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Abstract:  
 

In the realm of wireless sensor networks (WSNs), the increasing demand for energy 

efficiency and prolonged network lifetime is paramount, particularly in heterogeneous 

environments where sensor nodes exhibit varying capabilities and energy constraints. 

Preliminary model has so many routings congestion and energy consumption degrade he 

throughput latency to downgrade the network life time. This paper presents an innovative 

Energy Efficient Trust Ware Routing Protocol (EETWRP) designed to enhance the 

operational longevity of heterogeneous WSNs by leveraging swarm intelligence 

optimization algorithms. The proposed protocol addresses critical challenges in energy 

consumption and trust management, which are essential for maintaining network integrity 

and performance. EETWRP employs a multi-layered approach that integrates trust 

evaluation mechanisms with energy-aware routing strategies. Based On Traffic Intensive 

Behaviour Rate (TIBR) And Cross Layer Multicasting Energy Aware-Route Selection 

(CLM-EARS). By utilizing swarm intelligence, specifically inspired by the collective 

behaviors of social organisms, the protocol dynamically adjusts routing paths based on 

real-time energy availability and trustworthiness of sensor nodes. This adaptability not 

only optimizes energy utilization but also mitigates the risks associated with malicious 

activities and unreliable data transmission, which are prevalent in WSNs. Simulation 

results demonstrate that EETWRP significantly outperforms traditional routing protocols 

in terms of network lifetime, energy consumption, and data accuracy. The findings 

indicate a marked improvement in the overall efficiency of data transmission, with a 

reduction in energy expenditure and an increase in the reliability of the network. 

Furthermore, the protocol's ability to adapt to changing network conditions and node 

behaviors underscores its potential applicability in various domains, including 

environmental monitoring, smart cities, and industrial automation. 

 

1. Introduction 
 

Wireless Sensor Networks (WSNs) represent 

distributed systems with dispersed autonomous 

sensor nodes that jointly perform physical or 

environmental measurements such as temperature 

reading, pressure and humidity, and motion 

detection. The nodes relay data by wireless 

connections while functioning in cooperative groups 

to send information to a central base station, 

performing subsequent data processing. WSNs serve 

multiple applications because they cover diverse 

monitoring scenarios and operate automatically in 

distant locations with minimal supervision. In 

WSNs, the network lifetime is a significant 

performance indicator since it measures the duration 
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of effective operation until the major sensor nodes 

use up their energy reserves [1]. 

The extended operation period of WSNs depends on 

crucial power management because sensor nodes 

deploy limited rechargeable or replaceable batteries, 

especially when deployed in challenging remote 

conditions. By extending the operational time of the 

network, organizations can maintain continuous data 

flow while decreasing repair expenses and 

improving system reliability. The long-term 

operation faces multiple obstacles, mainly from 

limited energy reserves, changing network layouts, 

and uneven energy consumption patterns [2]. Senior 

node energy unbalance causes node failure before its 

time, producing network fragmentation, data loss, 

and diminished coverage area. Research shows that 

inefficient routing operations, high communication 

expenses, and insufficient energy-aware cluster 

strategies severely shorten wireless sensor networks' 

operation time [3-4]. 

Heterogeneous WSN environments using existing 

routing techniques demonstrate inadequacies 

because sensor nodes have different energy and 

processing power levels. The requirement for 

adaptive routing systems stems from network 

adaptations, where these systems need to balance 

power consumption across different nodes. 

Traditional protocols work inefficiently with 

available energy because they create an imbalance in 

energy drainage throughout the system, reducing 

system effectiveness [5]. This study now 

concentrates on developing robust and adaptive 

solutions by combining Machine Learning (ML) 

with swarm intelligence to produce dynamic routing 

decision optimization. 

The proposed Energy-Efficient Trust-Aware 

Routing Protocol (EETARP) uses swarm 

intelligence-based optimization methods to boost the 

operational life of heterogeneous WSNs. The 

protocol deals with conventional routing weaknesses 

by combining trust evaluation and energy efficiency 

for route selection. The network identifies 

untrustworthy nodes through trust management, 

allowing security enhancement and robustness 

improvement. Using swarm intelligence algorithms, 

which derive inspiration from collective natural 

behaviors, the system selects optimal routing paths 

that distribute energy load uniformly among the 

nodes. The proposed method leverages swarm-based 

optimization search capabilities to guarantee 

reduced energy usage, enhanced data transmission, 

and extended network operation time. Implementing 

trust metrics and the protocol ensures 

communication reliability, making it suitable for 

essential WSN applications that demand dependable 

operations. This new method delivers an adaptable 

energy-efficient solution that provides scalability 

and security through its deployment in 

heterogeneous WSN environments. 
 

