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Abstract:  
 

Microgrids (MGs) are decentralized energy systems that integrate Distributed Energy 

Resources (DERs), energy storage units, and advanced control mechanisms to ensure 

reliable power supply. Due to the intermittent nature of renewable energy sources, 

accurate load forecasting is crucial for the stable operation of MGs, particularly in both 

grid-tied and islanded modes. This study explores the performance of multiple 

forecasting techniques, including Linear Regression (LR), Regression Tree (RT), Support 

Vector Regression (SVR), Gaussian Process Regression (GPR), and Artificial Neural 

Networks (ANN), to predict MG load using historical load and meteorological data. The 

models were evaluated using comprehensive datasets that include calendar parameters 

and detailed weather metrics such as temperature, humidity, wind speed, and felt 

temperature. Performance was assessed through error metrics including Mean Absolute 

Percentage Error (MAPE), Mean Squared Error (MSE), and Root Mean Squared Error 

(RMSE). Among the tested models, the ANN model incorporating a full set of 

meteorological parameters achieved the best performance, with a MAPE value of 2.58%. 

These findings highlight the importance of integrating detailed meteorological data for 

load forecasting in MGs, providing a framework for more reliable energy planning and 

enhanced operational efficiency. 

 

1. Introduction 
 

For power systems, Short-Term Load Forecasting 

(STLF) is of great importance. A large amount of the 

energy produced cannot be stored due to reasons 

such as high cost, inefficiency and physical size in 

energy storage systems. Therefore, the energy 

produced is mostly transferred to the loads through 

power distribution lines after undergoing some 

energy transformation [1]. In this situation 

generation-consumption imbalance can lead to 

voltage instability, blackouts or other disruptions, 

making it vital to effectively manage this balance in 

power systems. Since MG loads are mostly fed from 

renewable energy sources with high dependence on 

weather conditions, maintaining this balance is even 

more critical for MGs. STLF is important for a stable 

grid control by determining the operation of 

generation units and ensuring this balance. 

Furthermore, load forecasting offers many 

additional advantages in the long-term, such as the 

ability to include or remove power units from the 

system and define the characteristics of power 

purchase agreements [2]. 

Electricity load, or electrical demand, is influenced 

by a wide range of factors. Although factors such as 

population density, economic development and 

geographical location reveal the electrical load 

pattern of the region, calendar parameters and 

meteorological factors have a greater impact in 

defining instantaneous load fluctuations [1,3]. The 

calendar effect is basically the pattern created by the 

date-based load model. More specifically, the effects 

of temporal differences affecting social life and 

industry, such as day-night, weekday-weekend, 

summer-winter, etc., are reflected in the electrical 

load profile [4]. Another important factor affecting 

the electrical load is meteorological parameters. 

Many studies in the literature indicate that weather 

effects are among the factors that have the greatest 

impact on the load profile. The increased use of 

heating and cooling systems, especially in difficult 
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temperature conditions, directly affects electricity 

consumption [4,5,6]. 

There are various techniques based on statistical 

methods and machine learning for load prediction in 

the literature. In [1], the hybrid forecasting model 

utilizes the SVR method for the weather-sensitive 

component of the load, while the Holt-Winters 

method is employed for the base part. The achieved 

success rate is 2.73% MAPE. In [7], STLF for MGs 

is made using Group Method of Data Handling 

(GMDH) and Artificial Neural Networks (ANN) 

methods, and the advantages, disadvantages and 

success rates of the models are given. As a result of 

the study, it was stated that ANN made more 

successful effective predictions than GMDH. In [8], 

the deep recurrent neural network with long short-

term memory model they developed reached a 

MAPE value of 7.43% in the prediction they made 

using historical load and weather data at 1 hour 

resolution. In [9], the load was forecasted using 

Seasonal Autoregressive Integrated Moving 

Average (SARIMA) and Multiple Linear Regression 

(MLR) methods with half-hourly load and weather 

data resolution. In the study showing that the 

SARIMA method makes more successful forecasts 

than MLR, it is also mentioned that prediction 

successes vary seasonally, so more accurate 

predictions can be made by using a specific 

forecasting method to each season. In [10], a hybrid 

machine learning technique with SVR and Long 

Short-Term Memory (LSTM) methods was 

developed to load forecasting for a MG without 

using meteorological data. MAPE values for SVR, 

LSTM and hybrid model were calculated as 12.83, 

10.48 and 3.74, respectively. In [11], Autoregressive 

Integrated Moving Average Exogenous (ARIMAX), 

Neural Networks (NN) and Wavelength Neural 

Networks (WNN) methods were compared for MG 

load estimation and WNN was determined as the 

most successful method for the study. 

