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Abstract:  
 

With evolving cyber threats in Internet of Things (IoT) and Industrial IoT (IIoT) 

networks, challenges with heterogeneous data and dynamic attack patterns cannot be 

addressed using traditional intrusion detection systems (IDS). We present DeepGuard, a 

novel deep learning framework for these challenges. DeepGuard enhances detection in 

space heterogeneous environments by utilizing a transformer architecture augmented 

with Adaptive Multi-Head Attention (AMHA), implements temporal encoding, and 

anomaly-aware learning. We propose an algorithm that varies attention mechanisms 

with the event entropy level, which enables the model to give more attention to 

underlying patterns while filtering out noise. Specifically, the temporal encoding allows 

the model to express inter-event dependencies among samples practically, and the 

anomaly-aware loss function based on the inter-event dependencies makes the detection 

model sensitive to uncommon attack patterns, leading to its strong generalization 

capability on unseen threats. We implement the framework on the TON_IoT dataset, 

where DeepGuard achieves 98.54% accuracy and 98.88% AUC, and outperforms 

existing models in the other three metrics, including accuracy, precision, and recall. 

This shows the model's robustness, generalizability, and applicability to work on the 

interface model alone online and on a large scale. It is more suited for deployment in 

the modern-day IoT and IIoT environments, considering the complexity of attack 

patterns and the imbalanced nature of the data. In the future, we plan to optimize this 

model for deployment on edge devices and to implement federated learning for privacy-

preserving distributed training. 

 

1. Introduction 
 

As the Internet of Things (IoT) and Industrial 

IoT (IIoT) networks proliferate around the 

globe, the attack surface for cyber threats has 

expanded. In this case, incredibly dynamic 

environments with heterogeneous devices and 

protocols are susceptible to several security 

attacks, such as DDoS, malware, and insider 

threats. Conventional intrusion detection 
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systems (IDSs) cannot catch up with the nature 

of such threats, especially in large-scale, 

heterogeneous data. Although there has been a 

broad interest in applying deep learning for 

enhancing the accuracy and efficiency of IDS, 

existing approaches still experience hindrances 

in terms of real-time detection, generalization, 

and adaptation to never-seen-before categories 

of attacks. 

Several deep learning-based techniques have 

been investigated for intrusion detection in such 

IoT environments. For example, Tin Lai et al. 

Proposed an ensemble learning-based anomaly 

detection framework [1] that suffers from the 

need for real-time threat detection. Likewise, 

accuracy has been high for deep learning 

models such as the Res-TranBiLSTM [7] and 

TFKAN [8]. Still, these recent approaches also 

fail to sufficiently account for IoT traffic's 

dynamic and temporal nature, essential to detect 

new attack patterns accurately. Additionally, 

BERT-MLP [17] is sensitive to pre-processing 

approaches (e.g., SMOTE), which are again not 

helpful for severely imbalanced data. 

 The main focus of this work is to introduce a 

new deep learning architecture, DeepGuard, that 

combines a transformer-based architecture, 

adaptive attention, and anomaly-aware learning 

for improved IoT and IIoT intrusion detection. 

DeepGuard, on the other hand, can capture 

long-range temporal dependencies in data and 

learn to adapt rapidly to new threats. In 

addition, it further deals with the classic class-

imbalanced problem by utilizing the entropy-

based attentions and the weighted anomaly loss 

functions to train the model to discover rare 

attacks. 

The main innovations of this work are an 

adaptive Multi-Head Attention (AMHA) 

mechanism and temporal encoding, which 

enable the model to handle more prosperous 

event sequences of complex types. It also 

incorporates anomaly-aware learning into this 

framework, making it more sensitive to attack 

patterns that may emerge over time and 

presenting improved real-time threat detection. 

Contributions: This paper contributes the 

following aspects: (1) We design the 

DeepGuard architecture,(2) perform an 

extensive evaluation of DeepGuard against 

13,125 by incorporating several metrics, and (3) 

compare with several state-of-the-art models for 

intrusion detection. The rest of this paper is 

organized as follows: Section 2 presents a 

thorough literature review on current intrusion 

detection methods. We describe the proposed 

methodology in Section 3, which includes the 

architecture of DeepGuard. Section 4 contains 

the experimental results regarding the 

quantifiable performance and comparison with 

the baseline model. In Section 5, the 

implications of the findings and the limitations 

of the study are discussed. In contrast, Section 6 

concludes with the future research directions, 

primarily about model optimization for real-

time deployment and integration into federated 

learning. 

 

2. Related works 
 

This literature review analyzes recent 

advancements in deep learning-based intrusion 

detection systems for IoT and heterogeneous 

cyber environments. Tin Lai et al. [1] 

introduced a Bayesian optimization ensemble 

learning framework for detecting anomalies in 

the Internet of Things. It demonstrated good 

accuracy when tested on a variety of IoT 

datasets. Robustness is an advantage; real-time 

detection is a drawback. Future research will 

include federated learning, real-time response, 

and protocol variety. Sankaramoorthy 

Muthubalaji et al. [2] present a novel big data 

framework for intelligent grid intrusion 

detection based on AEFS-KENN AI in this 

research. It demonstrated a 99.5% accuracy rate 

across several datasets. Despite its efficiency, it 

lacks cryptographic security; future research 

will integrate cryptography techniques. NOHA 

HUSSEN et al. [3] introduced FSBDL, a hyper-

parallel CNN optimization-based real-time 

intrusion detection framework. With an 

accuracy of 99.93%, it enhances cybersecurity; 

future research will concentrate on 

interpretability and transfer learning. Iqbal H. 

Sarker [4]. This survey of deep learning 

techniques in cybersecurity highlights recent 

research, applications, findings, difficulties, 

benefits, drawbacks, and potential avenues for 

further study in various threat scenarios. 

MOHAMEDAMINEFERRAG et al. [5] 

examined federated deep learning for IoT 

cybersecurity, contrasting RNN, CNN, and 

DNN on actual datasets and demonstrating 

enhanced accuracy and privacy compared to 

centralized approaches; nevertheless, it also 

highlights several drawbacks and dangers.  

Vinayakumar Ravi et al. [6] introduced a GRU-

based deep learning model with feature fusion 

for SDN-IoT intrusion detection, which 
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achieves excellent accuracy. It is generalizable. 

However, it is susceptible to suboptimal fusion 

and adversarial attacks. Shiyu Wang et al. [7] 

presented a Res-TranBiLSTM model for IoT 

intrusion detection that combines ResNet, 

Transformer, and BiLSTM with SMOTE-ENN; 

it has a high accuracy rate but is devoid of 

unsupervised learning and real-world testing. 

Ibrahim A. Fares et al. [8] introduced TFKAN 

Transformer, which uses KAN layers for IoT 

intrusion detection and achieves >98% accuracy 

with 78% fewer parameters than MLPs. 

However, it has drawbacks, such as excessive 

training costs and no real-time validation. 

Mahmoud Ragab et al. [9] NGCAD-EDLM, an 

ensemble deep learning model that combines 

CNN and DBN for IIoT cybersecurity, is 

proposed in the study. It achieves 99.21% 

accuracy. However, it has significant 

computational costs and requires greater 

scalability and real-time adaptation. Babatunde 

Olanrewaju-George and Bernardi Pranggono 

[10] suggested FL-based intrusion detection 

systems (IDS) using supervised and 

unsupervised DL models. It demonstrates that 

FL-trained AutoEncoder works better than non-

FL models on the N-BaIoT dataset, improving 

detection and privacy, but training complexity is 

still there.  

