

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 11-No.3 (2025) pp. 4170-4175

http://www.ijcesen.com
ISSN: 2149-9144

Research Article

Enhancing Reliability in Complex Embedded Systems Software: The Critical

Role of Unit Testing in the Age of AI and Machine Learning

Kishore Ranjan1*, Reena Chandra2, Karan Lulla3

1Independent Researcher, Trumbull, CT, USA.

* Corresponding Author Email: kishoreranjan@gmail.com- ORCID: 0009-0001-5372-9490

2Independent Researcher, San Francisco, CA, USA.

Email: reenachandra11@gmail.com - ORCID: 0009-0001-8061-1084

3Independent Researcher, San Francisco, CA, USA.

 Email: kvlulla16@gmail.com - ORCID: 0009-0007-7491-4138

Article Info: Abstract:

DOI: 10.22399/ijcesen.2633

Received : 21 March 2025

Accepted : 25 May 2025

Keywords

Embedded Software

Systems, AI, CI/CD, Unit

tests, integration tests,

software quality, test

automation & lithography

machine.

Qualification of a large code base embedded software systems, like Lithography

machines, Aerospace Embedded Systems, High-End Medical Embedded Systems &

Automotive Embedded Systems, is an important and challenging aspect. The goal of

this article is to provide a brief description of large code base software qualification in

embedded systems and how “Unit Tests” can make a huge difference. This research

addresses the importance of qualification and automation in embedded system devices

to improve the software quality of source code by introducing appropriate test strategy

at right place to improve the quality of final product and at a low maintenance cost. This

article will focus more on the importance of unit tests in the software development

lifecycle, and how the advance AI tools and CI/CD concepts are used across industry is

enabling it.

1. Introduction

The integration of Machine Learning (ML) and

Artificial Intelligence (AI) technologies into the

embedded software has led to the development of

more intelligent embedded systems such as

autonomous vehicles, smart homes, IoT and

lithography machines. The size of the global

embedded system market is expected to reach
110.46 billion USD by 2026 [1].

In the Software development lifecycle, testing plays

a vital role. Especially in the embedded system

development, the role of software testing becomes

more critical, as it might also impact and influence

the re-design of hardware and can jeopardize the

entire product delivery time and the cost.

Usually, the software testing is the last phase of the

product development lifecycle, however, in the

embedded systems development, it becomes more

crucial that testing has to be done at the earlier

phases together with the software development.

This article is a practical guideline for professionals

in embedded software development who are eager

to improve the quality of large code bases and

complex embedded software systems development

to develop Unit testing using advance AI tools and

take advantage of CI/CD.

2. Software development life cycle

Software development life cycle (SDLC, as shown

in figure1) is a structured process to effectively

design, build, test, and maintain software. It offers a

methodical way to guarantee software quality, cut

expenses, and satisfy user needs.[2]

Figure 1. SDLC

http://www.ijcesen.com/
http://dergipark.org.tr/en/pub/ijcesen
mailto:kishoreranjan@gmail.com
mailto:reenachandra11@gmail.com
mailto:kvlulla16@gmail.com

Kishore Ranjan, Reena Chandra, Karan Lulla/ IJCESEN 11-3(2025)4170-4175

4171

2.1 Phases of SDLC

2.1.1 Planning

• Specify the project's resources, timetable,

viability, and scope.

• Determine the project's goals and potential

hazards.

• Perform technical, financial, and operational

feasibility studies.

• Create a project schedule.

2.1.2 Requirements Analysis

• Compile and record business and user

requirements.

• Interview the stakeholders.

• Specify both functional and non-functional

needs.

• Make a document called a Software Requirement

Specification (SRS).

2.1.3 Design

• Create system components, data models, and

architecture.

• The overall system architecture is defined by

high-level design (HLD).

• Detailed component-level design is specified by

low-level design (LLD).

• Database schemas, security considerations, and

UI/UX wireframes.

2.1.4 Implementation

• Writing and developing the actual software code

is the aim of implementation (coding and

development)

• Choose programming languages, tools, and

frameworks.

• Adhere to coding standards and best practices.

• To monitor changes, use version control (like

Git).