2. Literature Survey 
 
The authors of [6] developed the Energy-efficient 

Fault-tolerant Routing Protocol (EFRP) to align 

energy-aware clustering with multipath routing for 

better energy usage and fault tolerance. A main 

disadvantage of this protocol is generating higher 

control operations that decrease scalability in 

extensive networks. The author developed an 

Improved Grey Wolf Optimization (IGWO) 

algorithm [7] to modify cluster heads by assessing 

distance and residual energy parameters. The 

proposed energy balancing solution achieved better 

results but displayed a drawback because its 

convergence rate was notably slow, which resulted 

in impaired real-time performance capabilities. 

The authors in [8] introduced the Fuzzy Clustering 

Algorithm (FCA), which evaluates trust and energy 

parameters to enhance reliability and life span during 

clustering procedures. The fuzzy rule processing 

requirements make FCA experience performance 

degradation, together with improved fault detection 

and connectivity reliability. Data correlation 

combined with residual energy forms the basis of the 

Correlation-based Node Selection Algorithm 

(CNSA) developed by the author [9]. The 

effectiveness of CNSA for reducing redundant 

transmissions becomes less significant in dynamic or 

mobile sensor networking environments because it 

does not provide robust features. 

The researchers introduced FL-LEACH-PSO by 

fusing Fuzzy Logic-based LEACH and Particle 

Swarm Optimization (PSO), respectively, in [10]. 

The combined model enhances network longevity 

through optimized cluster head selection, though it 

results in performance delays because it incorporates 

multiple algorithms. The author [11] presented 

HEMA, which merged different routing and 

clustering methods to manage energy distribution for 

longer sensor network operation. While HEMA 

reaches high energy conservation levels, it presents 

excessive complexity, which reduces its suitability 

for deployment in resource-limited technological 

environments. 

The author [12] developed an Energy-Efficient 

Multi-Sensor Decision (EEMSD) that implements 

conditional decision procedures on heterogeneous 

sensor information. The EEMSD technology enables 

flexibility for various sensor types and conditions, 

yet becomes less flexible when using an elevated 

number of conditional parameters. The authors [13] 

introduced a Metaheuristic-Based Lifetime 

Enhancement (MBLE) strategy that selects optimal 

paths through evolutionary techniques. MBLE 
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achieves effective results only when networks 

remain stationary, whereas dynamic networks that 

enable node movement reduce their operational 

effectiveness. 

In [14], the researchers outline the Hybrid Energy-

Efficient Layered clustering protocol (HEEL) that 

combines layered clustering with adaptive re-

clustering techniques to enhance energy efficiency. 

HEEL decreases energy usage within individual 

clusters but encounters limitations when used 

between clusters because of its scalability issues. 

The author created the Enhanced LEACH protocol 

with Angle Sector-based Energy-Aware TDMA 

(ELEACH-AS-TDMA) to improve scheduling 

efficiency and reduce collisions [15]. The approach 

benefits from its scheduling capabilities but fails to 

perform well when nodes need rearranging due to 

restricted adaptability in unpredictable network 

structures. Table 1 shown literature. 

 

Table 1. Literature  
 

Author/Year Proposed 

Methodology 

Scalability Objective Limitation 

[16] Mobile Sink 

Optimization 

(MSO) 

Medium Data 

Gathering 

The mobile sink node concept improves energy 

efficiency. However, it adds extra complexity to path 

planning and movement forecasting, reducing its 

practicality in real-time use or where mobility is 

constrained. 

[17] Energy Efficient 

Clustering 

Protocol 

(EECP) 

High  Lifetime 

Enhancement 

The fixed clustering style restricts network flexibility 

in changing conditions, thus causing unbalanced 

energy patterns as the network structures develop. 

[18] Stability-

Enhanced 

Routing (SER) 

Low Lifetime 

Maximization 

The protocol provides better stability in early 

operations, yet leaves unaddressed energy 

breakdowns for later phases, producing unbalanced 

power consumption and possible communication 

failures. 

[19] Firefly 

Optimization 

(FO) 

Medium  Lifetime 

Optimization 

The Firefly algorithm proves effective but has a 

drawback: its convergence slows down when 

operating on sizable or sophisticated wireless 

network systems, potentially influencing real-time 

application speed. 

[20] Graphical 

Neural Network 

(GNN)-based 

routing 

High Lifespan 

Extension 

The model presents excessive computational 

requirements, which prevent it from being employed 

on resource-limited sensor nodes commonly used in 

typical WSN applications. 

[21] Hybrid Cluster 

Head ( 

CH) Selection 

Medium Lifetime 

Maximization 

The combined operational elements of the protocol 

produce higher complexity for algorithms, thus 

causing slower decision times and increased 

computational energy needs. 

[22] Advanced 

Distributed 

Clustering 

(ADC) 

High Load 

Balancing 

The technique works well in a thick network but 

proves inefficient in dynamic conditions. This is 

because continual cluster configuration changes 

enhance communication system costs. 

[23] Improved EECP Medium  Lifetime 

Enhancement 

The protocol performs effectively in uniform 

networks but is unbaled heterogeneous elements or 

system mobility structures, making large-scale 

implementation difficult in actual WSN 

environments. 