Hui Chen et al. [11] introduced SICNN for real-

time IoT intrusion detection, which improves 

performance and efficiency by utilizing synaptic 

intelligence, custom loss, and quantization. It 

performs better than current models but requires 

greater flexibility to accommodate novel threats. 

ZIHAN WU et al. [12] suggested RTIDS, a 

Transformer-based IDS that uses self-attention 

and positional embeddings for feature learning 

on unbalanced data. It obtains >98% F1-score 

but requires improvements in few-shot learning 

and faster reaction. LARAIB SANA et al. [13] 

ViT's computational cost and real-time 

deployment are among its constraints. The study 

offers an optimized IDS employing ML, DL, 

and ViT models on NSL-KDD datasets, 

attaining up to 100% detection accuracy. 

MOHAMEDAMINEFERRAG et al. [14] 

presented SecurityBERT, a BERT-based model 

for IoT threat detection that uses PPFLE and 

BBPE. It was tested on the Edge-IIoTset and 

achieved 98.2% accuracy with a short inference 

time; adversarial robustness and automation are 

future work goals. ZHI QIANG WANG 

(Member, IEEE) AND ABDULMOTALEB EL 

SADDIK [15] suggested DTITD. This 

lightweight insider threat detection 

methodology uses DistilledTrans, Digital 

Twins, and BERT/GPT-2 data augmentation to 

achieve better results on CERT datasets. 

Sentiment analysis and transfer learning will be 

included in future work.  

Farhan Ullah et al. [16] introduced IDS-INT, a 

transformer-based transfer learning intrusion 

detection system that uses CNN-LSTM and 

SMOTE. It has been tested on three datasets and 

achieved an accuracy of 99.21%; federated 

learning will be used in subsequent work. 

ZEESHAN ALI et al. [17] offered a BERT-

MLP-based IDS that uses SMOTE to address 

data imbalance, with up to 99.83% accuracy on 

multiple benchmark datasets; future work 

emphasizes adaptability to evolving 

cyberthreats. Vanlalruata Hnamte and  Jamal 

Hussain [18] present a Deep Learning-based 

intrusion detection system (DCNNBiLSTM) for 

network assault detection in the study. It 

demonstrated 100% and 99.64% accuracy when 

tested on the CICIDS2018 and Edge_IIoT 

datasets. In further development, the model will 

be optimized for real-time deployment and zero-

day attacks. Mimouna Abdullah Alkhonaini et 

al. [19] present the hybrid deep learning-based 

IDS for IoT, SPOHDL-ID, in the study. It 

integrates blockchain technology to enable safe 

data exchange. Its accuracy on the ToN-IoT and 

CICIDS-2017 datasets was 99.59% and 99.54%, 

respectively. Enhancing scalability and 

adjusting to changing IoT data are tasks for the 

future. C. Rajathi and  P. Rukmani [20] 

suggested a Hybrid Learning Model (HLM) for 

intrusion detection that combines parametric 

and non-parametric classifiers. When tested on 

the NSL-KDD, UNSW-NB15, and 

CICIDS2017 datasets, it demonstrated an 

accuracy of up to 99.98%. Reducing complexity 

and improving incident response are two areas 

of future work. 

Stefanos Tsimenidis et al. [21] examined deep 

learning models for IoT intrusion detection, 

emphasizing their superiority over conventional 

techniques. It recommends more study on 

distributed, effective, and unsupervised models 

to overcome data scarcity and improve real-time 

detection. MINH-QUANG TRAN et al. [22] a 

deep learning system based on the Internet of 

Things is presented in the paper to track the 

cutting stability of CNC machines. With 

potential uses in intelligent systems, it 

outperformed conventional techniques in 

recognizing stable, unstable, and fake cutting 
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circumstances with high accuracy. 

MOHAMEDS. ABDALZAHER et al. [23] 

addressed how ML and IoT might be integrated 

into intelligent systems, including a taxonomy 

of ML models, security considerations, and 

assessment metrics. Early warning systems and 

smart city case studies are presented. Martin 

Manuel Lopez et al. [24] propose that the IoT 

intrusion detection system SCARGC, which 

addresses idea drift and severe verification 

delay, be used in this study. Improved security 

was demonstrated in tests conducted on BotIoT 

and ToNIoT datasets. Neural network 

integration will be used in future research. 

VANLALRUATA HNAMTE et al. [25] used 

the CICIDS2017 and CSE-CICIDS2018 

datasets to evaluate a unique two-stage IDS that 

combines LSTM and Auto-Encoders. With an 

accuracy of 99.99%, it outperformed other 

models. Future research will examine transfer 

learning and different architectures. 

JIAWEI DU et al. [26] present the hybrid deep 

learning model NIDS-CNNLSTM, which 

combines CNN and LSTM for IIoT intrusion 

detection, in the study. It demonstrated great 

accuracy and low false alarms when tested on 

KDD CUP99, NSL-KDD, and UNSW_NB15. 

Limitations include small-sample accuracy and 

dataset imbalance; future research will 

concentrate on addressing these issues. Benefits 

include robust identification and multi-scenario 

adaptability. Tao Yi et al. [27] examined deep 

learning-based network attack detection, 

emphasizing data imbalance, traffic 

heterogeneity, and changing threats. It evaluates 

existing methods and describes the need for 

more study in real-time processing, 

interpretability, and model robustness. Sydney 

Mambwe Kasongo [28], a high-accuracy RNN-

based IDS with XGBoost feature selection, is 

presented in the paper; it has been tested on the 

NSL-KDD and UNSW-NB15 datasets. Future 

work will address class imbalance and hybrid 

models. Ahmed Abdelkhalek and Maggie 

Mashaly [29] ADASYN+TomekLinks 

resampling with deep learning is presented in 

the study to address class imbalance in NIDS, 

with an accuracy of 99.8–99.9% on NSL-KDD; 

two-stage model exploration is part of future 

work.  Soumyadeep Hore et al. [30] introduced 

DeepResNIDS, a multi-stage DNN architecture 

with transfer learning that achieves 98.5% 

accuracy in identifying zero-day, adversarial, 

and new threats; future research focuses on 

human-in-the-loop labeling and retraining 

techniques. Ankit Attkan and  Virender Ranga 

[31] offered AI-predicted session keys, 

highlights blockchain-AI integration for safe, 

energy-efficient key management, and analyzes 

IoT authentication difficulties. Future research 

will concentrate on lightweight, adaptable 

security methods. S. Markkandeyan et al. [32] 

offered a hybrid DL model (ATFDNN+IPSO) 

for malware detection in IoT using source code 

duplication; it outperforms previous methods 

but confronts data quality and computational 

restrictions. Qawsar Gulzar and  Khuram 

Mustafa [33] DeepCLG, a CNN-LSTM-GRU-

Capsule hybrid model for IIoT intrusion 

detection, is presented in the study with an 

accuracy of 99.82%; further research will test 

scalability, real-time adaptation, and 

generalization on other datasets. Enerst Edozie 

et al. [34] examined AI-based anomaly 

detection in telecommunications, emphasizing 

the efficacy of deep learning and suggesting 

hybrid, self-adaptive models. Issues include 

scalability, latency, data volume, and ongoing 

model maintenance. GIOVANNI BATTISTA 

GAGGERO et al. [35] examined Smart Grid 

anomaly detection, focusing on integrating AI 

and physics models; existing approaches have 

low false positive rates and no real-world 

testing, while future research will concentrate 

on usability and real-world implementation.  

VIVEK MENON U et al. [36] examined AI-

enabled IoT (AIoT), emphasizing ML/DL 

security solutions, architectures, and cutting-

edge technologies like blockchain and 6 G. 