This study bridges the gap by combining calendar 

and weather data, evaluating multiple forecasting 

techniques, and providing a detailed comparison of 

their performance using metrics such as MAPE, 

MSE, and RMSE. Our results demonstrate the 

superiority of the ANN model with enhanced 

meteorological inputs, achieving a MAPE below 

3%, showcasing its potential for reliable MG load 

forecasting. 

 

2. Material and Methods 

 
2.1 Data Preparation 

In this paper, electrical load data of the city of 

Duquesne, USA, was obtained through the open 

access data sharing management tool called Data 

Miner. Calendar factors have been created with 

historical parameters such as year, month, day and 

hour, as well as the parameters resulting from their 

derivation. Some of these derived factors are: 

 The hour index provides a better definition of the 

model by dividing the day into time intervals 

where consumption intensity varies.  

 The week index defines the situation between 

weekdays and weekends where consumption 

varies. 

 DST index determines the dates when daylight 

saving time is active in the USA. 

The meteorological dataset for the same region was 

obtained through the web service OpenWeather. 

Along with temperature and humidity data, which 

are frequently used in load forecasting models, wind 

speed, dew point, felt temperature and weather 

condition index are presented as parameters in this 

study. The sampling period for each data type was 

set to one hour and standardized to the UTC 

(Universal Time Coordinate). 

 

2.2 Correlation Analysis 

In this study, correlation analysis was used to 

investigate the relationship between meteorological 

data and electrical load. Correlation analysis is a 

statistical method that measures the strength and 

direction of the relationship between two variables. 

The Pearson correlation coefficient, denoted as 𝑅, 

quantifies the magnitude and direction of this 

relationship. The formula for calculating the Pearson 

correlation coefficient is presented in equation 1. 

𝑅 =
∑ (𝑥𝑖−𝑥)(𝑦𝑖−𝑦)

𝑛
𝑖=1

∑ (𝑥𝑖−𝑥)
2(𝑦𝑖−𝑦)

2𝑛
𝑖=1

            (1) 

Where, 𝑥𝑖 is the value of the independent variable, 𝑥 

is the average of the independent variables, 𝑦𝑖 is the 

value of the dependent variable 𝑦 is the average of 

the dependent variables and 𝑛 is the number of 

variables.  

In this study, meteorological data serves as the 

independent variable, while electrical load data is the 

dependent variable. Upon examining the scatter plot 

of electrical load versus air temperature shown in 

Fig. 1, a negative correlation is observed for 

temperatures below 15°C, whereas a positive 

correlation is observed for temperatures above 15°C. 

Table 1 presents the correlation coefficients between 

electrical load and various parameters, including 

temperature, perceived (feels-like) temperature, dew 

point, humidity, and wind speed. As a result of the 

analysis, it is seen that temperature and perceived 

temperature have a strong linear relationship with 

the load, especially in summer months. In summer, 

temperature, perceived temperature, dew point, and 

wind speed are positively correlated with load and 

negatively correlated with humidity. In winter 
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months, while the load is negatively correlated with 

other parameters except wind speed, it is seen that 

the linear relationship between load and the wind is 

almost non-existent. Apart from these parameters, 

different weather conditions (clear, cloudy, rainy, 

snowy, foggy, etc.) are expressed numerically and 

included in the dataset. 

 

 

 
Figure 1. Load-temperature scatter plot. 

 
Table 1. Correlation coefficient of some meteoritical 

parameters. 