[24] Prediction-

Based 

Scheduling 

Medium Lifetime 

Improvement 

The method's performance strongly depends on the 

accuracy of the prediction model. Imprecise 

forecasting might create inefficient scheduling, 

which wastes energy and increases idle listening 

duration. 

[25] Mobility based 

CH selection 

High Lifetime 

Enhancement 

The scheme enhances energy distribution within 

mobile networks, yet the repetitive cluster head 

selection generates excessive control expenses and 

Funny link usage. 

 

The authors in [26] created the Energy Centroid 

Clustering Algorithm (ECCA) to establish clusters 

through the energy-weighted centroid selection 

process that minimizes communication paths from 

nodes to the cluster head, thus both saving power 

reserves and extending network operational time. 

The algorithm operates with fixed clustering that 

reduces its capability to adjust when topologies shift 

or become mobile, thus causing disparate energy 

distribution throughout the system operation time. 
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The Optimal Base Station Location (OBSL) 

technique from [27] activates an approach to find the 

most suitable base station position by placing it at 

the point that minimizes total communication 

distance throughout all network nodes. The 

geometrical optimization minimizes transmission 

power usage, mainly when networks operate at high 

densities. Despite its effectiveness, the constant 

station position of the base station fails to optimize 

event-driven applications alongside mobile-node 

deployment needs for adaptable station moving 

strategies.   

The author [28] brings forward a Multi-Objective 

Metaheuristic Optimization (MOMO) system that 

optimizes network coverage and lifetime 

enhancement. The method combines various 

objectives between energy efficiency and sensing 

coverage via evolutionary algorithms to find a 

perfect equilibrium. The multiple-objective 

problem-solving complexity creates substantial 

computational demands that hinder real-time 

operation because it extends computing time and 

slows convergence rates. The authors in [29] 

introduce the Scalable Cluster-based Data 

Aggregation (SCADA) approach to improve both 

network performance and operating duration. The 

method builds a data hierarchy that reduces 

superfluous data transfers while lowering the energy 

needed to broadcast information across the network. 

The SCADA data aggregation technique lowers 

communication expenses. Still, it will degrade data 

accuracy because of sweeping aggregation practices, 

and it loses efficiency in network patterns with 

infrequent nodes and inconsistent data patterns.  

In [30], the author developed Hierarchical Routing 

with Optimal Clustering using Fuzzy Approach 

(HROCF), using fuzzy logic to choose cluster heads 

by assessing energy supply, base station proximity, 

and node population density. The technique shows 

efficient responsiveness to network condition 

modifications and extends network duration. The 

utilization of fuzzy inference systems increases the 

computational requirements of sensor nodes with 

limited resources, while requiring possible 

adjustments to membership functions for peak 

performance. 

 

3. Proposed Methodology 

 

The proposed solution presents EETWRP as a 

reliable routing approach for heterogeneous systems 

within WSNs. The protocol was developed to 

resolve problems concerning different WSN 

environments and their energy efficiency, as well as 

trust management and routing reliability challenges. 

EETWRP implements an intelligent trust evaluation 

method that works with energy-aware path selection 

and adaptive optimization using swarm intelligence 

concepts. The TIBR serves as the fundamental 

element of this protocol since it uses the trust-based 

model to monitor packet drop rates together with 

unusual response delays for detecting untrustworthy 

nodes. Accurate node reliability assessments are 

included in routing decisions through this approach. 

Within its framework, the protocol utilizes CLM-

EARS to choose energy-efficient paths supported by 

stable links by assessing cross-layer metrics, 

including multicast delivery efficiency and link 

quality, and buffer load change rates against 

topology alterations. 

 
 

 
Figure 1. Architecture diagram of the proposed method 

 

The heterogeneous sensor nodes start the process by 

collecting and transmitting data and routing 

information with packet sent/drop logs. The TIBR 

method evaluates node trust behavior. An 

insufficient trust score results in the system diversion 

to examine trust score parameters before continuing 

data transmission. After the trust evaluation, the 

CLM method processes the trusted nodes to 

determine the best energy-efficient routing paths 

through residual energy assessment, link quality 

measurements, and multicast efficiency checks. The 

decision engine accepts the data, after which trust 
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metrics and energy parameters are processed for 

routing path guidance. A global optimization 

technique based on Swarm Optimization operates 

during this block to identify and choose the most 

secure and efficient routing path. The "Select Best 

Path" module implements the optimal route using a 

swarm intelligence-derived fitness function. The 

selected path serves as the data transmission avenue 

because it includes reliable nodes that maintain 

energy efficiency, thus extending network 

performance and security measures. 
 