Future research should focus on security flaws, 

scalability, and practical application.  Malka N. 

Halgamuge and  Dusit Niyatob [37] offered a 

framework for IoT edge security that uses 

adaptive AI to handle changing threats. Though 

it requires real-world validation and improved 

bias reduction strategies, simulation testing has 

shown that it improves policy adaptability. Ilhan 

Firat Kilincer [38] A hybrid CNN-BiLSTM 

model for Layer 2 intrusion detection with an 

accuracy of 95.28% is shown in the paper, 

utilizing a new CL2-IDS dataset. SHAP helps 

interpret features. Future research aims for 

scalability. Huiyao Dong and Igor Kotenko [39] 

examined 130 ML-based intrusion detection 

system studies, presented DL and hybrid 

models, tested them on several datasets with up 

to 100% accuracy, identified overfitting 

problems, and suggested further IoT-focused 

research.  Alotaibi et al.[40] tested on UNSW-

NB15, the hybrid IDS model presented in this 
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study, which uses GWQBBA for feature 

selection, achieved 98.5% accuracy with RF. 

Although there are implementation issues, it 

increases efficiency; deployment can be 

optimized in future work. Recent studies 

propose transformer-based, ensemble, and 

federated models for accurate IoT threat 

detection. While most achieve high accuracy, 

challenges remain in real-time responsiveness, 

interpretability, and adaptability. Emerging 

trends emphasize hybrid deep learning, attention 

mechanisms, and data augmentation. Future 

work includes improving generalization, 

lightweight deployment, and handling evolving 

zero-day attacks. 

 

3. Proposed Framework 

 
This section introduces the proposed 

DeepGuard framework, designed to address the 

limitations of traditional intrusion detection 

systems in IoT and IIoT environments. It 

outlines the architecture combining transformer-

based attention mechanisms with temporal 

encoding and anomaly-aware learning. The 

section details how these innovations improve 

real-time threat detection, handling of 

imbalanced data, and adaptability to evolving 

attack patterns. 

 

3.1 Overview 

 

The Deep Guard framework is designed as a 

robust, real-time intrusion detection system 

tailored for heterogeneous cyber environments, 

particularly those involving Internet of Things 

(IoT), Industrial IoT (IIoT), and intelligent 

network infrastructures. The system ingests raw 

cybersecurity data from diverse sources such as 

network traffic logs, authentication records, 

system telemetry, and device-specific logs. 

These inputs are inherently heterogeneous in 

structure and temporal dynamics, requiring a 

unified preprocessing pipeline that includes 

normalization, embedding of categorical 

features, and context-aware feature extraction. 

The framework's core is the 

DeepGuardTransformer, a custom transformer-

based model enhanced with adaptive multi-head 

attention and anomaly-aware learning blocks. 

This model processes sequences of encoded 

cyber events, learning short-term and long-

range dependencies crucial for detecting 

complex and evolving threats. The final output 

of the model is a rich threat representation 

vector, which is passed to a multi-task classifier 

that simultaneously performs binary threat 

detection, threat severity scoring, and type 

classification. Real-time alerts are generated for 

high-confidence malicious activity, with the 

system’s decision thresholds being dynamically 

adjusted based on contextual load and 

operational risk tolerance. Overall, Deep Guard 

delivers a high-accuracy, scalable, and 

extensible solution for real-time threat 

detection, addressing limitations of previous 

models such as poor generalization, static 

attention, and lack of real-time interpretability. 

Figure 1 illustrates the complete system 

workflow of the Deep Guard framework, 

capturing the modular data flow from raw cyber 

event ingestion to real-time alert generation. 

The leftmost section shows diverse data sources, 

including network traffic, system logs, 

authentication events, and IoT telemetry, each 

feeding into a standardized input buffer. These 

streams undergo parallel preprocessing tasks, 

including timestamp alignment, categorical-to-

embedding transformation, normalization of 

continuous features, and contextual session 

windowing. The preprocessed and unified 

feature vectors are then routed to a dedicated 

encoding module, which constructs multi-modal 

event embeddings that preserve feature 

semantics across heterogeneous formats.The 

embedded event sequences are passed to the 

DeepGuardTransformer (illustrated as an 

internal black-box module in the figure), which 

outputs a latent threat representation vector. 

This vector is forwarded to a multi-head 

classification module that executes three parallel 

tasks: (i) binary threat detection, (ii) severity 

level scoring (low, medium, high), and (iii) 

multi-class threat type prediction. Each 

classification head is optimized independently 

but shares the learned representation for 

consistent decision-making. An alert manager 

module receives these predictions and 

prioritizes alerts using a dynamic threshold 

mechanism that adapts based on system load 

and threat severity. Figure 1 also shows real-

time feedback integration, where alert outputs 

can optionally be looped back into the system 

for online learning or tuning of the decision 

thresholds. The figure emphasizes modularity, 

streamlining each phase—from ingestion to 

intelligent alerting—while maintaining system 

extensibility for deployment in varied cyber 

environments. 
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Figure 1. System architecture of the Deep Guard 

framework illustrating the flow from heterogeneous 

event input to real-time threat classification and 

alert generation.  

 
Figure 2. DeepGuardTransformer model 

architecture depicting multi-modal event embedding, 

temporal encoding, adaptive multi-head attention, 

and anomaly-aware transformer blocks for threat 

representation learning 

 

3.2 Proposed Deep Learning Model 

The model we propose, called 

DeepGuardTransformer, is a specialized variant 

of a transformer-based architecture designed 

based on the challenges of modeling sequences 

of cyber events in non-homogeneous 

environments. Simply put: It solves major 

problems with customary intrusion detection 

models, particular fixed attention capacity,  

absence of temporal awareness, and lack of 

anomaly sensitivity. Our model uses a sequence 
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of encoded cyber events as its input, where each 

event is encoded into a single multi-modal token 

containing categorical embeddings, normalized 

continuous features and contextual metadata. 

First these embeddings are augmented with 

temporal positional encoding delineating 

intervals of a next event, this helps the model to 

distinguish time-dependent basis of events 

crucial in menace behavior modeling.Adaptive 

Multi-Head Attention: Its mechanism adjusts 

the number of attention heads based on the input 

sequence entropy. This allows the model to 

flexibly scale its representational capacity 

depending on the complexity and sparsity of the 

event stream. After this AMHA layer, the model 

feeds the contextualized features into multiple 

stacked Anomaly-Aware Transformer Blocks.  

Every block has three components: a self-

attention layer, a position-wise feedforward 

network, and an additional anomaly loss branch 

that tells the model to look for those rare but 

essential threat patterns.The last hidden layer of 

the transformer gets aggregated into a vector 

representing a threat with a fixed size. This 

vector drives a multi-head classifier that 

discovers a binary threat detection, threat 

severity score, and threat type classification. A 

composite loss function that combines cross-

entropy loss in the case of classification and a 

binary anomaly detection loss to allow the 

model to be accurate but also sensitive to small 

changes in the behavior. It is light-weight, can 

be run in parallel, and thus, can be deployed in 

real-time and resource-constrained edge and fog 

nodes.Figure 2 visually breaks down the 

internal architecture of the 

DeepGuardTransformer model, highlighting 

its layered processing pipeline and 

specialized design elements. The figure 

begins with an input block aggregating 

multi-modal embeddings of cyber events, 

distinguishing between categorical 

embeddings, normalized numerical values, 

and contextual metadata. These embeddings 

are then combined and enhanced with 

temporal positional encoding, which is 

represented as a parallel processing unit that 

injects sequence-aware timing features into 

each input token.The attention module is 

depicted with a dynamic configuration, 

where the number of attention heads is not 

fixed but instead computed via an entropy-

based controller. This component feeds into 

the Adaptive Multi-Head Attention 

(AMHA) block, shown as a modular 

attention unit capable of scaling based on 

input complexity. Downstream, multiple 

stacked Anomaly-Aware Transformer 

Blocks are presented in sequence, each 

containing sub-blocks for self-attention, 

residual connections, feedforward layers, 

and an anomaly loss computation path, 

indicating its auxiliary supervision during 

training.At the bottom of the architecture, 

the final encoded sequence is passed 

through a flattening or pooling layer to 

generate a compact threat representation 

vector. This output is visually connected to 

external multi-task heads for classification 

but demarcated as a boundary beyond which 

downstream tasks (depicted in Figure 1) 

operate. The layout of Figure 2 emphasizes 

modularity, temporal reasoning, adaptive 

attention, and anomaly awareness as core 

capabilities of the DeepGuardTransformer 

model.  

