need to manage an extensive logging

infrastructure, using AWS-managed services like

Amazon ES and CloudWatch. The Auto Scaling

feature for Elasticsearch also helped the platform

scale its infrastructure according to demand and

utilize resources more efficiently and costlessly

during off-peak hours [31]. The platform achieved

greater scalability. Due to the volume of log data,

the volume of the business continued to grow, and

the ELK Stack on AWS could scale without a

major reconfiguration due to this growth. The

platform could easily scale more resources onto the

Elasticsearch cluster and add more log sources

without compromising performance. By

successfully deploying the ELK Stack to solve the

problem of centralizing logging, the e-commerce

platform can scale and monitor their application in

real-time while enhancing its operational

efficiency. The platform utilized AWS services and

best practices in log management to help it quickly

monitor, troubleshoot, and scale its systems to

maintain good performance, cost efficiency, and

user satisfaction.

11. Future Trends in Centralized Logging

and Observability with ELK Stack in AWS

11.1 The Rise of AI and Machine Learning in

Log Analysis
The massive volume of log data is growing

exponentially, and various organizations are

investing in artificial intelligence (AI) and machine

learning (ML) to enrich log analysis. Currently,

prominent trends in log analysis relate to applying

AI/ML for automatic anomaly detection and root

cause analysis. Today, many log management

systems are traditionally manually driven, where

patterns can be identified and issues can be found

manually. AI and ML-based solutions can scan

enormous datasets, recognize deviations from

normal behavior, and trigger real-time alerts,

thereby reducing the time consumed in addressing

an incident to a great extent.

Predictive analytics is one of the most popular

applications of AI in the case of log analysis. AI

systems can teach models that will predict potential

system failure or performance bottleneck situations

before they happen by feeding models with

historical log data. For example, a service's logs can

be logged by AI algorithms to predict when the

service is more likely to see high numbers of

services concurrently or when there is an imminent

hardware failure. Besides proactive monitoring,

predictive analytics also helps automate the scaling

of the infrastructure to take proactive action to

prevent business downtime.

11.2 Increased Focus on Automated Anomaly

Detection and Predictive Analytics

One of the most significant trends toward the future

of logging and observability for cloud systems like

AWS is the shift to automation. Given that,

organizations have to welcome more complex and

distributed architectures, making automated

systems more critical to detect and resolve

problems without human intervention. Through the

combination of AI and machine learning, logs can

be continuously monitored, with the system gaining

the ability to find unusual behavior that is out of the

ordinary compared to established baselines. Say a

network request, one of which is an anomaly,

eventually has very high latency; AI models would

notice this as well and would immediately fire an

alert to investigate further.

In addition, predictive analytics is integrated into

managing operational efficiency in organizations.

With their log analysis capabilities, AI solutions

can predict when problems will likely arise, and

teams can anticipate them. In particular this

predictive capacity is particularly valuable when

uptime is crucial, for example, in financial services

or e-commerce platforms. Automated anomaly

detection and analytical ability allow businesses to

resolve issues quicker, decrease downtime, and

increase resource allocation more efficiently. Such

technological shift makes it possible to make more

intelligent, data-driven decisions without being

constantly watched, greatly increasing operational

efficiency [32].

11.3 Integration of ELK Stack with Emerging

Cloud-Native Solutions (e.g., Kubernetes,

Serverless)

Naga Murali Krishna Koneru / IJCESEN 11-2(2025)3428-3451

3448

Centralized logging and observability systems were

designed and applied to fit the cloud-native

technologies of Kubernetes and serverless

architectures, which are changing rapidly. Almost

all of them are forming their connection with these

platforms so that they can give more real-time

observability for highly dynamic and distributed

environments using ELK Stack. Examples of

Kubernetes include container orchestration, which

has become the standard used in many

organizations' cloud-native deployments. With the

incorporation of ELK Stack, Kubernetes provides

an easy mechanism of log aggregation and

monitoring for the containers so you can gain more

granular insights about the containerized

applications.

In Kubernetes environments, the logs are spread

across different pods, nodes, and clusters;

collecting and analyzing them becomes very hard.

Integration of ELK Stack allows organizations to

integrate logs of all Kubernetes components,

making it possible to have a single pane of glass for

observability. With their querying power,

Elasticsearch can be used to search multiple log

sources, and Kibana's visualization power helps

users quickly see the logs and locate the issue. In

the same sense, ser,verless movements like AWS

Lambda lead to a new observation method.

Serverless applications are stateless by default,

meaning each function is triggered due to events

that run without memory states. With ELK Stack's

integration with AWS Lambda, developers can

package these logs and have a single viewpoint on

the behavior of serverless functions. This

integration offers real-time log aggregation that

assists organizations in monitoring serverless

workloads, improving performance, and avoiding

latency in managing the infrastructure.