3.1 Traffic Intensive Behaviour Rate (TIBR) 
 

Traffic Intensive Behaviour Rate (TIBR) provides a 

dynamic trust assessment system that evaluates 

reliability among sensor nodes found in 

heterogeneous WSNs. The fundamental trust 

assessment component, TIBR, performs behavior 

analysis and monitoring on nodes when they handle 

different traffic loads. The evaluation mechanism 

assesses three essential factors, data delivery 

consistency, response duration, and network 

reliability, to perform node behavior analysis during 

demanding network usage periods. The process of 

behavioral integrity evaluation leads TIBR to 

produce trust scores, resulting in decision support for 

network routing that enables dependable nodes to 

take part in data forwarding. The first-stage trust 

evaluation plays a vital role in protecting network 

security and energy efficiency while improving data 

longevity throughout WSNs. Each node i calculates 

its Traffic Load through the following calculation at 

the initial stage, 
 

〖𝑇𝐿𝑖 = 𝑃𝑠𝑒𝑛𝑡
𝑖 + 𝑃𝑟𝑒𝑐𝑒𝑣

𝑖                (1) 

 

The total data processing through the node equals to 

𝑃𝑠𝑒𝑛𝑡
𝑖  combined with 𝑃𝑟𝑒𝑐𝑒𝑣

𝑖  based on packet 

transmission statistics. The recorded workload 

serves as vital information for executing subsequent 

behavioral evaluation. In equation 2, the Packet 

Delivery Ratio (PDR) (𝐷) evaluates the 

effectiveness with which a node transmits received 

packets. 

𝐷𝑖 =
𝑃𝑓𝑤𝑑

𝑖

𝑃𝑟𝑒𝑐𝑣
𝑖                    (2) 

 

The assessment of packet forwarding success is 

demonstrated through 𝑃𝑓𝑤𝑑
𝑖 . A high value of 𝐷𝑖 

confirms that the node establishes dependable 

service for routing activities. The Response Time 

Score (RTS) (𝑆) defines node response efficiency as 

the reciprocal of average response duration 

according to equation 3. 

. 

Si =
1

ARTi
     (3) 

 

The response time average in nodes can be 

calculated using 𝐴𝑅𝑇𝑖 to obtain the average response 

time score in a node according to equation 3. A 

combination of security measures is achieved by 

calculating the Malicious Drop Rate (MDR) (𝑅) 

using equation 4 to detect malicious or overloaded 

nodes. 
 

Ri =
Pdrop

i −Pnorm_drop

TLi
       (4) 

 

The ratio utilizes 𝑃𝑑𝑟𝑜𝑝
𝑖 , which signifies the number 

of packets the node drops, while 𝑃𝑛𝑜𝑟𝑚_𝑑𝑟𝑜𝑝 defines 

the normal packet drop threshold. The ratio enables 

the detection of nodes that show unexpected 

performance characteristics, specifically when 

traffic levels reach maximum intensity. The node 𝑖 
TIBR Trust Score (𝐵) results from aggregating 

multiple metrics using assigned weights 
 

𝐵𝑖 = 𝑤1 . 𝐷𝑖 + 𝑤2. 𝑆𝑖 − 𝑤3. 𝑅𝑖 (5) 

 

The weight coefficients 𝑤1, 𝑤2, and 𝑤3 

predetermine how much influence each factor of 

successful delivery, node speed, and risk behaviors 

will have in this calculation. The resultant value 𝐵𝑖 ∈
[0,1] is an evaluation metric for CLM-EARS to find 

trustworthy nodes that minimize energy 

consumption during route selection. The overall 

evaluation method ensures better security and 

decreased energy consumption while improving 

network reliability throughout heterogeneous 

wireless sensor networks. 

 

3.2 Cross Layer Multicasting Energy Aware-

Route Selection (CLM-EARS) 

 

The data transmission path optimization mechanism 

in heterogeneous WSNs is accomplished through the 

Cross Layer Multicasting Energy Aware Route 

Selection protocol (CLM-EARS). The route 

selection process within CLM-EARS uses cross-

layer information gathering, which integrates data 

from physical, MAC, and network layer protocols to 

guide its routing decisions. This comprehensive 

evaluation method enables the protocol to assess 

regular routing measurements in conjunction with 

parameters such as node trustworthiness obtained 

from 𝐵𝑖 and remaining energy, link quality, and 

multicast efficiency. Implementing energy 

awareness in CLM-EARS gives preferences to 

nodes with more residual energy to increase overall 

network lifetime. CLM-EARS integrates multicast 

capabilities that enable optimum group 

communication functionality required by 
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environmental monitoring systems and intelligent 

infrastructure networks. CLM-EARS runs in real-

time to automatically choose the best routes by 

balancing energy distribution across the network and 

minimizing retransmissions while avoiding 

untrusted or weak nodes. The proposed method 

starts by calculating the residual energy ratio 𝑅 for 

node 𝑖 through a mathematical computation. 
 

𝑅𝑖 =
𝐸𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝑖

𝐸𝑚𝑎𝑥
𝑖   (6) 

 

The equation uses 𝐸𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙
𝑖  to represent the current 

node energy level and 𝐸𝑚𝑎𝑥
𝑖  to define its initial 

maximum energy capacity. The protocol selects 

nodes with substantial energy reserves to extend the 

network lifespan. Equation 7 calculates the link 

quality indicator 𝑄 between nodes 𝑖 and 𝑗. 
 