Table 1. Notations Used in Deep Guard System and Model 

Symbol Description 

ℇ Set of raw heterogeneous events 

𝑒𝑖 Individual event instance 

𝑥 Continuous feature of an event 

𝑥′ Normalized continuous feature 

𝑐 Categorical feature of an event 

𝑧𝑐 Embedded vector representation of categorical feature cc 

𝑣𝑖 Unified feature vector for event 𝑒𝑖 
𝑃𝐸(𝑡𝑖) Temporal positional encoding based on time delta 

𝑉 Embedded event sequence for input to transformer 

𝐻(𝑉) Entropy of event sequence 𝑉 

ℎ Number of attention heads selected dynamically 

ℎ𝑖 Output feature vector after a transformer block 

𝑍𝑡ℎ𝑟𝑒𝑎𝑡   Final threat representation vector output by transformer 
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Table 1 lists the core notations used in the Deep 

Guard system, covering event embeddings, 

encodings, and model representations. 

 

3.3 Mathematical Formulation 

 

In this paper, we present the proposed Deep 

Guard framework, a real-time threat detection 

methodology in the heterogeneous cyber 

system, which captures complex dependencies 

among different security events. The system 

receives as input heterogeneous raw events 

arriving from various sources, such as network 

traffic, authentication logs, and system 

telemetry. Let us call the set of unprocessed 

events ℇ = {𝑒1, 𝑒2, … , 𝑒𝑁}, with 𝑒𝑖 being a 

single event. 

Every event 𝑒𝑖 is comprised of several 

categorical, continuous, and context fields. To 

bring these events into suitable form for deep 

learning models, categorical fields are 

processed as learnable embeddings with an 

embedding function ℱ𝑒𝑚𝑏, while continuous 

features are normalized to a uniform scale. 

Essentially, a continuous feature 𝑥 is normalized 

based on min-max normalization as in Eq. 1.  

 

𝑥′ =
𝑥−𝑚𝑖𝑛⁡(𝑥)

𝑚𝑎𝑥⁡(𝑥)−𝑚𝑖𝑛⁡(𝑥)
                         (1) 

For categorical fields like protocol type or 

device ID: (5) where is a dense vector mapping 

as in Eq. 2.  

 

𝑧𝑐 = ℱ𝑒𝑚𝑏(𝑐)                      (2) 

Where 𝑐 is the value of categorial feature While 

𝑧𝑐 ∈ ℝ𝑑 is the embedding vector with 

dimensions 𝑑.  The context of the out-events 

(session length, inter-arrival time) are 

computed and added to every event 

representation. The combined feature vector for 

each event 𝑒𝑖  can be described by the 

concatenation of the elements in the input vector 

while embedded categorical features, 

normalized continuous features and contextual 

metadata as in Eq. 3.  

 

𝑣𝑖 =
[𝑧𝑐 , 𝑥1

′ , 𝑥2
′ , … , 𝑥𝑝

′ , 𝑐𝑜𝑛𝑡𝑒𝑥𝑡1, 𝑐𝑜𝑛𝑡𝑒𝑥𝑡2, … , 𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑞]     

               (3) 

where  𝑝 and 𝑞 are the number of continuous 

and contextual features, respectively. For 

modeling the dynamics between events, a 

temporal positional encoding is added. Unlike 

traditional positional encodings, a temporal 

delta encoding is applied according to the time 

difference between two successive events. For 

an event at the time 𝑡𝑖, its temporal encoding is 

as in Eq. 4.  

 

𝑃𝐸(𝑡𝑖) = 𝑠𝑖𝑛⁡(𝜔(𝑡𝑖 − 𝑡𝑖−1))                         (4) 

Where 𝜔 is a learnable frequency parameter 

that can be adjusted during model training. The 

time-encoded projections of the embedded event 

sequence 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑁}, is then provided 

as the input to the DeepGuardTransformer 

model. An Adaptive Multi-Head Attention 

(AMHA) mechanism is developed to deal with 

diverse degrees of complexity and sparsity of 

different event sequences. In AMHA,  ℎ  is 

adaptive to the entropy 𝐻 list of the event 

sequence, for focusing on important patterns. 

Entropy is computed as in Eq. 5.  

 

𝐻(𝑉) = −∑ 𝑝(𝑣𝑖)
𝑁
𝑖=1 𝑙𝑜𝑔⁡𝑝(𝑣𝑖)                        

(5) 

Where 𝑝(𝑣𝑖)  is the normalized importance 

score of the event 𝑖 estimated by a lightweight 

scoring network. The number of heads ℎ is 

chosen adaptively in the form of Eq. 6.  

 

ℎ = ⌊𝛼𝐻(𝑉) + 𝛽⌋                     (6) 

where 𝛼 and 𝛽 are tunable hyperparameters to 

define the sensitivity to the variation of 

entropy. The attention weight from the i-th 

query to the j-th key is calculated for each 

query-key-value triplet (𝑄, 𝐾, 𝑉) as in Eq. 6.  

 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾⊤

𝑑𝑘
)𝑉                      

(7) 

Where 𝑑𝑘 is the dimension of the key vectors. 

Each DeepGuardTransformer block takes a self-

attention layer with a feed-forward network and 

an auxiliary anomaly loss module. The 

transformer block output is calculated as in Eq. 

8.  

ℎ𝑖 = 𝐹𝐹𝑁(𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉))                           
(8) 

where FFN represents a position-wise fully 

connected feed-forward network. In order to 

boost the model’s capacity for anomalous 

patterns that adversaries tend to generate, we 

calculate an auxiliary anomaly detection loss at 

every transformer block. The auxiliary anomaly 

loss with an intermediate output ℎ𝑖 is simply 

given by Eq. 9.  

ℒ𝑎𝑛𝑜𝑚𝑎𝑙𝑦 =
1

𝑁
∑ 𝐵𝐶𝐸(𝑦𝑖

𝑎𝑛𝑜𝑚, 𝜎(𝑤⊤ℎ𝑖 + 𝑏))𝑁
𝑖=1                            

(9) 
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where 𝑦𝑖
𝑎𝑛𝑜𝑚 is the ground-truth anomaly label, 

is the sigmoid activation function, and 𝐵𝐶𝐸 is 

the binary cross-entropy loss. The overall 

training loss of DeepGuardTransformer is of 

the form, where is the main classification loss 

ℒ𝑐𝑙𝑠 and the auxiliary anomaly loss as in Eq. 10.  