Parameters Summer Winter 

Temperature 0.8940 -0.5390 

Feels like 0.8903 -0.5466 

Dew point 0.4716 -0.5839 

Humidity -0.4670 -0.2438 

Wind speed 0.2744 0.0384 

 
2.3 Load Forecasting Models 

In this study, Short-Term Load Forecasting (STLF) 

was performed using Linear Regression (LR), 

Regression Tree (RT), Support Vector Regression 

(SVR), Gaussian Process Regression (GPR), and 

Artificial Neural Network (ANN) techniques within 

the MATLAB environment. Table 2 presents the 

detailed configurations of the models used for load 

forecasting, including various LR models (Linear, 

Interactions, Robust, and Stepwise), RT models 

(Fine, Medium, and Coarse), SVR models with 

different kernels (Linear, Quadratic, Cubic, and 

Gaussian at varying scales), GPR models with 

diverse kernels (Rational Quadratic, Squared 

Exponential, Matern 5/2, and Exponential), and a 

fully configured ANN model optimized with 

Bayesian Regulation and 22 hidden layers using a 

sigmoid activation function. 

Linear Regression (LR): One of the most basic ways 

to model the linear relationship between independent 

variables and dependent variables. In cases where 

the number of variables is single, the model is called 

simple LR, and models in which the relationship of 

more than one parameter with the response variable 

is examined, such as in load forecasting, are called 

multiple LR [12]. 

Regression Tree (RT): RT is a machine learning 

algorithm that helps predict the dependent variable 

based on one or more independent variables. RT use 

a tree structure similar to decision trees, but the 

branches of these trees are based on partitioning of 

the independent variables, with a regression 

(prediction) value given at the end of each branch 

[13]. 

Support Vector Regression (SVR): SVR aims to 

classify predictions in the most accurate way by 

aiming to find the most appropriate separating 

hyperplane between two or more classes. Using 

customizable kernel functions, it is suitable for both 

linear and nonlinear regression applications [14]. 

 Gauss Process Regression (GPR): GPR is a 

regression method used to make data predictions that 

often contain uncertainty. Similar to SVR, GPR can 

be customized for different datasets with its kernel-

based structure [15]. 

Artificial Neural Network (ANN): ANN is a 

machine learning model inspired by biological 

neurons. ANN usually consists of an input layer, one 

or more hidden layers, and an output layer. Transfer 

functions that produce outputs according to hidden 

layer inputs realize the train through the interaction 

of neurons. Some transfer functions are: Linear, 

sigmoid, hyperbolic tangent and gaussian. As a 

result of the experiments, ANN with 22 hidden 

layers and sigmoid activation function was trained 

with Bayesian Regulation (BR) optimization for this 

study [16]. Four models were developed to assess the 

impact of forecast parameters on various techniques 

in load forecasting and to identify which parameters 

exert influence. These models, in which calendar 

effects and meteorological effects are used 

individually or together, are listed below. The 

success of the models used as input in each 

prediction technique was compared based on the 

evaluation criteria of MAPE, MSE, and RMSE. 

M1: Includes calendar parameters and historical load 

data only. 

M2: Includes temperature parameters and historical 

load data only. 

M3: Combines calendar parameters, temperature, 

humidity parameters, and historical load data. 

M4: Integrates calendar parameters, temperature, 

humidity, feels-like temperature, dew point, wind 

speed, weather condition parameters, and historical 

load data. 

 

2.3 Evaluation Metrics 

To evaluate the accuracy of the forecasting models, 

this study employs three commonly used error 

metrics: Mean Absolute Percentage Error (MAPE),
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Table 2. Detailed forecast models with model parameters. 

Forecast Model Detailed Forecast Model Model Parameters 

Linear Regression 

Linear Regression 
Preset: Linear 

Terms: Linear 

Interactions LR 
Preset: Interactions linear 

Terms: Interactions 

Robust LR 
Tuning constant  

for robustness: 4.6850 

Stepwise LR Maximum number of steps: 1000 

Regression Tree 

Fine RT 

Maximum splits: 71207 

Minimum leaf size:  