11.4 Predictions for the Future of Observability

and Logging in Enterprise Applications

Several technological advancements are expected to

shape centralized logging and observability buckets

in distributed and multi-cloud environments [33].

The most anticipated development is how

observability tools are coming of age for hybrid and

multi-cloud architectures. Given the rise of multiple

cloud providers and on-premises infrastructure, the

capability to observe the platform on a cross-

functional basis will be essential. In the future,

tools will need to dynamically consume logs from

different environments and present application,

service, and system level, real-time insight into

them, no matter where they reside.

Another big trend that has come up with this

rewrite of the promise is the continued integration

of container orchestration systems or edge

computing with these observability solutions. Since

Kubernetes and other containerization technologies

are widely adopted, observability platforms like

ELK Stack will expand and provide in-depth

information about containerized applications. It

refers to more efficient log aggregation from

microservices, monitoring of container

performance, and the ability to trace individual

transactions as these move in containers. Similarly,

observability tools must adapt to monitor logs

generated from a network of decentralized edge

devices. To do this, we will have to switch to more

distributed logging systems that will collect,

analyze, and react to data as it is generated at the

edge in real-time.

Today, observability platforms are being developed

to integrate better with edge computing; multi-

cloud and hybrid-cloud environments are more

common. This will allow businesses to dynamically

view their infrastructure, covering on-premise,

cloud, and edge devices. In addition to these

advanced features, logging systems will also

support real-time alerting, auto-scaling, and

predictive maintenance, which will help

organizations automate many observability

practices.

ELK Stack, centralized logging, observability, and

the future of cloud-native technologies will largely

be influenced and shaped by AI, Machine Learning,

and the cloud [34]. The automation, anomaly

detection, and predictive analytics interest will help

businesses work more effectively while tying ELK

with cloud-based resources like Kubernetes and

serverless, which allows better observation of

advanced, dispersed frameworks. Observability

tools will continue to react to the changing

landscape with more manageable, more precise

ways to manage, monitor, and secure applications

for the enterprise as the ecosystem evolves.

12. Conclusions

Centralized logging and observability have become

mission-critical for any modern enterprise IT

infrastructure, particularly those reliant on

distributed systems, microservices, and multi-cloud.

However, as businesses grow, logs often spread

across many diverse systems and services, making

tasks such as troubleshooting, performance

monitoring, and security incredibly difficult.

However, with centralized logging systems such as

AWS ELK Stack, companies can have their entire

systems under watch for proactive management and

resolve issues quickly before end users see them.

The combination of Elastic stack comes in very

handy for scalable and real-time log management

Naga Murali Krishna Koneru / IJCESEN 11-2(2025)3428-3451

3449

solutions in AWS with Elasticsearch, Logstash, and

Kibana (ELK stack). Elasticsearch's speed and

ability to efficiently perform index and search

operations on log data is crucial because businesses

produce enormous amounts of log data. By parsing

and normalizing data from different sources and

indexing it in Elasticsearch, Logstash allows us to

quickly and efficiently query logs from different

sources. Kibana (the visualization layer) has been

designed to consume this data and make it

worthwhile for operational users. This allows them

to have a user-friendly interface to make

dashboards, run queries, and see how far the

systems are going in real time.

Using AWS services such as CloudWatch, Lambda,

and S3 to log data with ELK Stack on ECS, EKS,

EC2, and more ensures that enterprises can easily

collect, process, and store logs. This enables

organizations to appropriately comprehend and

securely handle a host of cloud-native logs

comprised of servers and containers and cloud-

native serverless AWS functions. For example,

AWS also provides Amazon Elasticsearch Service

with high availability, scalability, and security for

mission-critical apps. In that sense, the ELK Stack

on AWS is a reliable and cost-efficient solution.

New technologies and trends, like a future for

logging and observability, will continue to be

formed. Depending on the situation, artificial

intelligence (AI) and machine learning (MI) will

determine how data will be read out from log data.

Detection of performance problem problems,

potential failures, and security breach breaches is

fastened using AI-powered anomaly detection and

predictive analytics. As automated anomaly

detection grows, organizations have the potential to

move to proactive monitoring and realize

significant reductions in downtime, efficiency of

operations, and more. ELK Stack integration with

cloud-native technologies such as Kubernetes and

serverless computing allows enterprises to observe

dynamically distributed environments more easily.