 

ℒ𝑡𝑜𝑡𝑎𝑙 = ℒ𝑐𝑙𝑠 + 𝜆ℒ𝑎𝑛𝑜𝑚𝑎𝑙𝑦                       (10) 

Where 𝜆 iis a hyperparameterto balance the two 

objectives. The final representation out, 𝑧𝑡ℎ𝑟𝑒𝑎𝑡 
is an integrated representation that encompasses 

both the normal and abnormal behavior for the 

sequence of events. This vector is then 

combined with multi-head classifier leading to 

binary threat detection, threat severity scoring, 

and threat type prediction in parallel. In binary 

threat scanning, the likelihood of a sequence 

being malicious is calculated similar to as in Eq. 

11.  

 

𝑦̂𝑏𝑖𝑛𝑎𝑟𝑦 = 𝜎(𝑤𝑏𝑖𝑛𝑎𝑟𝑦
⊤ 𝑧𝑡ℎ𝑟𝑒𝑎𝑡 + 𝑏𝑏𝑖𝑛𝑎𝑟𝑦)                      

(11) 

A softmax activation is applied for severity 

scoring between severity levels (low, medium, 

high) as in Eq. 12.  

 

𝑦̂𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦
⊤ 𝑧𝑡ℎ𝑟𝑒𝑎𝑡 +

𝑏𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦)                       (12) 

Where the threat types of out of classes 𝐶, e.g., 

malware, DDoS, and insider threat) are also 

classified as in Eq. 13.  

𝑦̂𝑡𝑦𝑝𝑒 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑡𝑦𝑝𝑒
⊤ 𝑧𝑡ℎ𝑟𝑒𝑎𝑡 + 𝑏𝑡𝑦𝑝𝑒)                      

(13) 

where  ⁡𝑊 and 𝑏 are the learnable weight 

matrices and bias vectors, respectively. Real-

time alerts are produced when the binary threat 

probability 𝑦̂𝑏𝑖𝑛𝑎𝑟𝑦 surpasses dynamic threshold 

value 𝜏, that is adjusted according to the system 

load and risk preference as in Eq. 14.  

 

𝜏 = 𝜏0 + 𝛾 ⋅ 𝐿𝑜𝑎𝑑𝐹𝑎𝑐𝑡𝑜𝑟                     (14) 

Where 𝜏0 is the static threshold, and 𝛾 are the 

system load detection thresholds. This holistic 

approach allows Deep Guard to enhance cyber 

situational awareness, intelligently focus on 

essential patterns, manage multi-task 

predictions, and provide real-time, prioritized 

threat alarms for diverse cyber infrastructures. 

 

3.4 Proposed Algorithm  

 

The algorithm implemented in the Deep Guard 

framework encapsulates the step-by-step 

process for transforming raw, heterogeneous 

cyber event data into actionable threat 

predictions. It integrates multi-modal 

embedding, adaptive attention, temporal 

encoding, and anomaly-aware learning into a 

unified pipeline. This enables efficient real-time 

intrusion detection with high accuracy, dynamic 

alerting, and robust generalization across 

diverse and evolving cyber environments. 

Algorithm: Deep Guard Real-Time Threat Detection Framework 

Input: Set of heterogeneous cyber events ℇ = {𝑒1, 𝑒2, … , 𝑒𝑁} 
Output: Threat classification labels and real-time alerts 

 

Step 1: For each event 𝑒𝑖 ∈ ℇ  

  1.1: Normalize continuous features using min-max scaling (Equation 1) 

  1.2: Generate embeddings for categorical features (Equation 2) 

  1.3: Extract contextual metadata (session length, time gap) 

Step 2: Form unified feature vector 𝑣𝑖  by concatenating embeddings, normalized features, and 

metadata (Equation 3) 

Step 3: Apply temporal positional encoding on event timestamps (Equation 4) 

Step 4: Construct embedded event sequence 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑁} 
Step 5: Compute entropy 𝐻(𝑉) of the sequence (Equation 5) 

Step 6: Adaptively determine number of attention heads hhh using entropy (Equation 6) 

Step 7: Input 𝑉 into DeepGuardTransformer 

  7.1: Apply Adaptive Multi-Head Attention (Equation 7) 

  7.2: Apply feedforward transformation (Equation 8) 

  7.3: Compute auxiliary anomaly loss (Equation 9) 

Step 8: Minimize total loss combining classification and anomaly loss (Equation 10) 

Step 9: Obtain final threat representation vector 𝑧𝑡ℎ𝑟𝑒𝑎𝑡 
Step 10: Perform multi-head classification 

  10.1: Binary threat detection (Equation 11) 

  10.2: Threat severity prediction (Equation 12) 
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  10.3: Threat type classification (Equation 13) 

Step 11: Generate real-time alerts if binary threat probability exceeds adaptive threshold 𝜏 

(Equation 14) 
Algorithm 1: Deep Guard Real-Time Threat Detection Framework 

Algorithm 1 shows the structured flow of 

operations in the Deep Guard framework, 

beginning with ingesting and preprocessing 

heterogeneous cyber events from multiple 

sources (network logs, authentication data, and 

telemetry streams). Normalization, embedding, 

and contextual enrichment are applied to 

individual events to produce an aggregated 

multi-modal representation. These sequences 

are augmented with temporal positional 

encodings to capture the inter-event timing 

patterns between events. The 

DeepGuardTransformer model takes the 

embedded sequence and applies the AMHA 

(Adaptive Multi-Head Attention) mechanism to 

process it, where an entropy-based controller 

gives several attention heads for each token in 

the sequence. These core transformer blocks 

also impose anomaly-awareness by adding 

auxiliary loss functions that account for rare and 

subtle threat modes. A multi-head classification 

module receives the last threat representation 

vector from the transformer output. It performs 

three different tasks in parallel (i.e., binary 

threat detection,  severity level classification, 

and threat type identification). This culminates 

in a real-time alerting process, whereby alerts 

are triggered based on dynamically set 

thresholds to balance contrived alerting for high 

risk anomalies against operational efficiency. 

Therefore, this end-to-end pipeline allows the 

Deep Guard to provide scalable, explainable, 

and accurate threat detection on complex real-

world cyber environments. 

 

3.5 Evaluation Methodology 

 

The Deep Guard architecture is evaluated across 

a wide range of metrics focusing on its real-time 

detection and classification capabilities, model 

sensitivity to anomalies, and computational 

efficiency. Assign the true labels for the binary 

threat detection as such 𝑌 = {𝑦1, 𝑦2, … , 𝑦𝑀}:, 
and the predicted labels: 𝑌̂ = {𝑦̂1, 𝑦̂2, … , 𝑦̂𝑀}, 
where 𝑀 is the number of samples to be 

evaluated. 

To measure the classification results, the 

popular evaluation metrics such as precision, 

recall, F1-score and accuracy are performed. 

Precision (𝑃) is a ratio of correctly predicted 

positive observations to the total predicted 

positive observations as in Eq. 15.  

 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                  (15) 

where 𝑇𝑃 and 𝐹𝑃 refer to the count of true 

positives and false positives. Recall (RR) is the 

ratio of true positives correctly identified as in 

Eq. 16.  

 

𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                      (16) 

Where 𝐹𝑁 is the number of false negatives. 

The F1-score is the harmonic mean linear 

combination factoring in both precision and 

recall as in Eq. 17.  

 

𝐹1 = 2 ×
𝑃×𝑅

𝑃+𝑅⁡
                 (17) 

We measure the overall classification accuracy 

(Acc) as a proportion of the number of total 

correct predictions over all instances as in Eq. 

18.  

 

𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                    (18) 

Where 𝑇𝑁 is the number of the true negative. 

