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Abstract:  
 

Precise energy demand forecasting is important in managing electrical power systems, 

particularly if univariate time series analysis can be applied. To overcome the 

shortcomings of traditional hybrid models, this paper proposes an improved deep learning 

architecture that combines Transformer layers, Long Short-Term Memory (LSTM), and 

Convolutional Neural Networks (CNN). The proposed architecture was trained and 

validated on historical hourly energy demand data from 2015 to 2018. Performance 

evaluation revealed that the CNN-LSTM-Transformer model significantly improved 

forecasting accuracy compared to the baseline CNN-LSTM model. Specifically, the 

hybrid model achieved a Mean Absolute Error (MAE) of 234.25, Root Mean Squared 

Error (RMSE) of 386.15, and Mean Absolute Percentage Error (MAPE) of 0.84%, 

alongside an R² score of 99.28%. These results confirm the model’s robustness in 

capturing both local temporal dynamics and long-range dependencies, making it a 

promising solution for real-time energy forecasting applications. 

 

1. Introduction 
 

Electrical grid stability and effectiveness depend on 

accurately forecasting energy demand, particularly 

as power systems become more complicated. 

Accurate predictions support better decision-making 

for energy generation, distribution, and 

consumption. This paper presents a modified deep 

learning method to improve prediction accuracy in 

univariate time series by combining Transformer 

architectures, Long Short-Term Memory (LSTM) 

networks, and Convolutional Neural Networks 

(CNN) [1]. CNNs are good at identifying local 

patterns in data, LSTMs manage time-varying 

sequential relationships, and Transformers provide 

attention mechanisms that can model long range 

interactions [2]. The integration of these models aim 

to surpass other models in predicting energy demand 

for long term reference and utilization. 

Numerous studies have been conducted to 

demonstrate the efficacy of deep learning in solving 

time series problems [1][2][3]. CNNs and LSTMs 

are widely used in hybrid models for energy 

forecasting due to their respective strengths in 

feature extraction and sequence modeling [4]. For 

example, a CNN-LSTM hybrid has been shown to 

provide better results than standalone LSTM or CNN 

models in power load forecasting tasks [5]. More 

recently, Transformer-based models have gained 

popularity for their attention mechanisms, which 

allow the model to focus on the most relevant parts 

of the sequence [6]. The Informer and Autoformer 

architectures are two such innovations that 

demonstrate strong performance in long sequence 

forecasting. Some studies have also introduced 

attention-augmented CNN-LSTM models, revealing 

noticeable improvements in forecast accuracy [7][8]. 

These efforts collectively highlight the potential of 

combining multiple architectures to improve 

forecasting tasks in energy systems. 

Despite progress, many studies tend to use either 

CNN-LSTM hybrids without attention mechanisms 

or rely solely on Transformer models that may not 

fully exploit local patterns in the data. Most existing 
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applications of Transformer-based forecasting are 

focused on multivariate time series or use synthetic 

datasets, leaving a gap in their application to real-

world univariate energy demand datasets. Moreover, 

few studies investigate the combined effect of CNN, 

LSTM, and Transformer in a single architecture for 

energy forecasting, particularly for univariate data. 

As a result, there is limited understanding of how 

these models perform collectively when applied to 

actual energy demand records over multiple years. 

This study seeks to address this gap by proposing a 

modified hybrid CNN-LSTM-Transformer model 

tailored to univariate energy demand forecasting. 

The model leverages CNN layers to extract 

meaningful short-term features, LSTM layers to 

learn sequential dependencies, and Transformer 

layers to incorporate long-term attention across the 

time series. By doing so, the model aims to capture 

both local and global temporal patterns, enhancing 

its forecasting capability. Unlike prior work that 

isolates these techniques, this unified approach is 

expected to yield more accurate and stable forecasts. 

The results of this model could provide valuable 

insights for energy providers and system operators 

seeking reliable demand prediction tools. 