When businesses upgrade to run microservices and

containerized applications, centralized logging

systems such as ELK Stack will come with

advanced mechanisms that will allow them to

monitor and troubleshoot the containers in real-time

since the time of integration of edge computing and

multiple cloud environments, centralized logging

and observability will continue to exist in the

future. With most devices and systems becoming

connected at the edge, logging solutions must

respond to the differences in these distributed

architectures. Companies will rely heavily on

observability platforms at the end of the year for

real-time data processing, moving from having to

deal with massive amounts of log data across a

variety of environments and not having the

assurance that their systems are, in fact, performant

and secure in real-time. Centralized logging and

observability are becoming increasingly important

as complexities arise in enterprises' multiple

distributed systems. Using the ELK Stack on AWS

for managing logs in real-time offers a robust,

scalable, and flexible way to handle logs for

businesses to discover logs to enable high-

performance and secure applications. With the

advancement of technology in place, there is an

increased utilization of AI, cloud-native solutions,

and edge computing, which will aid in the

capability to monitor, analyze, and secure

enterprise applications and help organizations

innovate and scale confidently.

Author Statements:

 Ethical approval: The conducted research is

not related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial

interests or personal relationships that could

have appeared to influence the work reported in

this paper

 Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are available

on request from the corresponding author. The

data are not publicly available due to privacy or

ethical restrictions.

References

[1]Chavan, A. (2021). Eventual consistency vs. strong

consistency: Making the right choice in

microservices. International Journal of Software

and Applications, 14(3), 45-56.

 [2]Bhatnagar, D., SubaLakshmi, R. J., & Vanmathi, C.

(2020, February). Twitter sentiment analysis using

elasticsearch, logstash and kibana. In 2020

international conference on emerging trends in

information technology and engineering (ic-

ETITE) (pp. 1-5). IEEE.

[3]Azarmi, B. (2017). Learning Kibana 5.0. Packt

Publishing Ltd.

[4]Nishant, R. (2017). Visual logging framework using

ELK stack.

[5]Dhanagari, M. R. (2024). Scaling with MongoDB:

Solutions for handling big data in real-time.

Journal of Computer Science and Technology

Naga Murali Krishna Koneru / IJCESEN 11-2(2025)3428-3451

3450

Studies, 6(5), 246-264.

https://doi.org/10.32996/jcsts.2024.6.5.20

 [6]Cosola, D. (2024). Analysis and development of a

monitoring system for WAFs using AWS and ELK

Stack (Doctoral dissertation, Politecnico di Torino).

[7]Harjunpää, N. (2023). Log management system

technologies and methods for near real-time fault

analysis systems: An exploration of log shipping

and storage

[8]Karwa, K. (2024). The future of work for industrial

and product designers: Preparing students for AI

and automation trends. Identifying the skills and

knowledge that will be critical for future-proofing

design careers. International Journal of Advanced

Research in Engineering and Technology, 15(5).

[9]Kambala, G. (2023). Designing resilient enterprise

applications in the cloud: Strategies and best

practices. World Journal of Advanced Research

and Reviews, 17, 1078-1094.

[10]Goel, G., & Bhramhabhatt, R. (2024). Dual sourcing

strategies. International Journal of Science and

Research Archive, 13(2), 2155.

https://doi.org/10.30574/ijsra.2024.13.2.2155

 [11]Nazarbeigi, A. (2021). Migration to cloud and

security.

[12]Kumar, A. (2019). The convergence of predictive

analytics in driving business intelligence and

enhancing DevOps efficiency. International

Journal of Computational Engineering and

Management, 6(6), 118-142.

[13]Konneru, N. M. K. (2021). Integrating security into

CI/CD pipelines: A DevSecOps approach with

SAST, DAST, and SCA tools. International

Journal of Science and Research Archive.

Retrieved from https://ijsra.net/content/role-

notification-scheduling-improving-patient

 [14]Li, H., Zhang, H., Wang, S., & Hassan, A. E.

(2021). Studying the practices of logging exception

stack traces in open-source software projects. IEEE

Transactions on Software Engineering, 48(12),

4907-4924.

[15]Ekman, N. (2017). Handling Big Data using a

Distributed Search Engine: Preparing Log Data for

On-Demand Analysis.

[16]Ben-Shimol, L., Grolman, E., Elyashar, A., Maimon,

I., Mimran, D., Brodt, O., ... & Shabtai, A. (2024).

Observability and Incident Response in Managed

Serverless Environments Using Ontology-Based

Log Monitoring. arXiv preprint arXiv:2405.07172.

[17]Sardana, J. (2022). Scalable systems for healthcare

communication: A design perspective.

International Journal of Science and Research

Archive.

https://doi.org/10.30574/ijsra.2022.7.2.0253

 [18]Behrisch, M., Blumenschein, M., Kim, N. W., Shao,

L., El‐Assady, M., Fuchs, J., ... & Keim, D. A.