Minimum parents: 10 

Medium RT 

Maximum splits: 71207 

Minimum leaf size: 12 

Minimum parents: 24 

Coarse RT 

Maximum splits: 71207 

Minimum leaf size: 36 

Minimum parents: 72 

Support Vector Regression 

Linear SVR 

Kernel: Linear 

 Epsilon: 30.9118 

Regularization par. (C): 309.1179 

Kernel scale (Gamma): Auto 

Quadratic SVR 

Kernel: Quadratic 

 Epsilon: 30.9118 

Regularization par. (C): 309.1179 

Kernel scale (Gamma): Auto 

Cubic SVR 

Kernel: Cubic 

 Epsilon: 30.9118 

Regularization par. (C): 309.1179 

Kernel scale (Gamma): Auto 

Fine Gaussian SVR 

Kernel: Gaussian  

Epsilon: 30.9118 

Regularization par. (C): 309.1179 

Kernel scale (Gamma): 1.3 

Medium Gaussian SVR 

Kernel: Gaussian 

Epsilon: 30.9118 

Regularization par. (C): 309.1179 

Kernel scale (Gamma): 1.3 

Coarse Gaussian DVR 

Kernel: Gaussian 

Epsilon: 30.9118 

Regularization par. (C): 309.1179 

Kernel scale (Gamma): 20 

Gauss Process Regression 

Rational Quadratic GPR 

Kernel: Rational Quadratic 

Beta: 1987.24 

Sigma: 50.82 

Active set size: 2000 

Squared Exponential GPR 

Kernel: Squared Exponential 

Beta: 1751.76 

Sigma: 60.67 

Active set size: 2000 

Matern 5/2 GPR 

Kernel: Matern 5/2 

Beta: 1945.80 

Sigma: 52.98 

Active set size: 2000 

Exponential GPR 

Kernel: Exponential 

Beta: 2185.63 

Sigma: 3.11 

Active set size: 2000 

Artificial Neural Network Artificial Neural Network 

Number of hidden layers: 22  

 Activation function: Sigmoid 

Optimization method: Bayesian 

Regulation 
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Mean Squared Error (MSE), and Root Mean 

Squared Error (RMSE). These metrics provide 

complementary insights into the forecasting 

performance. 

Mean Absolute Percentage Error (MAPE): MAPE is 

widely used in load forecasting as it provides a scale-

independent measure of prediction accuracy by 

expressing errors as a percentage of the actual 

values. The formula for MAPE is given in equation 

2. 

 

MAPE =
1

𝑛
∑ |

𝑦𝑡−𝑦𝑡

𝑦𝑡
|𝑛

𝑡=1 × 100            (2) 

 

Where, 𝑦𝑡 is the metered value, 𝑦𝑡 is the forecasted 

value and 𝑛 denotes the number of samples. 

 

Mean Squared Error (MSE): MSE measures the 

average squared difference between actual and 

predicted values, penalizing larger errors more 

significantly than smaller ones. The formula for 

MSE is given in equation 3. 

 

MSE =
1

𝑛
∑ (𝑦𝑡 − 𝑦

𝑡
)
2𝑛

𝑡=1            (3) 

 

Where, 𝑦𝑡 is the metered value, 𝑦𝑡 is the forecasted 

value and 𝑛 denotes the number of samples. 

 

Root Mean Squared Error (RMSE): RMSE is the 

square root of MSE, offering a measure of error in 

the same units as the target variable. It is defined as 

in equation 4. 

 

RMSE = √MSE           (4) 

 

This RMSE metric provides a clearer interpretation 

of average prediction errors in the context of the 

dataset, as it reflects the magnitude of errors in the 

same scale as the forecasted values (e.g., in 

megawatts for load forecasting). 

 

3. Results and Discussions  

 
In this study, the load forecasting performance of 

various models, including Linear Regression (LR), 

Regression Tree (RT), Support Vector Regression 

(SVR), Gaussian Process Regression (GPR), and 

Artificial Neural Network (ANN), was evaluated 

using historical load and meteorological data. The 

models were assessed based on MAPE, MSE, and 

RMSE metrics to provide a comprehensive 

comparison of their accuracy and reliability. 