Qij =
Psuccess

ij

Pattempt
ij       (7) 

 

The calculation considers 𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠
𝑖𝑗

, which represents 

the received packet count, and 𝑃𝑎𝑡𝑡𝑒𝑚𝑝𝑡
𝑖𝑗

, which 

shows the total number of transmission attempts. 

Using this metric, CLM-EARS finds reliable 

communication connections that facilitate improved 

network performance through reduced 

retransmission operations. Equation 8 determines 

the Multicast Efficiency (𝑀𝐸) evaluation for each 

node. 
 

𝑀𝐸𝑖 =
𝑁𝑔𝑟𝑜𝑢𝑝_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑

𝑖

𝑁𝑔𝑟𝑜𝑢𝑝_𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑒𝑑
𝑖    (8) 

 

This measurement shows the effectiveness of a node 

in delivering multicast messages. Combined with 

traffic behavior trustworthiness scores of 𝐵𝑖, all 

system metrics become part of the Cross Layer 

Route Score (𝐶). 
 

𝐶𝑖 = 𝛼. 𝑅𝑖 + 𝛽. 𝐷𝑖 + 𝛾. 𝑄𝑖𝑗 + 𝛿. 𝑀𝐸𝑖 (9) 

 

The components operate within the framework 

under four weight parameters 𝛼, 𝛽, 𝛾, and 𝛿 that 

define their relative importance. CLM-EARS bases 

its routing decision on selecting the most suitable 

next-hop node using the maximum scoring criterion 

 

𝐵𝑅 = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑖

(𝐶𝑖)  (10) 

 

The selection process leads to adaptive routing, 

which combines energy-saving measures with 

security protocols to achieve protocol goals in real-

time WSN operations. 

 

 

 
 
Figure 2. Flowchart diagram of the CLM-EARS method 

 

The initial stage of the procedure in figure 2 starts 

with accepting multicast routing metrics that consist 

of residual energy, link quality, buffer status, and 

multicast delivery efficiency. The initial decision 

block confirms whether the node fulfills the energy 

standards for secure transmission operations. The 

node becomes ineligible if its energy level proves 

insufficient, which results in exclusion from routing 

duties. The system moves to link quality and 

delivery ratio assessment if the energy level satisfies 

the minimum requirement. The system only selects 

dependable paths that provide fast data delivery 

times for its forwarding operations. The system 

evaluates buffer load after link checking to prevent 

selecting nodes with heavy traffic congestion that 

could result in delivery problems. The checking 

procedure for buffer status completes the node 

performance evaluation, which ensures dynamic 

network stability by assessing topology adaptability. 

CLM-EARS routing adds the eligible path to its list 

for consideration by EETWRP after satisfactory 

evaluation completion. 

 

3.3 Swarm Intelligence Optimization (SIO) 

 

The dynamic improvement of routing operations and 

network flexibility depends on Swarm Intelligence 

Optimization (SIO). The behavior of animal 

groupings like ants and flocking birds, and bee 

colonies directs swarm intelligence into distributed 

decision-making via decentralized communication 

between nodes instead of centralized governance. 

The algorithms base swarm optimization helps select 

optimal routing paths by automatically balancing 

factors including link quality alongside trust levels 

(B_i), energy reserves, and multicast performance. 

The autonomous agents at sensor nodes determine 

their routing score through CLRS and adjacent 

network information to help generate global 
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avoidance of congested or unreliable paths. Reliable 

network routing functions become possible through 

automatic decision making and organization, 

enabling operation without human assistance in 

facing node failures, energy exhaustion, and 

malicious threats. The decentralized swarm 

intelligence system maintains scalability through 

heterogeneous WSN environments, consisting of 

various node qualities and robust operation. In 

algorithm 1 we briefly illustrated the SIO algorithm. 

 

Algorithm 1: 

Input:  

Set of all nodes 𝑁, source node 𝑆, destination node 

𝐷, maximum number of iterations (MaxIterations), 

weight coefficients for energy 𝛼, trust 𝛽, link quality 

𝛾, multicast 𝛿, and set of candidate paths 𝑃. 

Output: 

Best path from 𝑆 to 𝐷 with highest 𝐶𝑖 score 

Start 

Set 𝑃 with random paths from 𝑆 to 𝐷 

For each path 𝑝 ∈ 𝑃 do 

For each 𝑖 in 𝑝 do 

Evaluate residual energy 

ratio 𝑅 

𝑅[𝑖] ← 𝐸𝑟[𝑖]/
𝐸𝑚𝑎𝑥[𝑖]  
Evaluate trust score by 

utilizing 𝐵𝑖 

  𝐵𝑖[𝑖] ←
𝐶𝑎𝑙𝑐𝑢𝑎𝑙𝑡𝑒𝐵𝑖(𝑖) 

Evaluate average 𝑄𝑖𝑗 for 

outgoing links 

𝑄𝑖𝑗[𝑖] ← 𝐴𝑣𝑔(𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠[𝑖][∗]

/𝑃𝑎𝑡𝑡𝑒𝑚𝑝𝑡[𝑖][∗]) 