Objective 

The main objective of this study is to develop a 

hybrid forecasting model combining Convolutional 

Neural Networks (CNN), Long Short-Term Memory 

(LSTM) networks, and Transformer architecture to 

improve the prediction accuracy of univariate energy 

demand time series data for the period from January 

1, 2015, to December 31, 2018. 

Specifically: 

1. To integrate CNN, LSTM, and Transformer 

networks for enhancing the performance in energy 

demand time series forecasting; 

2. To evaluate the performance of the proposed 

hybrid model by comparing it with hybrid CNN-

LSTM, and hybrid CNN-LSTM with Transformer 

models error metrics such as Mean Absolute Error 

(MAE), MAPE, Root Mean Squared Error (RMSE), 

and R2; and 

3. To generate a four-year daily energy demand 

forecast that can be used as reference for future 

needs. 

 

2. Methods 

 

2.1 Hardware  

 

The combination of an Intel Core i7-8700 CPU, 

16GB RAM, 1TB HDD, and a GTX 1660 GPU 

offers a practical baseline for evaluating 

performance in simulations, data analysis, and 

multimedia processing. This setup allows 

researchers to measure how well the system handles 

multitasking, real-time rendering, and large data 

sets. However, the reliance on a mechanical hard 

drive introduces slower read/write speeds, which 

may affect data-intensive operations. Integrating a 

solid-state drive in future studies could provide 

comparative insights on performance improvements, 

making this configuration a relevant case for 

evaluating hardware efficiency in applied computing 

research. 

 
Table 1. Computer Hardware Specification 

Hardware 

Components 

Specification 

CPU Intel Core i7-87000 CPU @ 3.20 Ghz 

Memory 16GB RAM 

Storage 1 TB HDD 

GPU 6GB NVIDIA GTX `1660 

 

2.2 Software 

 

The software tools listed in table 2 are integral 

components of the open-source for scientific 

computing. Anaconda Navigator functions as a 

graphical user interface for managing Python 

environments and packages, streamlining workflow 

setup for data science applications. Spyder, a 

lightweight IDE tailored for scientific computing, 

integrates an advanced code editor, interactive 

IPython console, and debugging capabilities, 

making it suitable for complex numerical tasks. 

Jupyter Notebook enables the execution of live code 

within a browser interface, supporting rich media 

outputs and facilitating reproducible research. 

Python, the underlying programming language, is 

renowned for its extensive libraries, clean syntax, 

and versatility across domains such as data analysis, 

machine learning, and software development. 

 
Table 2. List of Software 

Name License 

Anaconda Navigator Open-Source 

Spyder Open-Source 

Jupyter Notebook Open-Source 

Python Programming Language Open-Source 

 

2.3 Implementation Flow 

 

2.3.1 Data Gathering 

 

The data for this study was obtained from the 

transmission system operator (TSO), which 

provided detailed records of energy demand 

spanning from January 1, 2015, to December 31, 

2018 [9]. The dataset consists of hourly energy 

consumption data, recorded as univariate time series 

data. Print(data.head(10)) and print(data.tail(10)) 

were used to display the first and last 10 records, 

respectively, as shown in Figures. 1a and 1b. The 
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complete dataset, which shows the total energy use 

for each time step over the specified period, is 

displayed in Figure 2. 

 

 
               (a)           (b) 
Figure 1. Sample of records from the dataset 

 

 
Figure 2. Total load records over time 

 

2.3.3 Data Preprocessing 

 

The initial step involves loading the dataset using the 

pandas.read_csv() function, which reads the CSV 

file into a DataFrame. Once the data is loaded, 

duplicate entries are removed using 

drop_duplicates(). Removing duplicates is essential 

as they can introduce redundancy into the dataset, 

leading to biased learning and potentially overfitting 

the model [10][11]. After cleaning, missing values 

are handled using forward fill 

(fillna(method='ffill')), which replaces missing data 

with the most recent valid observation [12][13][14]. 