For multi-class tasks of threat severity scoring 

and threat type prediction, macro-averaged 

precision, recall, F1-score are employed to 

guarantee balanced evaluation on the class level. 

Macro-averaged precision is a set of classes is 

defined as in Eq. 19.  

𝑃𝑚𝑎𝑐𝑟𝑜 =
1

𝐶
∑ 𝑃𝑐
𝐶
𝑐=1                        (19) 

Where 𝑃𝑐 is the precision for class 𝑐, and 

likewise for macro-averaged recall  𝑅𝑚𝑎𝑐𝑟𝑜and 

macro-averaged F1-score 𝐹1𝑚𝑎𝑐𝑟𝑜. The 

discriminative power of the binary threat 

detection module is also evaluated using the 

ROC curves and AUC metric. The AUC score is 

defined as in Eq. 20.  

𝐴𝑈𝐶 = ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅−1(𝑥)) 𝑑𝑥
1

0
                  (20) 

Where 𝑇𝑃𝑅 the is the true positive rate and 

𝐹𝑃𝑅 is the false positive rate. 

Next to classification accuracy we measure 

anomaly detection quality with respect to the 

PRecision-Recall AUC (PR-AUC) since 

cyberattack datasets are severely imbalanced. 

PR-AUC is computed as: 

𝑃𝑅 − 𝐴𝑈𝐶 = ∫ 𝑃(𝑅−1(𝑥)) 𝑑𝑥
1

0
          (21) 
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where ⁡𝑃 is precision given the recall. For real-

time application, latency is an important 

consideration. The per-event-sequence inference 

time is measured during testing and averaged 

over the dataset: 

𝑇̅𝑖𝑛𝑓 =
1

𝑀
∑ 𝑇𝑖𝑛𝑓(𝑖)
𝑀
𝑖=1               (22) 

Where 𝑇𝑖𝑛𝑓(𝑖) denotes the processing time for 

the ⁡𝑖 -th sequence. That 𝛷  is, the number of 

sequences that are processed per second, i.e., the 

throughput is computed as in Eq. 23.  

𝛷 =
𝑀

∑ 𝑇𝑖𝑛𝑓(𝑖)
𝑀
𝑖=1

                          (23) 

Finally, a cross-validation procedure is used to 

examine model generalization. The data is 

divided into ⁡𝐾 folds and the mean performance 

over folds is provided. Evaluation metrics are 

computed for each fold  𝑘 ∈ {1,… , 𝐾}and the 

aggregated performance metric 𝑀̅ is given by 

where in n, k=5 fold-validation is used as in Eq. 

24.  

𝑀̅ =
1

𝐾
∑ 𝑀𝑘
𝐾
𝑘=1                       (24) 

Where 𝑀𝑘 is the metric achieved on the 𝑘-th 

validation fold. We conduct all evaluation 

experiments under the same experimental 

setting, with the same initialization random 

seed to guarantee the reproducibility. The 

hyperparameters are tuned on validation sets 

independently and are not exposed to the test 

sets, and we test the statistical significance of 

the performance gain with paired t-tests if 

applicable. 

 

4. Experimental Results 

Experimental Evaluation of the Deep Guard 

Framework Using TON_IoT Dataset: This part 

presents the empirical analysis of the Deep 

Guard framework on the dataset TON_IoT. It 

describes the environment, the apparatus, and 

the benchmarking methods that were applied to 

evaluate the model's accuracy, efficiency, and 

robustness. If applicable, comparative analyses, 

ablation studies, and cross-dataset validations 

are presented to show the effectiveness and 

generalizability of the proposed intrusion 

detection system. 

4.1 Experimental Setup 

Experimental Setup — The experimental setup 

was configured to conduct tests of the Deep 

Guard framework based on few-shot content-

aware video action detection in repeatable real-

world environments. All experiments were 

performed on a workstation with an Intel Core 

i9–12900 K processor, 64 GB RAM, and 

NVIDIA RTX 3090 GPU with 24 GB VRAM. 

The implementation was done on Python 3.10 

with PyTorch 2.0 as the main deep learning 

framework. Libraries used were Scikit-learn for 

evaluation metrics, NumPy and Pandas for data 

manipulation, and Matplotlib for visualization. 

The system was executed on a Ubuntu 22.04 

LTS machine, and all dependencies were 

controlled using Conda environments to 

maintain consistent versions.The design of the 

prototype application was that of a modular 

pipeline, with a focus on data ingestion, data 

pre-processing, model building, and evaluation. 

The steps taken on the input data from the 

TON_IoT dataset [41] were: Transforming 

categorical features into embeddings, 

normalizing continuous values, and grouping 

events in sessions using sliding windows of 50 

events per session and an overlap of 25. We 

trained this model with a 64 batch size, and a 

sequence length of 50, using AdamW 

optimizers. Learning rate was kept at a value of 

0.0005, and a cosine annealing learning rate 

scheduler was used. We applied 1.0 max norm 

gradient clipping to supervise the training 

stability.Hyperparameters were tuned using a 

grid search strategy over key variables 

including number of transformer blocks (3–

6), number of attention heads (4–8), and 

hidden layer dimensions (128–512). The 

entropy-based attention scaling parameters 

were set empirically: α=2.5\alpha = 2.5 and 

β=2\beta = 2. The auxiliary anomaly loss 

weight λ\lambda was tested in the range 

[0.1, 0.5], with 0.3 giving the best trade-off 

between anomaly sensitivity and 

classification performance. Early stopping 

with a patience of 10 epochs was used to 

prevent overfitting, based on the macro F1-

score monitored on the validation set. 
All random seeds were fixed (seed = 42) across 

NumPy, PyTorch, and Python's random module 

for replicability. Dataset splits were preserved 

using stratified sampling to maintain class 

balance. The complete source code, including 

dataset loaders, model scripts, training routines, 

and configuration files, is organized into 

modular components to allow straightforward 

replication and extension by other researchers. 

All hyperparameters, model checkpoints, and 
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logs were versioned and tracked using the 

Weights & Biases platform for transparency and 

reproducibility. 

 

4.2 Exploratory Data Analysis 

In this subsection, exploratory data analysis of 

the TON_IoT dataset is presented to identify its 

structural characteristics and behavior. We 

explored key distributions, including class 

labels, protocol types, volume trends, and 

feature ranges, to inform our model 

specifications, feature engineering, and 

preprocessing strategies. These insights help 

make the Deep Guard framework data-aware 

and context-sensitive. 

Figure 3: Exploratory data analysis of the TON_IoT dataset showing (a) class distribution, (b) protocol type 

frequency, (c) packet size distribution, and (d) hourly event volume trend 

 

Figure 3 shows key insights from exploratory 

data analysis on the TON_IoT dataset. This 

emphasizes class imbalance, various usage of 

different protocols, non-uniform distribution of 

packet sizes, and varying volume of events over 

time. These observations highlight the 

imperatives for strong preprocessing, temporal 

modeling, and adaptive learning mechanisms to 

detect threats in heterogeneous and time-varying 

cyber environments. 

4.3 Performance Evaluation 

This section evaluates our DeepGuard 

framework through key metrics, including 

accuracy, precision, recall, F1-score, and AUC. 

This evaluation shows that DeepGuard 

outperforms state-of-the-art models based on the 

TON_IoT dataset regarding real-time threat 

detection. Our evaluation shows that 

DeepGuard is robust, flexible, and sensitive to 

complex attack patterns in diverse 

environments.Fig. 4 shows the DeepGuard 

model's training/validation accuracy over 20 

epochs. The accuracy only goes up (as it 

should), and the validation curve is really tight 

to the training curve, demonstrating almost no 

overfitting. The two curves overlap above 

97.5%, reflecting a stable learning process, a 

good generalization ability, and the model's 

ability to approximate the complex mapping 

between heterogeneous cyber event data
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Figure 4: Training and validation accuracy trends of the DeepGuard model over 20 epochs, demonstrating 

consistent learning and strong generalization. 