Evaluate 𝑀𝐸𝑖 

 𝑀𝐸𝑖[𝑖]
← 𝑁𝑔𝑟𝑜𝑢𝑝_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑[𝑖]

/𝑁𝑔𝑟𝑜𝑢𝑝_𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑒𝑑[𝑖] 

Evaluate the score of 𝑖 
fitness 

𝐶𝑖[𝑖] ← 𝛼 ∗ 𝑅𝑖[𝑖] + 𝛽 ∗ 𝐷𝑖[𝑖] + 𝛾
∗ 𝑄𝑖[𝑖] + 𝛿
∗ 𝑀𝐸𝑖[𝑖] 

End for 

Evaluate fitness 𝐹 of 𝑝 

𝐹[𝑝] ← 𝐴𝑣𝑔(𝐶𝑖[𝑖]) for all 𝑖 
in 𝑝 

End for 

While iteration < MaxIterations do 

For each 𝑝 ∈ 𝑃 do 

Update velocity on 

the basis of 𝐹[𝑝] 
New routes of 

exploration and 

exploitation 

Compute 𝐹[𝑝] for updates 

𝑝 
Update Bestpath if new 

global best found 

iteration ← iteration + 1 

End while 

Return Bestpath 

End 

The process represents each possible routing path as 

an intelligent agent and other candidate paths in a 

swarm. The evaluation process considers a 

combined fitness score from these specific criteria: 

𝑅[𝑖], 𝐵𝑖[𝑖], 𝑄𝑖𝑗[𝑖], and  𝑀𝐸𝑖[𝑖] combined with 

weighting factors of 𝛼, 𝛽, 𝛾, and 𝛿. The swarm 

optimization method starts with randomly selecting 

various paths that extend from the source to the 

destination. The swarm optimization system 

improves path fitness by utilizing velocity-position 

operations that depend on assessment results from 

prior strategic decisions. During repeated execution, 

the swarm arrives at the best possible route by 

optimizing energy efficiency alongside 

trustworthiness and communication reliability. A 

self-regulating, integrating mechanism allows for 

network response to instant network changes as the 

method skips congested and compromised nodes to 

maximize total system longevity. 

 

3.4 Energy Efficient Trust Ware Routing 

Protocol (EETWRP) 

 

The Energy Efficient Trust Ware Routing Protocol 

(EETWRP) is a novel routing framework designed 

to enhance the performance and longevity of 

heterogeneous WSNs by integrating intelligent trust 

evaluation and energy-aware routing mechanisms. 

In environments where sensor nodes differ in 

capabilities and face energy constraints, EETWRP 

introduces a multi-layered, adaptive approach that 

addresses the dual challenges of energy consumption 

and trust management. EETWRP significantly 

improves network lifetime, data reliability, and 

energy efficiency. The proposed method effectively 

balancing load, avoiding unreliable nodes, and 

adapting to fluctuating network conditions making it 

highly suitable for applications like environmental 

monitoring, and smart cities. The Residual Energy 

Ratio of a node 𝑖 is denoted as 𝑅𝑖, ensures energy-

aware routing by quantifying available power using 

equation 11, 
 

Ri =
Er(i)

Emax(i)
  (11) 

 

The computing method utilizes the remaining energy 

(𝐸𝑟(𝑖)) and maximum energy capacity (𝐸𝑚𝑎𝑥(𝑖)) of 

individual nodes. The trustworthiness evaluation of 
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nodes is determined by the traffic-intensive behavior 

rate 𝐷𝑖, which detects irregularities in delivery 

patterns and latencies through equation 12. 

 

𝑅𝑖 =
𝐸𝑟(𝑖)

𝐸𝑚𝑎𝑥(𝑖)
                (12) 

 

The number of dropped and transmitted packets is 

denoted by𝑃𝑑(𝑖) and 𝑃𝑠(𝑖), and communication 

delay irregularities are assessed through 𝑅𝑇𝑇𝑎(𝑖) 

and 𝑅𝑇𝑇𝑡(𝑖). The 𝑄𝑖𝑗 link quality indicator shows 

that the network relies only on dependable 

connections, which depend on successful packet 

transmission from node 𝑖 to node 𝑗. 

 

𝑄𝑖𝑗 =
𝑃𝑧(𝑖,𝑗)

𝑃𝑏(𝑖,𝑗)
  (13) 

 

The value of 𝑃𝑧(𝑖, 𝑗) refers to delivery successes 

while 𝑃𝑏(𝑖, 𝑗) counts total transmission efforts 

between nodes i and j. The multicast efficiency 𝑀𝐸𝑖 

for group-based communication can be determined 

through Equation 14. 
 

𝑀𝐸𝑖 =
𝑁𝑔𝑑(𝑖)

𝑁𝑔𝑎(𝑖)
     (14) 

 

The total multicast attempts consist of 𝑁𝑔𝑎(𝑖), while 

𝑁𝑔𝑑(𝑖) represents successful multicast packets. The 

load balance penalty L_i functions to discourage 

network traffic through nodes experiencing high 

congestion volumes. 
 