2.1.5 Testing & Integration

• Confirm that the program satisfies specifications

and operates as intended.

• Unit Testing: Qualify the highest granular part of

software (module/function)

• Integration testing: Verify that various

components are compatible.

• System Testing: Verify the entire program.

• User Acceptance Testing (UAT): Software is

validated by end users.

2.1.6 Maintenance & Support

 Address bugs and security flaws. Disseminate

fixes and feature updates. Keep an eye on user

input for upcoming enhancements.

3. Insight of Unit Test

Unit testing is a software testing methodology that

involves evaluating individual software application

modules, functions, or components separately to

make sure they operate as intended. It is usually

carried out together with the software development

(coding) phase and is a crucial component of the

Software Development Life Cycle (SDLC). [4]

3.2. Importance of Unit Testing

a) Finding early bugs in software lowers the

expense of debugging at the later phase and

assists in the early identification of problems

during the development stage.

b) Enhances Code Quality: Makes sure every

function works as intended, which lowers

production flaws.

c) Enables Refactoring: Developers can alter

code with assurance without affecting already-

existing functionality.

d) Improves Maintainability: Software that has

been well tested is simpler to maintain,

change, or expand.

e) Elevates Agile & CI/CD: Test-driven

development (TDD), agile approaches, and

continuous integration (CI/CD) all depend on

this.

3.3. Tools for Unit Test Framework (based on

coding language)

• Java – JUnit, TestNG

• Python – unittest, pytest

• C/C++ – Google Test (GTest), CppUnits

• JavaScript/Node.js – Jest, Mocha, Jasmine

• C#/.NET – NUnit, MSTest, xUnit

3.4. Test Driven development

Test-Driven Development (TDD) is the most recent

iteration of unit testing. In reality, this is a test-driven

development technique. In order to use the tests to

validate your code in real time, you write them

concurrently with the code as the developer. The

approach produces unit tests and working code as

outputs.

The TDD workflow follows a simple cycle:

• Write a small test to test a behavior.

• Build and run the test suite to see the new test

fail, possibly not even compile yet.

• Make the CUT changes needed to pass the test.

• Build and run the test suite to see the new test

pass.

Kishore Ranjan, Reena Chandra, Karan Lulla/ IJCESEN 11-3(2025)4170-4175

4172

• Refactor to remove any duplication or cleanup

the test or CUT.

Since TDD essentially entails advancing test

development into code development, it will be

simpler to implement if you already have off-target

unit tests. Because it moves receiving feedback to

the left on the development timetable, this is known

as "shift left." You should continue to use your

current infrastructure for unit testing. The primary

shift will be that the developers that write the CUT

will also write the unit tests rather than hiring

different test developers. To enable test isolation,

you might need to modify your software in addition

to spending time building your unit test

infrastructure. This endeavor has the advantage of

exposing the code to testing. [4]

3.5. AI/ML in Unit Testing

Artificial Intelligence (AI) and Machine Learning

(ML) are being widely used in transforming unit

testing by automating test generation,

prioritization, and also it’ maintenance. These

technologies proactively analyze the entire

codebases, revision histories, and also takes

account into the runtime behavior to identify the

potential high-risk areas, generate intelligent test

cases, and predict defects early in the development

cycle. Some key highlights on using AI/ML in unit

tests are:

• Unit Test Generation: ML models can

automatically generate unit tests by learning

from existing code patterns, function behaviors,

and historical defects.

• Unit Test Optimization & enhancements: AI

helps analyzing the code changes and historical

failure data, to improve the regression test cases.

Advance ML algorithms can also detect unusual

patterns in test executions, highlighting hidden

bugs or regressions.

• Code Coverage Improvement: AI can identify

untested or under-tested code paths and

recommend targeted unit tests.

• Flaky Test Detection: By analyzing historical

test results, ML can identify non-deterministic or

flaky tests and help in stabilizing them.

• These AI-driven enhancements reduce manual

effort, improve testing accuracy, and foster a

“shift-left” approach, enabling earlier defect

detection and faster delivery cycles.

3.6. Role of Unit test in CI/CD

Continuous integration and continuous development

(CI/CD) are widely used across the industry for a

sustainable maintenance of large code base software

were adding more low level “Unit Testing” in

pipeline is enabling the robustness of software

development lifecycle.