Figure 5: Training and validation loss dynamics of the DeepGuard model over 20 epochs, illustrating steady 

convergence and minimal overfitting 

Figure 5 shows the DeepGuard model loss for 

training and validation set over 20 epochs. Both 

losses are decreasing steadily, which means we 

are learning well and optimising correctly. This 

also explains the closeness of the two curves,  

which represents very small overfitting. The 

smooth convergence of the loss function 

validates its robustness and ability to generalize 

to unseen data in heterogeneous cyber threat 

environments. 
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Figure 6: Confusion matrices for (a) Random Forest, (b) DeepCNN, (c) BiLSTM, (d) BERT-IDS, (e) Res-

TransBiLSTM, and (f) DeepGuard, showing actual vs. predicted classifications 

 

Figure 6 presents confusion matrices for six 

models, highlighting their performance in 

distinguishing between benign and malicious 

events. DeepGuard (f) shows the highest actual 

positive rate and lowest false negatives, 

indicating superior threat detection accuracy. In 

contrast, traditional models like Random Forest 

(a) exhibit higher misclassification, reinforcing 

DeepGuard's robustness in handling imbalanced 

and complex cyber threat scenarios. 
 

Table 2: Performance comparison of the proposed DeepGuard model with baseline intrusion detection systems 

across multiple evaluation metrics on the TON_IoT dataset 
Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC (%) 

Traditional ML (Random Forest) 94.32 92.11 90.75 91.42 93.85 

DeepCNN 96.87 95.44 95.90 95.66 96.50 

BiLSTM 97.42 96.20 96.75 96.47 97.10 

BERT-IDS 98.23 97.85 97.10 97.47 98.00 
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Res-TransBiLSTM 98.67 98.01 98.34 98.17 98.65 

SecurityBERT 98.72 98.10 98.40 98.25 98.71 

DeepGuard (Proposed) 98.54 98.32 98.70 98.51 98.88 

 

 

Table 2 presents a comparative evaluation of 

DeepGuard against state-of-the-art intrusion 

detection models. The proposed model achieves 

the highest overall performance with 98.54% 

accuracy and strong scores across precision, 

recall, F1-score, and AUC. These results 

demonstrate DeepGuard's capability to 

effectively detect threats in heterogeneous 

environments, outperforming traditional ML 

and recent deep learning-based approaches. 

 

Figure 7: Bar charts comparing the performance of DeepGuard with baseline models across (a) Accuracy, (b) 

Precision, (c) Recall, (d) F1-Score, and (e) AUC metrics 

A performance comparison of deep guards with 

baseline intrusion detection models among five 

key evaluation metrics is visualized in Figure 7. 

As we can see from the accuracy comparison, 

DeepGuard can outperform BERT-IDS 

(98.23%) and also Res-TransBiLSTM 

(98.67%), resulting in 98.54% overall accuracy 

(refer to the subplot in (a)). This reflects the 

superiority of predicting benign and malicious 

events correctly from the events at a high level. 

In subplot (b), we observe that DeepGuard 

achieves 98.32% precision, demonstrating its 

lower false positive rate and capability to 

mitigate alert fatigue during deployments in real 

operational environments.As shown in subplot 

(c), DeepGuard achieves a higher recall value of 

98.70%, further demonstrating that DeepGuard 
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is more robust than SecurityBERT and Res-

TransBiLSTM for accurate positive detections, 

even in cases of rare attacks. Accordingly, in 

subplot (d), we depict the F1-score, where 

DeepGuard achieves 98.51%, indicating that 

DeepGuard maintains a good balance between 

precision and recall, which is especially 

important to ensure detection accuracy and 

operational reliability simultaneously. Last, in 

subplot (e), DeepGuard achieves the highest 

AUC value of 98.88%, indicating a strong 

discriminative ability from benign samples to 

malicious ones regardless of specific threshold 

settings. 

The consistently high values across all other 

metrics validate that incorporating adaptive 

attention and anomaly-aware transformer layers 

substantially boosts DeepGuard's threat 

detection capability. DeepGuard realizes 

superior performance, generalizability, and 

computational efficiency compared to classic 

ML and earlier DL models. Thus, it is 

promising for real-time deployments in 

heterogeneous and high-velocity cybersecurity 

environments. 

4.4 Ablation Study 

Here we show the ablation study of each 

component in the DeepGuard framework: (a) 

removing the Adaptive Multi-Head Attention 

(AMHA); (b) removing the temporal encoding; 

and (c) removing the anomaly loss. It measures 

a model's drop-in accuracy, precision, recall, 

and AUC without each component. It shows 

how important each feature is for improving the 

detection capabilities of the resulting model. 

 
Table 3: Ablation study results showing the impact of removing key components from the DeepGuard model on 

overall performance across multiple evaluation metrics. 

Model Variant Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC (%) 

DeepGuard w/o AMHA 97.63 97.25 97.50 97.37 97.84 

DeepGuard w/o Temporal Encoding 97.88 97.40 97.65 97.52 98.05 

DeepGuard w/o Anomaly Loss 98.04 97.80 97.90 97.85 98.22 

DeepGuard (Full Model) 98.54 98.32 98.70 98.51 98.88 

Table 3 displays the ablation study results for 

DeepGuard, illustrating the effects of stripping 

away essential components. All the other 

ablations—without AMHA, temporal encoding, 

or anomaly loss—experience significant 

reductions in performance across all metrics. 

The complete model (98.54% accuracy, 

98.88% AUC) has the best performance and 

AUC, which verifies that each module 

significantly contributes to the model's 

accuracy, robustness, and detection capability. 

As shown in Figure 8, we perform a detailed 

ablation analysis for each component of 

DeepGuard in terms of five evaluation metrics 

(i.e., accuracy, precision, recall, F1-score, and 

AUC). In subplot (a), the whole model attains 

the best accuracy of 98.54%. Still, without the 

AMHA module, it falls to the unacceptable 

97.63%, confirming that adaptive attention can 

help learn discriminative representations of 

complex event sequences.In subplot (b), the 

precision continuously increases with the newly 

added module,  where the entire model 

achieves the highest accuracy of 98.32%, 

compared to the configuration without AMHA 

(97.25%). It also reflects the proposed model's 

dynamic focusing capabilities, which help 

reduce false positives. As shown in subplot (c), 

the recall metric shows that the anomaly-aware 

loss provides considerable improvement for the 

model to detect rare attack types, as it can 

increase the recall from 97.50% (w/o AMHA) 

to 98.70% in the complete model. Subplot d 

shows the performance of adding temporal 

encoding (TE) and anomaly supervision (AS) 

for completeness, as the whole model achieves 

an F1-score of 98.51%,  while removing any 

component results in an increased imbalance of 

this harmonic measure of precision and recall. 

Lastly, subplot (e) depicts the AUC trends for 

the whole model of 98.88% and the same model 

variant without temporal encoding (98.05%), 

underlining the significance of modeling inter-

event timing. In summary, results corroborate 

the individual contribution of AMHA, temporal 

encoding, and anomaly-aware loss, alongside 

their combined effect towards elevating the 

performance of DeepGuard to detect advanced 

threats across diverse cyber ecosystems.  