𝐿𝑖 =
𝑄𝑐(𝑖)

𝑄𝑡(𝑖)
 (15) 

 

The algorithm evaluates candidate nodes through the 

formula, with 𝑄𝑐(𝑖) representing the current queue 

length and 𝑄𝑡(𝑖) representing the acceptable 

threshold. 𝐴𝑖 of the adaptability index selects stable 

nodes that remain fixed during topology changes. 
 

𝐴𝑖 =
1

1+∆𝐶𝑡(𝑖)
  (16) 

 

This rate is indicated by 𝐶𝑡(𝑖) in the equation. The 

scoring model assesses candidate nodes using the 

composite metric expressed by equation number 17. 
 

𝐺𝑖 = 𝑤1. 𝑅𝑖 + 𝑤2. 𝐷𝑖 + 𝑤3. 𝑄𝑖𝑗 + 𝑤4. 𝑀𝐸𝑖 − 𝑤5. 𝐿𝑖 +

𝑤6. 𝐴𝑖            (17) 
 

The algorithm includes six adjustable weights 

indicated by 𝑤1 through 𝑤6, which control 

parameter importance according to network 

objectives. The evaluation of potential routes for 

route discovery depends on the fitness metric in 

equation 18. 
 

F(p) =
1

|p|
∑ Gii∈p  (18) 

 

The path length measurement uses |𝑝| to represent 

this value. The complete framework enables 

EETWRP 𝐺𝑖 to operate dynamically under network 

changes and identity untrustworthy nodes. It delivers 

energy-efficient data with enhanced security for 

critical applications, including smart cities and 

environmental monitoring networks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 3. Flowchart diagram of the EETWRP 

 

The routing process begins by gathering trust levels 

and node statistical data from figure 3 before 

obtaining measurements for residual energy and 

packet delivery statistics from each node. The 

EETWRP Decision Module selects eligibility from 

nodes that pass trust and energy evaluations. The 

Swarm Intelligence Optimization engine processes 

the candidate nodes to pick the most optimal path 

based on real-time trust and energy values through a 

nature-inspired metaheuristic operation. The 

protocol implements the optimized path for data 

transmission, ensuring reliable and energy-efficient 

data communication throughout the WSN. 

 

4. Result and Discussion 

 

The section compiles a comparative analysis to 

demonstrate how the proposed EETWRP performs 

better regarding routing efficiency and network 

sustainability than EFRP, FL-LEACH-PSO, HEEL, 

and SER. Simulation results reveal that EETWRP 

establishes superior performance in Packet Delivery 

Ratio (PDR), network lifetime and energy 

efficiency, end-to-end delay and energy 

consumption and throughput across heterogeneous 

WSN environments compared to existing protocols. 

The multi-metric decision flow enhances data 
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transmission integrity by fighting malicious nodes 

and congested paths, reducing overall data loss.  
 

Table 2. Simulation Parameter 
 

Parameters Value 

Simulation Area 100m x 100m 

No of Sensor Nodes 100 

Packet Size 4000 bits 

Simulation Environment NS2-Simualator 

No of Rounds 500 – 1000 rounds 

Energy for transmission 50 nJ/bit 

Energy for Reception 50 nJ/bit 

 

A comprehensive NS2 simulation environment 

demonstrated the performance evaluation for the 

proposed EETWRP, as shown in Table 2. The 

simulation occurred in a 100m × 100m square area 

containing 100 heterogeneous sensor nodes 

randomly positioned. The sensor nodes were 

programmed to exchange 4000-bit data packets 

representing standard wireless sensor network 

communication. The simulated rounds lasted 

between 500 and 1000 seconds to show network 

patterns and evaluate network operational duration. 

The implemented energy model follows the first-

order radio model, which attributes a 50 nJ/bit cost 

for data transmission and reception processes. 

 
Table 3. Performance Analysis of Network Lifetime 

Roun

ds 

EFR

P 

FL-

LEAC

H-PSO 

HEE

L 

SE

R 

EETWR

P  

500 180 220 200 210 260 

600 170 210 195 200 250 

700 160 205 190 195 240 

800 150 190 180 185 230 

900 140 180 170 175 220 

1000 130 170 160 165 210 

 

 

 
Figure 4. Performance Analysis of Network Lifetime 

 

Figure 4 and table 3 highlight the proposed EETWRP's 

effectiveness in contrast with existing routing protocols 

such as EFRP, FL-LEACH-PSO, HEEL, and SER. 

EETWRP maintains superior performance than all other 

protocols throughout every testing cycle of the simulation. 

For instance, at the 1000th round, EETWRP retains 

approximately 210 alive nodes, significantly higher than 

130 in EFRP, 170 in FL-LEACH-PSO, 160 in HEEL, and 

165 in SER. EETWRP achieves this performance gain 

from its trust evaluation and energy-based routing 

mechanisms, which work together to reduce overall 

energy waste, establish routing balance, and protect 

network node integrity. 