Figure 2. CI/CD & importance of UT in CI/CD

Unit testing is a cornerstone of a reliable CI/CD

(Continuous Integration / Continuous Deployment)

pipeline. Here's are highlights on it’s importance

• Early Bug Detection in CI/CD pipeline

• Faster Development Cycles: Automated unit tests

run quickly and often (on every commit or pull

request).

• Code Quality and Reliability: CI pipelines with

high unit test coverage tend to have more robust,

predictable software releases.

• Enables Continuous Integration: CI/CD relies on

automated checks to validate every change before

integration. Unit tests are the first line of defense

in that automation stack, ensuring that only

working code progresses through the pipeline.

• Reduces Risk in Deployment: Combined with

integration and system tests, unit tests form a test

pyramid. This layered validation helps reduce

deployment risks and ensures production stability.

Kishore Ranjan, Reena Chandra, Karan Lulla/ IJCESEN 11-3(2025)4170-4175

4173

4. Importance of UT in large code base

Embedded Systems

A perfectly “unit tested” code reduces the risk of

finding defects at the latter phase of qualification

and hence reduces the implementation cost. Large-

scale embedded systems are performance-

constrained, and extremely complicated, which

makes unit testing (UT) essential. Because

embedded software interacts with hardware with

real-time limitations, and external surroundings in a

different way than typical software applications,

thorough unit testing becomes essential.

The key advantages of Unit testing for an embedded

software system are as follows:

a) Faster execution time: Since UTs are done at the

smallest unit of software (function/module), their

development and execution time is very fast.

b) Easy to find and fix bug: Since UT is done as a

part of software development, therefore it’s easy

to change the design of software and resolve the

bugs.

c) Platform independent testing: Usually UT is

done in a simulated environment, therefore it

does not need any hardware to test and hence it

becomes very critical in embedded systems.

d) Shift Left: Since UT exposes potential issues at

the smallest level of software module, and hence

it reduces the chances of finding bugs at the

latter phase of qualification on real hardware

which is more time consuming, both in terms of

testing time and fixing bugs.

e) Enhances system performance, particularly in

contexts with limited resources. Facilitates

strong integration with hardware components in

real time.

5. Focused Case study: Importance of UT in

Lithography Embedded Systems

Lithography machines, which prints tiny circuit

patterns onto silicon wafers, are essential to the

production of semiconductors. These devices

employ extremely intricate embedded software

systems to manage several subsystems, guarantee

accuracy, and maximize throughput. In order to

fabricate new integrated circuits with the accuracy

and efficiency needed, lithography machines—

which are crucial to the semiconductor industry—

heavily rely on complex embedded software

systems. These machines are very complex and

expensive. Each unit of the latest High NA EUV

machines costs approximately $370 million [Ref].

The operating cost of these machines are very high.

In semiconductor fabrication plants, unscheduled

downtime of these lithography machines can cost up

to $1 million every day. Therefore, keeping these

machines up and running becomes very critical. [5]

Figure 3. ASML High NA EUV Machine

5.1. Key Challenges in Lithography Embedded

Software Development:

a) Software must adhere to stringent latency

requirements (microsecond-level response) in

order to function in real-time.

b) Exceptional Accuracy: Wafer placement error

margins must be within nanometers.

c) System Complexity: A lithography machine has

hundreds of interdependent subsystems.

d) Integration with Manufacturing Execution

Systems (MES): Facing automation systems is a

need.

e) Security & IP Protection: Guarding against

reverse engineering and software manipulation.

The operating costs of these sophisticated machines

are huge and hence the machine downtime is very

expensive. Therefore, any defect reported from

FAB, operating these machines could be very

expensive. Considering these facts, more and more

emphasis is given to qualifying the software at UT

level to find early defects and qualify them on a

simulated environment without the need of an

actual machine for the qualification.

Depending on the severity of the issue and the stage

at which it is found, repairing bugs in the embedded

software of a lithography machine might be

expensive. With real-time embedded software

managing incredibly precise motions, optics, and

exposure parameters, lithography machines are

extremely complex devices.