The next preprocessing step is feature selection. The 

code selects the relevant column (typically 

representing the time series data such as energy 

demand) and reshapes the values into a 2D array to 

ensure that the data is in a format suitable for 

machine learning algorithms [15]. After reshaping, 

the data is normalized using MinMaxScaler from the 

sklearn.preprocessing module. Scaling the data to a 

range between 0 and 1 is critical for CNN models, as 

they are sensitive to the magnitude of input data. 

Normalization ensures that all features contribute 

equally to the model, preventing any one feature 

from dominating the learning process and improving 

convergence speed during training [16][17]. 

2.3.4 Deep Learning Architecture 

 

2.3.4.1 Convolutional Neural Network (CNN) 

Layer 

 

The first layer of the model utilizes CNNs to extract 

local features from the input time series data. The 

CNN layer helps in identifying spatial patterns and 

short-term dependencies in the data by applying 

convolutional filters to the time series [18][19]. This 

layer processes the input data with a series of 

convolutional and pooling operations to reduce 

dimensionality and highlight key features, which are 

essential for subsequent forecasting tasks. 

 

2.3.4.2 Long Short-Term Memory (LSTM) 

Layer: 

 

Following the CNN layer, the LSTM network is 

employed to capture the long-term temporal 

dependencies present in the energy demand time 

series. LSTMs are a type of recurrent neural network 

(RNN) that can retain information over extended 

periods, which is crucial for understanding trends 

and cycles in energy consumption [20][21]. The 

LSTM layer helps to model the sequential nature of 

the time series data by processing the extracted 

features from the CNN layer [22]. This layer is 

composed of multiple LSTM cells to ensure the 

model can effectively remember relevant past 

information while mitigating the vanishing gradient 

problem often encountered in traditional RNNs. 

 

2.3.4.3 Transformer Layer 

 

To further enhance the model's ability to capture 

long-range dependencies and contextual 

relationships in the time series, the Transformer 

layer is integrated into the architecture. This 

component uses self-attention mechanisms to weigh 

the importance of different time steps in the series, 

allowing the model to focus on the most relevant 

data points. The Transformer's attention mechanism 

is particularly useful in capturing global 

dependencies that may span long intervals within the 

data, which traditional LSTM networks may struggle 

to model effectively [23]. Multi-head attention is 

used to allow the model to attend to different aspects 

of the data simultaneously, improving its 

performance in forecasting [24][25][25]. 

 

2.4 Propose Architecture 

 

The proposed hybrid deep learning architecture 

integrates Convolutional Neural Networks (CNN), 

Long Short-Term Memory (LSTM) networks, and 

Transformer models to forecast energy demand in 

univariate time series data. This integration seeks to 

leverage the strengths of each model to improve 

forecasting accuracy, particularly in capturing both 

local and global dependencies.  
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The CNN component serves as the initial layer, 

where it performs feature extraction from the raw 

time series data. CNNs are particularly effective at 

detecting short-term fluctuations and local patterns, 

such as spikes or daily periodicities, that are 

common in energy demand data [18]. These local 

features are essential for accurate forecasting in the 

short-term, as energy consumption often experiences 

rapid fluctuations or changes over small time 

intervals. CNN's ability to process data through 

convolutional filters allows it to identify important 

characteristics like trend changes or anomalies in the 

energy demand, which are then passed to the next 

layers for further processing [19]. This feature 

extraction step ensures that the subsequent layers 

work with more relevant and condensed data that can 

help improve the performance of the desired output. 

Following the CNN layers, the LSTM network is 

introduced to model the temporal dependencies 

within the time series data. Energy demand typically 

exhibits long-term patterns, such as daily and weekly 

cycles, seasonal variations, or annual trends, which 

the LSTM is well-suited to capture. LSTMs are 

designed to handle sequences, learning from past 

data and retaining information over long intervals. 