 

Table 4. Performance Analysis of PDR 
 

Packe

t Size 

(bits) 

EFR

P 

FL-

LEACH

-PSO 

HEE

L 

SE

R 

EETWR

P  

1000 81.4 85.2 83.6 84.2 92.8 

2000 78.9 83.7 80.4 82.2 90.4 

3000 74.8 80.4 78.7 79.7 88.6 

4000 70.2 77.1 75.1 76.2 85.4 

 

 
Figure 5. Performance Analysis of PDR 

 

Figure 5 and table 4 highlight the proposed EETWRP's 

superior reliability over traditional routing protocols such 

as EFRP, FL-LEACH-PSO, HEEL, and SER. EETWRP's 

performance benefit results from its route selection 

mechanism based on energy and trust-related metrics, 

which picks reliable, stable packet-transmission routes. 

EETWRP effectively reduces packet loss and enhances 

transmission reliability under increased data transmission 

demand, thus enabling its application in crucial mission 

areas for wireless sensor networks. 

 

Table 5. Performance Analysis of End-to-End Delay 
 

Methodologies Avg Delay (ms) 

EFRP 310 

FL-LEACH-PSO 270 

HEEL 260 

SER 250 

EETWRP 180 

 

 
Figure 6. Performance Analysis of End-to-End Dealy 
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Figure 6 together with table 5 demonstrates that 

EETWRP performs better than EFRP, FL-LEACH-

PSO, HEEL and SER in terms of efficiency. The 

total end-to-end delay measurement took 180 ms to 

transmit data successfully across the network 

through a 50 nJ/bit energy model that considered 

transmission and reception as power-consuming 

operations. The experimental results demonstrate 

that EETWRP reduces end-to-end delay 

performance to 180 ms, while SER and HEEL attain 

250 ms and 260 ms, FL-LEACH-PSO uses 270 ms, 

and EFRP requires 310 ms. The effectiveness of 

EETWRP routing decisions accounts for lower 

delays because the system makes efficient energy-

conscious selections through optimal paths that 

avoid congested or untrusted nodes. 

 
Table 6. Performance Analysis of Energy consumption 

 

Sensor 

Nodes 

EFRP FL-

LEACH-

PSO 

HEEL SER EETWRP 

25 0.92 0.85 0.81 0.79 0.65 

50 1.78 1.68 1.55 1.48 1.12 

75 2.55 2.41 2.25 2.10 1.75 

100 3.45 3.25 3.02 2.87 2.38 

 

 
Figure 7. Performance Analysis of Energy Consumption 

 

The figure 7 and table 6 compare Energy 

Consumption between EFRP, FL-LEACH-PSO, 

HEEL, SER and the proposed EETWRP as the 

sensor nodes range from 25 to 100. Results 

demonstrate that EETWRP maintains sustainable 

energy efficiency levels through all changes in 

sensor node densities. The performance 

enhancement of EETWRP results from its trust-

aware routing and energy-efficient path selection 

processes that redistribute network traffic to prevent 

fatal damage to energy-limited nodes. The spaced 

graph data indicates that EETWRP demonstrates 

both efficient operation and flexible use in diverse 

WSN situations and presents a promising option for 

power-sensitive implementation areas like 

environmental observations and intelligent 

construction frameworks. Figure 8, and table 7, 

shows researchers evaluating the Throughput 

behavior of EFRP, FL-LEACH-PSO, HEEL, SER, 

and the proposed EETWRP throughout different 

simulation rounds spanning 500 to 1000. The  

 
Table 7. Performance Analysis of Throughput 

Performance 
 

Round

s 

EFR

P 

FL-

LEACH

-PSO 

HEE

L 

SE

R 

EETWR

P  

500 115 130 138 142 155 

750 122 138 144 150 168 

1000 130 145 152 158 182 

 

 
Figure 8. Performance Analysis of Throughput 

Performance 

 

experimental results show that EETWRP exceeds all 

current routing approaches by consistently achieving 

better throughput at every simulation round. 

EETWRP achieves better performance results by 

combining its adaptive trust-based routing with 

efficient load distribution and energy-aware path 

optimization to lower packet loss and enhance 

communication reliability. 

 

5. Conclusion 
 

In conclusion, the EETWRP represents a new 

routing framework that unifies trust management 

approaches with energy-aware routing and swarm 

intelligence optimization functions to optimize 

heterogeneous WSN performance and operational 

lifetime. TIBR and CLM-EARS help the protocol 

solve routing congestion, energy depletion, and 

malicious node behavior. Simulation results showed 

that the EETWRP achieved better performance than 

conventional methods in all assessed metrics, 

including network lifetime, PDR, energy 

consumption, throughput, and end-to-end delay. 

Electronic EETWRP features adaptive intelligence 

to pick the best routes for data transfer among 

resource-constrained WSN networks because of its 

security capabilities, thus making it perfect for 

applications like environmental observation. The 

protocol EETWRP provides an encouraging basis 

for creating future routing protocols that maintain 

operational excellence and defensiveness in 

networks. 
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