Kishore Ranjan, Reena Chandra, Karan Lulla/ IJCESEN 11-3(2025)4170-4175

4174

5.2. Factors Affecting Bug Fixing Cost:

5.2.1. Stage of Detection

Early (Development/Testing Phase): Less

expensive because software can be changed

prior to implementation.

Due to manufacturing delays in

semiconductors, late (after deployment/

production downtime): Costs are exponentially

greater.

5.2.2. Complexity of the Issue

 Minor UI or parameter changes could be

resolved with a $10,000–$50,000 software

 patch. Critical Real-time Control Bugs: These

require in-depth analysis, impact

 machine accuracy, and can cost anywhere from

$100,000 to $1 million or more.

5.2.3. Machine Downtime & Yield Loss

In semiconductor fabs, or fabrication plants,

unscheduled downtime can cost up to $1

million every day.

Defective chips can result from a flaw that

affects wafer alignment or exposure precision,

which would raise costs even more.

5.2.4. Software Validation & Regulatory

Compliance

Re-certification, regression testing, and QA

validation may be necessary to fix a bug, which

would increase costs.

5.2.5. Field Service & Deployment Costs

The cost of travel, labor, and hardware

replacements might increase significantly if a

hardware-related fault necessitates engineers to

be on-site.

5.2.6. Best Practices to Minimize Bug Fixing

Costs:

• Thorough simulation and software unit

testing during deployment.

• Continuous Integration & Automated Unit

Testing (CI/CD) for instant feedback.

• Predictive maintenance powered by AI to

identify problems before they become more

serious.

• To reduce downtime, use remote debugging

and patch deployment.

Early defect detection is always in-expensive, as

the bug can be fixed in software prior to final

qualification in embedded platforms (hardware).

Due to manufacturing delays in semiconductors,

bugs caught at latter phase (after deployment/

production downtime), are exponentially

expensive.

6. Conclusion

Unit testing drives embedded system code

development and qualification in the absence of

hardware by using tiny, fine-grained automated tests

of particular behavior that can be done off-target. It

gives quick feedback and code confidence before

deploying the software in complex embedded

systems. This becomes even very critical for high-

end and expensive embedded system machines, like

Lithography machines, Military & Aerospace

Embedded Systems, High-End Medical Embedded

Systems & Automotive Embedded Systems to find

the bugs at the earlier phase of software development

through Unit Testing. With the leverage of advance

AI tools and CI/CD concepts, Unit test will add more

value and process/cost efficiency in time ahead.

Author Statements:

• Ethical approval: The conducted research is not

related to either human or animal use.

• Conflict of interest: The authors declare that

they have no known competing financial interests

or personal relationships that could have

appeared to influence the work reported in this

paper

• Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

• Author contributions: The authors declare that

they have equal right on this paper.

• Funding information: The authors declare that

there is no funding to be acknowledged.

• Data availability statement: The data that

support the findings of this study are available on

request from the corresponding author. The data

are not publicly available due to privacy or

ethical restrictions.

References

[1] Embedded System Market. Accessed: Apr. 1, 2023.

[Online]. Available:

https://www.marketsandmarkets.com/Market-

Reports/embedded -system-market-98154672.html

[2]https://iaeme.com/MasterAdmin/Journal_uploads/IJ

ARET/VOLUME_11_ISSUE_12/IJARET_11_12_019.

pdf?utm_source=chatgpt.com

[3] Unit Testing For Embedded Software

Developmenthttps://dojofive.com/blog/unit-testing-for-

https://www.marketsandmarkets.com/Market-Reports/embedded%20-system-market-98154672.html
https://www.marketsandmarkets.com/Market-Reports/embedded%20-system-market-98154672.html
https://iaeme.com/MasterAdmin/Journal_uploads/IJARET/VOLUME_11_ISSUE_12/IJARET_11_12_019.pdf?utm_source=chatgpt.com
https://iaeme.com/MasterAdmin/Journal_uploads/IJARET/VOLUME_11_ISSUE_12/IJARET_11_12_019.pdf?utm_source=chatgpt.com
https://iaeme.com/MasterAdmin/Journal_uploads/IJARET/VOLUME_11_ISSUE_12/IJARET_11_12_019.pdf?utm_source=chatgpt.com
https://dojofive.com/blog/unit-testing-for-embedded-software-development/

Kishore Ranjan, Reena Chandra, Karan Lulla/ IJCESEN 11-3(2025)4170-4175

4175

embedded-software-development/

[4] For TDD on embedded systems, see Test Driven

Development for Embedded C, by James Grenning.