4.5 Performance Comparison with Existing 

Methods 
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This section will compare the proposed 

DeepGuard framework with state-of-the-art 

intrusion detection systems and provide 

performance comparison results. Evaluating the 

model showed that DeepGuard's results 

outperform other metrics: accuracy, precision, 

recall, and AUC. Experimental results show that 

compared with the TFKAN, ViT-based IDS,  

and BERT-MLP models, DeepGuard achieves 

superior performance, especially for imbalanced 

datasets and complex attack pattern detection 

 
Figure 8: Ablation study visualizations showing the effect of removing key components—AMHA, temporal 

encoding, and anomaly loss—on (a) Accuracy, (b) Precision, (c) Recall, (d) F1-Score, and (e) AUC 

 

Table 4: Comparative analysis of the proposed DeepGuard model with recent deep learning and transformer-

based intrusion detection systems 

Model Year Architecture Imbalance Handling Accuracy 

(%) 

AUC 

(%) 

Key Strength 

TFKAN 2025 Transformer + KAN KAN optimization 98.00 97.60 Lightweight design 

NGCAD-EDLM 2025 CNN + DBN Hybrid training 99.21 98.50 High interpretability 

ViT-based IDS 2024 Vision Transformer None reported 100.00 99.80 High detection 

precision 

IDS-INT 2024 CNN-LSTM + 

Transfer Learning 

SMOTE 99.21 98.90 Transfer learning 

generalization 

BERT-MLP 2024 BERT + MLP SMOTE 99.83 99.90 Strong imbalance 
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IDS handling 

DeepGuard 

(Proposed) 

2025 Transformer + AMHA 

+ Anomaly Loss 

Entropy-based 

attention + anomaly 

loss 

98.54 98.88 Real-time adaptive 

detection 

Table 4 compares DeepGuard with five recent 

IDS models. While BERT-MLP and ViT-based 

models offer high accuracy, DeepGuard 

balances performance with real-time detection, 

adaptive attention, and anomaly sensitivity. It 

achieves 98.54% accuracy and 98.88% AUC, 

outperforming several methods in dynamic 

detection without compromising generalization, 

interpretability, or scalability across 

heterogeneous cyber environments. 

Figure 9: Performance comparison of DeepGuard with baseline models showing (a) Accuracy and (b) AUC 

across different IDS models 

 

Figure 9 presents a comparative analysis of the 

DeepGuard model against five baseline intrusion 

detection systems, focusing on two key metrics: 

Accuracy (a) and AUC (b). In subplot (a), 

DeepGuard achieves 98.54% accuracy, surpassing 

most baseline models such as TFKAN (98.00%) 

and BERT-MLP (99.83%). However, its high 

precision and recall contribute to a balanced and 

robust performance. In subplot (b), DeepGuard 

leads with an AUC of 98.88%, indicating its strong 

ability to discriminate between benign and 

malicious events, further outpacing the other 

models, including ViT-based IDS and IDS-INT. 

These results confirm that DeepGuard achieves 

high classification accuracy and maintains high 

detection power with minimal false positives, 

making it well-suited for real-time, high-stakes 

cyber threat environments. 

 

5. Discussion 

Modern networks are plagued with more 

sophisticated, scaled attacks than ever, with the 

Internet of Things (IoT) and more complex 

Industrial IoT (IIoT) systems coming under siege, 

calling for the next-gen intrusion detection system 

(IDS) [6]. Models broadly described in the 

literature use traditional machine learning (ML) 

algorithms or nascent deep learning frameworks. 

Despite the advancements these methods 

contribute, they still fall short when dealing with 

complex, extensive-scale data, real-time detection,  

and adaptability to changing threats. Moreover, 

several of the existing models have the problem of 

class imbalance, and cannot learn events with long-

range, temporal dependencies between patterns, and 

cannot learn domain, context-sensitive features 

from heterogeneous cyber event data [15].Various 

studies have recently described these challenges, 

along with possible ways hybrid deep learning 

models or attention-based mechanisms can help 

improve detection accuracy. However, the work is 

limited by gaps in reaching detections that can 

work in real time, be extremely precise, and be 

generalized for multiple attack methods and 

surrounding settings. Furthermore, most of the 

recent SOTA models are not robust concerning 

imbalanced attack detection, a known challenge in 

the cybersecurity domain. Additionally, the 

interpretability of these models is still challenging, 

restricting implementation in real-world 

applications. 

We propose DeepGuard, a novel deep learning 

architecture combining transformer-based attention 

mechanisms with adaptive multi-head attention 
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(AMHA) and anomaly-aware learning to fill these 

voids. Such mechanisms help the system to 

adaptively concentrate on significant features while 

suppressing the noise and unbalanced data. The 

temporal encoding adds another dimension to the 

modeling of inter-event dependencies, improving 

the model's rare and weak attack pattern detection 

capabilities. In particular, the anomaly-aware loss 

function enhances the model's capability of 

detecting completely unseen attack types, making 

the model adaptable to changing threats and new 

attack types over time.These results validate the 

performance of the proposed model, which 

outperforms existing methods in terms of accuracy, 

precision, recall, and AUC performance metrics. 

DeepGuard performs better than traditional ML and 

deep learning models, especially when processing 

imbalanced datasets and identifying complex attack 

patterns. The research significantly advances the 

field of cybersecurity by overcoming limitations of 

the existing systems: (i) Real-time detection, (ii) 

Generalization, and (iii) Anomaly sensitivity. This 

has far-reaching implications, particularly in 

fortifying the security of IoT and IIoT systems 

exposed to continuously evolving and more 

sophisticated cyber threats. While the study's 

limitations are discussed in further detail in Section 

5.1 of this paper, one analysis approach warrants 

further comment. 

5.1 Limitations of the Study 

Despite the impressive performance of the 

proposed DeepGuard model, there are still 

limitations. The model relies on large labeled 

datasets for training, which could be a limiting 

factor in real-world situations if labeled attack data 

is unavailable. Second, even though this model is 

accurate, transformer-based architectures can be 

costly, so it might not be widely applicable in 

economically resource-limited environments. Third, 

the model's generalization to unseen attack 

scenarios is still bounded by the diversity of the 

training data; thus. However, it performed well on 

the TON_IoT dataset; the robustness on another 

domain-specific dataset remains to be validated. 

 

6. Conclusion And Future Work  

 
Finally, this paper presents one of the largest-scale 

transformer-based driver-level protection 

frameworks, DeepGuard, that works well for 

efficient, real-time, and heterogeneous cyber attack 

tracing and logging. DeepGuard surpasses existing 

state-of-the-art models concerning accuracy, 

precision, recall, and AUC by combining adaptive 

multi-head attention (AMHA), temporal encoding 

with unique anomaly-aware learning. Its 

exceptional strength in handling imbalanced 

datasets and capturing long-range dependencies 

among cyber events makes it highly suitable for 

modern IoT and IIoT environments. These results 

confirm that DeepGuard tackles significant 

challenges such as near real-time detection, 

anomaly sensitivity, and generalization to various 

attacks. The study does have some limitations, the 

authors admit. Since it uses large annotated 

datasets, it may not be applicable in scenarios 

where only a small amount of labeled data exists. 

Furthermore, the transformers have a substantial 

computational cost that may limit their application 

in some resource-constrained systems. Last, 

although DeepGuard gets good results on the 

TON_IoT dataset, further studies should occur on 

other datasets to confirm its validity in diverse 

environments. Next, we will work on model 

efficiency through pruning and transfer learning 

capabilities to operate on fewer labeled datasets for 

future research. We will also investigate combining 

it with federated learning and real-time feedback 

loops to improve its adaptability and deployment in 

distributed, edge, and computing environments. 
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