By using gates to control the flow of information, 

LSTMs are able to learn which data points to 

remember and which to forget, allowing the model 

to effectively learn from historical energy demand 

while avoiding overfitting. This capability is 

particularly important in energy forecasting, where 

past demand can heavily influence future 

predictions. The LSTM layers, therefore, provide the 

model with the ability to understand and predict 

long-term trends in energy consumption, which are 

essential for accurate forecasting. 

The Transformer component is added to the 

architecture to address the limitation of traditional 

sequence-based models in capturing long-range 

dependencies. While CNN and LSTM are powerful 

in identifying local patterns and learning temporal 

dependencies, they may struggle with long-term 

relationships that span over many time steps. The 

Transformer architecture, with its self-attention 

mechanism, allows the model to focus on the most 

relevant time steps in the series, regardless of their 

position in the sequence. This attention mechanism 

evaluates the importance of each time step in relation 

to others, enabling the model to learn which past 

events or patterns are most influential for predicting 

future demand. This is particularly useful in energy 

forecasting, where certain external events or periodic 

changes may not be immediately adjacent in the time 

series but still significantly impact future demand. 

The Transformer’s ability to focus on global 

relationships across the sequence helps capture these 

distant dependencies, further enhancing the model’s 

forecasting capabilities. 

The combination of these three models benefit from 

the strengths of each, providing a more robust 

solution for forecasting tasks that require 

understanding both short-term fluctuations and long-

term trends. The hybrid model can effectively handle 

energy demand’s complex patterns, offering 

superior forecasting performance compared to 

single-model approaches. 

Finally, the fully connected (FC) layers are 

employed after the CNN, LSTM, and Transformer 

layers to aggregate the learned features and produce 

the final output. These layers help synthesize the 

information captured by the previous layers and 

make the final prediction. The output layer, using a 

linear activation function, generates the forecasted 

energy demand value for the next time step. The 

model is trained using mean squared error (MSE) as 

the loss function to minimize the prediction error and 

improve the model's accuracy over time. Fig 3 

illustrates the entire flow of the proposed 

architecture. 

 

 
 

Figure 3. Hybrid CNN-LSTM with Transformer 

Architecture 

2.5 Model Training and Evaluation 

 

Once the data is cleaned, reshaped, and scaled, the 

code generates sequences of fixed length for the time 

series forecasting task. This is accomplished using 

the create_sequences() function, which splits the 

time series into input-output pairs. Each input 

consists of a sequence of past observations, while the 

corresponding output is the next time step in the 

series. This technique, often referred to as the sliding 

window approach, is fundamental for teaching the 

model to learn from previous data to predict future 

values [27]. Sequence generation helps capture 

temporal dependencies that are critical for accurate 

time series forecasting [28]. After generating 

sequences, the dataset is shuffled to avoid any biases 

introduced by the ordering of the data, ensuring that 

the model learns generalizable patterns rather than 

memorizing specific sequences. The shuffled dataset 

is then split into training and testing sets, with 80% 

used for training and the remaining 20% reserved for 

testing. This division ensures that the model is 

evaluated on unseen data, providing a robust 

measure of its generalization capability [29]. 

The model’s performance is evaluated using MAE, 

MAPE, RMSE, and R². MAE measures the average 

absolute difference between predicted and actual 
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values, with lower values indicating better accuracy. 

However, it doesn’t penalize larger errors more 

heavily. MAPE expresses the error as a percentage 

of the actual values, offering a relative measure of 

accuracy, but it can be skewed by small actual 

values. RMSE penalizes large errors by squaring the 

differences before averaging, making it sensitive to 

outliers and large deviations. Finally, R² indicates 

the proportion of variance in the data explained by 

the model, with higher values showing better fit. 

Together, these metrics provide a comprehensive 

view of the model’s accuracy, sensitivity to errors, 

and its ability to explain the variability in energy 

demand [30][31]. 