[5]:https://www.datacenterdynamics.com/en/news/tsmc

-to-receive-first-high-na-euv-lithography-machine-

from-asml-in-

q4/#:~:text=It%20is%20unclear%20how%20many,adv

anced%203nm%20and%205nm%20chips

[6] Q. Liao, Modelling CI/CD Pipeline Through Agent-

Based Simulation,”2020 IEEE International

Symposium on Software Reliability Engineering

Workshops (ISSREW), Coimbra, Portugal, 2020, pp.

155-156, doi: 10.1109/ISSREW51248.2020.00059

[7] D. V. Landuyt, L. Sion, W. Philips and W. Joosen,

”From automation to CI/CD: a comparative evaluation

of threat modeling tools,” 2024 IEEE Secure

Development Conference (SecDev), Pittsburgh, PA,

USA, 2024, pp. 35-45,

doi:0.1109/SecDev61143.2024.00010.

[8] A. Saxena, S. Singh, S. Prakash, T. Yang and R. S.

Rathore, ”DevOps Automation Pipeline Deployment

with IaC (Infrastructure as Code),”2024 IEEE Silchar

Subsection Conference (SILCON 2024), Agartala,

India, 2024, pp. 1-6, doi:

10.1109/SILCON63976.2024.10910699

[9] Reinforcement Learning from Automatic Feedback

for High-Quality Unit Test Generation

Benjamin Steenhoek, Michele Tufano, Neel

Sundaresan, Alexey Svyatkovskiy

https://doi.org/10.48550/arXiv.2412.14308

[10] VALTEST: Automated Validation of Language

Model Generated Test Cases

Hamed Taherkhani, Hadi Hemmati

https://doi.org/10.48550/arXiv.2411.08254

https://dojofive.com/blog/unit-testing-for-embedded-software-development/
https://www.datacenterdynamics.com/en/news/tsmc-to-receive-first-high-na-euv-lithography-machine-from-asml-in-q4/#:~:text=It%20is%20unclear%20how%20many,advanced%203nm%20and%205nm%20chips
https://www.datacenterdynamics.com/en/news/tsmc-to-receive-first-high-na-euv-lithography-machine-from-asml-in-q4/#:~:text=It%20is%20unclear%20how%20many,advanced%203nm%20and%205nm%20chips
https://www.datacenterdynamics.com/en/news/tsmc-to-receive-first-high-na-euv-lithography-machine-from-asml-in-q4/#:~:text=It%20is%20unclear%20how%20many,advanced%203nm%20and%205nm%20chips
https://www.datacenterdynamics.com/en/news/tsmc-to-receive-first-high-na-euv-lithography-machine-from-asml-in-q4/#:~:text=It%20is%20unclear%20how%20many,advanced%203nm%20and%205nm%20chips
https://www.datacenterdynamics.com/en/news/tsmc-to-receive-first-high-na-euv-lithography-machine-from-asml-in-q4/#:~:text=It%20is%20unclear%20how%20many,advanced%203nm%20and%205nm%20chips
https://arxiv.org/search/cs?searchtype=author&query=Steenhoek,+B
https://arxiv.org/search/cs?searchtype=author&query=Tufano,+M
https://arxiv.org/search/cs?searchtype=author&query=Sundaresan,+N
https://arxiv.org/search/cs?searchtype=author&query=Sundaresan,+N
https://arxiv.org/search/cs?searchtype=author&query=Svyatkovskiy,+A
https://doi.org/10.48550/arXiv.2412.14308
https://arxiv.org/search/cs?searchtype=author&query=Taherkhani,+H
https://arxiv.org/search/cs?searchtype=author&query=Hemmati,+H
https://doi.org/10.48550/arXiv.2411.08254
https://doi.org/10.48550/arXiv.2411.08254