(2018, June). Quality metrics for information

visualization. In Computer Graphics Forum (Vol.

37, No. 3, pp. 625-662).

[19]Zamfir, V. A., Carabas, M., Carabas, C., & Tapus,

N. (2019, May). Systems monitoring and big data

analysis using the elasticsearch system. In 2019

22nd International Conference on Control Systems

and Computer Science (CSCS) (pp. 188-193).

IEEE.
 [20]Raju, R. K. (2017). Dynamic memory inference

network for natural language inference.

International Journal of Science and Research

(IJSR), 6(2).

https://www.ijsr.net/archive/v6i2/SR24926091431.

pdf

 [21]Sheta, S. V. (2023). Developing efficient server

monitoring systems using AI for real-time data

processing.

[22]Karwa, K. (2023). AI-powered career coaching:

Evaluating feedback tools for design students.

Indian Journal of Economics & Business.

https://www.ashwinanokha.com/ijeb-v22-4-

2023.php

 [23]Konda, M. (2023). Elasticsearch in action. Simon

and Schuster.

[24]Singh, V. (2024). AI-powered assistive technologies

for people with disabilities: Developing AI

solutions that aid individuals with various

disabilities in daily tasks. University of California,

San Diego, California, USA. IJISAE.

https://doi.org/10.9734/jerr/2025/v27i21410

[25]Nyati, S. (2018). Transforming telematics in fleet

management: Innovations in asset tracking,

efficiency, and communication. International

Journal of Science and Research (IJSR), 7(10),

1804-1810. Retrieved from

https://www.ijsr.net/getabstract.php?paperid=SR24

203184230

[26]Singh, V. (2024). Ethical considerations in

deploying AI systems in public domains:

Addressing the ethical challenges of using AI in

areas like surveillance and healthcare. Turkish

Journal of Computer and Mathematics Education

(TURCOMAT).

https://turcomat.org/index.php/turkbilmat/article/vi

ew/14959

 [27]Duncan, B., & Whittington, M. (2016). Cloud

cyber-security: Empowering the audit

trail. International Journal on Advances in

Security, 9(3).

[28]Iqbal, S., Kiah, M. L. M., Dhaghighi, B., Hussain,

M., Khan, S., Khan, M. K., & Choo, K. K. R.

(2016). On cloud security attacks: A taxonomy and

intrusion detection and prevention as a

service. Journal of Network and Computer

Applications, 74, 98-120.

 [29]Ahir, D. D., & Shaikh, N. F. (2024). Evaluation of

Elasticsearch Ecosystem Including Machine

Learning Capabilities. International Journal of

Safety & Security Engineering, 14(4)

[30]Fjällid, J. (2019). A comparative study of databases

for storing sensor data. [31]Doddapaneni, S.

(2015). A Secured Cloud System based on Log

Analysis.

 [31]Badshh, A., Daud, A., Khan, H. U., Alghushairy,

O., & Bukhari, A. (2024). Optimizing the over and

underutilization of network resources during peak

and off-peak hours. IEEE Access.

https://doi.org/10.32996/jcsts.2024.6.5.20
https://doi.org/10.30574/ijsra.2024.13.2.2155
https://ijsra.net/content/role-notification-scheduling-improving-patient
https://ijsra.net/content/role-notification-scheduling-improving-patient
https://doi.org/10.30574/ijsra.2022.7.2.0253
https://www.ijsr.net/archive/v6i2/SR24926091431.pdf
https://www.ijsr.net/archive/v6i2/SR24926091431.pdf
https://www.ashwinanokha.com/ijeb-v22-4-2023.php
https://www.ashwinanokha.com/ijeb-v22-4-2023.php
https://doi.org/10.9734/jerr/2025/v27i21410
https://www.ijsr.net/getabstract.php?paperid=SR24203184230
https://www.ijsr.net/getabstract.php?paperid=SR24203184230
https://turcomat.org/index.php/turkbilmat/article/view/14959
https://turcomat.org/index.php/turkbilmat/article/view/14959

Naga Murali Krishna Koneru / IJCESEN 11-2(2025)3428-3451

3451

[32]Gade, K. R. (2021). Data-driven decision making in

a complex world. Journal of Computational

Innovation, 1(1).

[33]Waseem, M., Ahmad, A., Liang, P., Akbar, M. A.,

Khan, A. A., Ahmad, I., ... & Mikkonen, T. (2024).

Containerization in Multi-Cloud Environment:

roles, strategies, challenges, and solutions for

effective implementation. arXiv preprint

arXiv:2403.12980.

[34]Raj, P., Vanga, S., & Chaudhary, A. (2022). Cloud-

Native Computing: How to design, develop, and

secure microservices and event-driven

applications. John Wiley & Sons.