 

3. Results and Discussion 

 

3.1 Training and Loss Curve Analysis 

 

Figure 4 illustrates the training and validation loss 

curves for both the Hybrid CNN-LSTM model and 

the CNN-LSTM-Transformer model. In both cases, 

a rapid decrease in loss is observed within the first 

50 iterations, indicating effective learning and fast 

convergence during the early stages of training. The 

Hybrid CNN-LSTM model demonstrates a smooth 

convergence pattern, with only a minimal gap 

between training and validation loss curves, 

suggesting good generalization without significant 

overfitting. 

Similarly, the CNN-LSTM-Transformer model 

exhibits consistently low loss values across the 

training epochs. The close alignment between its 

training and validation loss curves indicates stable 

learning behavior and further affirms the model’s 

robustness against overfitting. The consistently low 

loss values also reflect the model’s ability to 

effectively minimize prediction error while 

maintaining stability across the dataset. 

Overall, these patterns suggest that both hybrid 

models—especially the CNN-LSTM-

Transformer—achieved efficient training dynamics, 

ensuring reliable and accurate forecasting outcomes 

suitable for real-world energy demand prediction 

applications. 

 

 
Figure 4. Training and validation curves of CNN-LSTM and CNN-LSTM with Transformer 

 

3.2 Performance Metrics Evaluation 

 

The comparative performance assessment between 

the CNN-LSTM and CNN-LSTM-Transformer 

models clearly demonstrates the significant impact 

of integrating the Transformer layer into the hybrid 

architecture. As presented in Table 3, the CNN-

LSTM-Transformer model achieved superior 

results across all key performance metrics. 

Specifically, it recorded a lower Mean Absolute 

Error (MAE) of 232.95, a substantial improvement 

over the 499.08 MAE exhibited by the CNN-

LSTM model. Likewise, the Mean Absolute 

Percentage Error (MAPE) decreased from 1.80% 

to 0.83%, while the Root Mean Squared Error 

(RMSE) was reduced from 671.37 to 374.88. These 

reductions indicate a higher degree of prediction 

accuracy and a significant minimization of forecast 

errors. 

In addition to these error metrics, the coefficient of 

determination (R²) further supports the enhanced 

performance of the proposed model, increasing 

from 97% in the CNN-LSTM configuration to 

99.33% with the Transformer integration. A higher 

R² value signifies a more precise fit between the 

predicted and actual energy demand values, 

reflecting the model’s robust capability to 

generalize across unseen data. 

These results collectively highlight the efficacy of 

incorporating the Transformer’s self-attention 

mechanism, which enables the model to better 

capture long-range temporal dependencies and 

complex patterns within the univariate time series 

data. The improved performance metrics affirm 

that the CNN-LSTM-Transformer hybrid model 

offers a more accurate, reliable, and scalable 

solution for energy demand forecasting compared 

to traditional hybrid approaches. 
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Table 3 Model comparison from the different metrics used. 

Architecture MAE MAPE RMSE R2 

CNN-LSTM 499.08 1.80% 671.37 97% 

CNN-LSTM-Transformer 234.25 .84% 386.15 99.28% 

 

4.3 Time Series Prediction Analysis 

 

Figure 5 presents a comparative visualization of the 

actual versus predicted energy consumption values 

over time, showcasing the predictive performance 

of the CNN-LSTM-Transformer model. The high-

density overlap observed between the two time-

series curves indicates a strong alignment, 

demonstrating the model’s high predictive 

accuracy. This close correspondence suggests that 

the model effectively captures both short-term 

fluctuations and longer-term temporal 

dependencies embedded within the data. 

The minimal visible deviation between the actual 

and predicted values highlights the model’s ability 

to generalize well across the dataset, ensuring 

consistency and reliability in forecasting. This 

outcome can be attributed to the hybrid model’s 

architectural strengths: convolutional layers enable 

efficient feature extraction, LSTM units adeptly 

handle sequential patterns, and the Transformer’s 

self-attention mechanisms enhance the modeling of 

long-range dependencies. Together, these 

components contribute to precise and dynamic 

forecasting performance. 