 

3.1 Model Performance Across Metrics 

Table 3 presents the MAPE values for different 

forecasting techniques across all models (M1 to 

M4). The ANN model consistently outperformed 

other methods, particularly in the M4 configuration, 

where it achieved a MAPE of 2.58%, highlighting its 

superior ability to capture complex, nonlinear 

relationships in the dataset. 

Similarly, as shown in tables 4 and 5, the ANN 

model exhibited the lowest MSE and RMSE values 

under the M4 configuration. Specifically, the RMSE 

value of 46.06 MWh indicates that the ANN model's 

average prediction error is significantly lower than 

other techniques, making it the most reliable model 

for practical applications. 

 
Table 3. MAPE (%) values of different forecast 

techniques. The bold values represent the best 

performance on the data set 

Techniques M1  M2 M3 M4 

LR 8.0551 7.5112 5.4327 4.8904 

RT 6.7217 7.8659 3.8531 3.7183 

SVR 6.8766 7.3702 3.8443 3.1848 

GPR 3.9325 7.9294 3.6035 3.3999 

ANN 5.2533 7.2061 2.6465 2.5813 

 

 
Table 4. MSE (MWh e+03) values of different forecast 

techniques. The bold values represent the best 

performance on the data set 

Techniques M1  M2 M3 M4  

LR 18.212 16.775 14.011 8.2117 

RT 13.287 18.301 5.4476 4.2469 

SVR 11.846 15.977 4.1296 2.9334 

GPR 4.8197 18.155 3.6026 3.1877 

ANN 7.4067 14.843 2.2229 2.1218 

 
Table 5. RMSE (MWh) values of different forecast 

techniques. The bold values represent the best 

performance on the data set 

Techniques M1  M2 M3 M4 

LR 134.95 129.52 118.37 90.618 

RT 115.27 135.28 73.808 65.168 

SVR 108.84 126.40 64.262 54.160 

GPR 69.424 134.74 60.022 56.460 

ANN 86.062 121.83 47.147 46.063 

 

3.2 Comparative Analysis of Models 

The results reveal several key insights: 

 Linear Regression (LR) models struggled to 

capture the underlying complexity of the data, as 

evidenced by their higher MAPE, MSE, and 

RMSE values, particularly in the M1 and M2 

configurations. 

 Regression Tree (RT) and Support Vector 

Regression (SVR) models showed improved 

performance when additional meteorological 
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data were included (M4), but their accuracy 

remained inferior to that of the ANN model. 

 Gauss Process Regression (GPR) model has the 

best performance in the M1 configuration among 

all the models. However, it still cannot 

outperform the ANN model in the other 

configurations. 

 

3.3 Practical Implications 

The ANN model's strong performance, particularly 

in terms of low RMSE, demonstrates its potential for 

real-world applications. The ability to accurately 

forecast hourly load fluctuations is crucial for 

optimizing energy resource allocation and 

maintaining grid stability. As illustrated in Fig. 2, the 

M4-ANN model closely tracks the actual metered 

load, providing reliable predictions even during 

periods of significant load variation. 

 

 

Figure 2. Hourly load consumption using the M4-ANN 

model and actual metered load data. 

 

3.4 Comparison with Literature 

The findings of this study align with existing 

literature, which emphasizes the effectiveness of 

ANN-based models for load forecasting tasks. For 

instance, studies such as [7] and [8] highlight similar 

advantages of ANN in capturing nonlinear patterns, 

particularly when combined with diverse input 

parameters. However, the improved accuracy 

achieved in this study, with a MAPE below 3%, 

demonstrates the added value of incorporating a 

wider range of meteorological data. The subject is 

applied in different fields as reported in literature 

[17-26]. 

 

4. Conclusions 
 

In this study, in addition to calendar effects and air 

temperature effects, which are frequently used as 

input in load forecasting algorithms, felt 

temperature, dew point, humidity and wind speed 

effects are included in the model. These extra 

parameters increased the prediction success and 

reduced the MAPE value to 2.5813% for the data set 

used. In addition, it has been observed that the 

Squared Exponential GPR model is at a level that 

can be considered successful for forecasts made 

using only calendar effects and historical data of the 

load. Finally, it has been observed that using only 

temperature data in load prediction does not provide 

a sufficient success rate. 
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