The robust prediction results suggest that the CNN-

LSTM-Transformer model is well-suited for real-

world energy demand forecasting, particularly in 

environments characterized by dynamic and 

volatile consumption patterns. Its ability to adapt to 

both short-term and long-term variations 

strengthens its applicability for operational 

decision-making and strategic planning within 

energy management systems.

 

 
 

Figure 5. Actual vs. predicted daily energy consumption based on CNN-LSTM-Transformer Model output 

 

3.4 Five-Year Forecasted Daily Energy 

Consumption Analysis 

 

Figures 6a and 6b display the forecasted daily 

energy consumption values generated by the CNN-

LSTM-Transformer model, focusing on sample 

ten-day periods in late December for the years 2025 

and 2028, respectively. The figures illustrate the 

model’s capacity to accurately project future 

energy demands based on historical patterns and 

learned temporal dependencies. 

The close alignment between the forecasted trends 

for both years underscores the model’s capability 

to generalize across different time frames, even 

under the influence of seasonal variations and 

potential consumption shifts. This highlights the 

strength of employing advanced deep learning 

architectures in time series analysis, particularly 

for applications that require high forecasting 

precision, such as energy demand management. 

By demonstrating accurate short-term forecasting 

over distinct future periods, the CNN-LSTM-

Transformer model affirms its potential as a 

valuable tool for predictive analytics in dynamic 

and evolving environments, thereby supporting 

proactive planning and resource optimization 

initiatives in the energy sector. 
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(a)      (b) 

Figure. 6. Sample of daily forecasted energy for years 2025-2028 

 

Figure 7 illustrates the forecasted average yearly 

energy demand from 2025 through 2028, with 

values ranging narrowly from approximately 

27,244 to 27,335 megawatt-hours. Understanding 

this trend is crucial for energy providers, as it 

allows for better planning in terms of resource 

allocation, infrastructure development, and 

sustainability strategies 

 

 
Figure 7. Forecasted energy demand from 2025 to 

2028 

 

4. Conclusion 

 

The experimental findings validate that integrating 

Convolutional Neural Networks (CNN), Long 

Short-Term Memory (LSTM) networks, and 

Transformer modules into a unified model 

architecture significantly enhances the 

performance of univariate energy demand 

forecasting. The proposed hybrid model 

consistently outperformed the conventional CNN-

LSTM configuration across all evaluation metrics. 

Specifically, the inclusion of the Transformer’s 

self-attention mechanism led to substantial 

reductions in prediction errors, lowering the Mean 

Absolute Error (MAE) from 499.08 to 234.25 and 

the Root Mean Squared Error (RMSE) from 671.37 

to 386.15. Similarly, the Mean Absolute 

Percentage Error (MAPE) decreased from 1.80% 

to 0.84%, reflecting greater relative accuracy. 

Furthermore, the coefficient of determination (R²) 

improved from 97% to 99.28%, indicating a 

superior model fit to the actual demand data. These 

results collectively demonstrate the model’s 

capacity to effectively capture short-term 

fluctuations through CNN, sequential 

dependencies through LSTM, and long-range 

temporal correlations through Transformer, 

thereby offering a more comprehensive, precise, 

and reliable forecasting framework. 

 

Recommendations 

In light of the findings, the following 

recommendations are proposed to further enhance 

the model's performance, adaptability, and 

scalability: 

1. Incorporate Exogenous Variables: 

Future work should integrate external factors such 

as weather data and economic indicators to validate 

the model’s adaptability. Additionally, applying 

the model to multivariate datasets from diverse 

domains or regions is recommended to assess its 

broader applicability. 

2. Utilize Automated Tuning Frameworks: 

Employing automated tuning methods, such as 

Bayesian optimization or genetic algorithms, could 

uncover optimal configurations across the CNN, 

LSTM, and Transformer components, leading to 

potential improvements in model performance. 

3. Test on Scalable Computing Environments: 

It is suggested that future implementations test the 

model architecture on scalable environments like 

distributed cloud platforms to evaluate 

performance under high-demand and large-scale 

conditions. 
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