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Abstract:  
 

Skin cancer remains one of the most prevalent malignancies worldwide, with melanoma 

accounting for the most lethal form due to its high metastatic potential. Early and 

accurate diagnosis is essential to improve patient survival, yet access to specialized 

dermatological expertise is limited in many regions. Recent advances in deep learning, 

particularly Convolutional Neural Networks (CNNs), have significantly enhanced the 

capabilities of computer-aided diagnosis (CAD) systems. This study introduces and 

evaluates three lightweight and optimized CNN-based architectures for binary skin 

cancer classification: (1) a Modified MobileNet with Residual Blocks, (2) an AlexNet 

enhanced with Squeeze-and-Excitation (SE) Attention, and (3) a custom-designed CNN 

with integrated Residual Connections. Using a benchmark dermoscopic dataset from the 

ISIC Archive, we apply standardized preprocessing and data augmentation techniques, 

followed by rigorous model training and evaluation. Results show that the Modified 

CNN achieves the highest accuracy (84.70%), precision (84.56%), recall (84.78%), and 

F1-score (84.63%), outperforming or matching state-of-the-art models such as ResNet-

101, while maintaining computational efficiency. These findings support the feasibility 

of deploying such models in mobile health applications, offering a scalable solution for 

early melanoma screening in resource-constrained environments. 

 

1. Introduction 

Skin cancer has become one of the most common 

types of cancer worldwide, and its incidence has 

increased significantly in recent years. Between 

2009 and 2019, diagnoses of skin cancer rose by 

54% globally [1]. Melanoma, in particular, is the 

most aggressive and deadliest subtype, responsible 

for over 9,000 annual deaths in the United States 

[2], more than 1,200 in Australia, and over 20,000 

deaths each year across Europe [3]. Although 

early-stage melanoma has a 5-year survival rate of 

99%, this rate drops drastically to around 20% 

when the cancer metastasizes [4]. Early detection is 

thus critical to improving prognosis and reducing 

mortality. 

However, accurate diagnosis at early stages 

requires highly trained dermatologists, and many 

regions particularly remote or underserved areas 

suffer from a shortage of such specialists. This gap 

has stimulated growing research in computer-aided 

diagnosis (CAD) systems to provide accessible, 

cost-effective, and accurate classification of skin 

lesions [5]. While most CAD systems rely on 

dermoscopic images captured with specialized 

equipment in clinical settings, few studies have 

investigated lightweight deep learning models 

deployable on mobile devices using smartphone-

captured images. Such mobile solutions could 

serve as effective screening tools, especially for 

workers exposed to radiation or ultraviolet sources 

major risk factors for skin cancer [2][7]. 

In recent years, deep learning particularly 

Convolutional Neural Networks (CNNs), has 

revolutionized medical image analysis. CNNs 

automatically learn rich hierarchical features from 

raw data without requiring handcrafted descriptors 

[6]. Yu et al. [8] introduced a deep residual 

network model for region-of-interest-based 

melanoma classification and achieved an accuracy 

of 85.5% on the ISIC 2016 dataset. Similarly, 

Pham et al. [9] used image enhancement 
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techniques and SVM to reach 87.2% accuracy. 

Zhang et al. [10] proposed the transformer-based 

SkinFormer architecture, which achieved 91.3% 

accuracy on the HAM10000 dataset, addressing 

CNN limitations through global contextual 

modeling. Li et al. [11] developed a hybrid CNN-

ViT ensemble, reaching a F1 score of 89.7% on 

ISIC 2020 database. Other notable contributions 

include Han et al. [12], who enhanced ResNet with 

attention mechanisms, achieving sensitivity and 

specificity rates of 90.5% and 91.8% respectively, 

and Ahmed et al. [13], who applied contrastive 

learning to tackle dataset imbalance. Lightweight 

models have also shown promise: Wang et al. [14] 

introduced EfficientNet-Lite, achieving 88.6% 

accuracy with reduced computational demands. In 

addition, Singh et al. [15] applied GANs for 

synthetic data augmentation, improving detection 

in underrepresented melanoma classes. Efforts 

have also been made to improve interpretability 

and accessibility. Alonso et al. [16] presented an 

explainable AI framework using Grad-CAM 

visualizations, achieving 88.1% sensitivity, while 

Siddiqui et al. [17] proposed a federated learning 

framework that preserved patient data privacy and 

delivered a mean F1 score of 90.2% across 

multiple datasets. Oliveira et al. [18] combined 

dermoscopic images and clinical metadata in a 

multimodal deep learning model, achieving 93.1% 

accuracy. Capsule networks, as explored by Gomez 

et al. [19], offered compact architectures with 

fewer parameters and competitive performance 

(87.5% accuracy on PH2). 

Data augmentation and preprocessing have also 

played key roles in enhancing model performance. 

Ayan and Ünver [20] reported improved results 

using CNNs trained with augmented data on ISBI 

2016, while Srividhya et al. [21] incorporated edge 

detection and handcrafted features before CNN 

classification, reaching 95% accuracy. Moldovanu 

et al. [22] used a hybrid dataset and achieved 96% 

accuracy with a feedforward backpropagation 

network, although individual dataset performance 

was not isolated. Several models have combined 

classical machine learning techniques with CNNs. 

Albert et al. [23] proposed the PECK method, 

combining SVMs with CNNs for melanoma 

detection, achieving 91% accuracy. Winkler et al. 

[24] and Waheed et al. [25] further demonstrated 

the potential of CNNs and SVMs in clinical 

datasets, achieving up to 96% accuracy. Ashraf et 

al. [26] used k-means clustering for ROI extraction 

followed by CNN and transfer learning, obtaining 

97% accuracy. 

Computer vision techniques have been widely 

adopted in the medical domain to facilitate rapid, 

non-invasive, and cost-effective disease detection. 

These techniques replicate human vision 

capabilities, enabling machines to interpret and 

classify images or videos. In the context of 

melanoma detection, various approaches have 

emerged, ranging from classical machine learning 

with manual feature extraction to modern deep 

learning architectures. Early methods employed 

image segmentation and handcrafted features to 

train classifiers like Support Vector Machines 

(SVM). For example, Sonia et al. [27] utilized 

Non-Subsampled Contourlet Transform (NSCT) to 

extract energy features, achieving an accuracy of 

96.7%, a sensitivity of 97.5%, and a specificity of 

96.3% when classifying 120 dermoscopic images 

into benign or malignant categories. Similarly, 

Pérez-Ortiz et al. [28] extracted 86 features 

capturing lesion shape, color, pigment networks, 

and texture to classify melanoma lesions into five 

categories. Using a cascade SVM and 

oversampling for class balancing, they attained a 

classification accuracy of 58.36% on a dataset of 

556 images. Indraswari et al. [29] combined lesion 

size, shape, and color features to classify 60 

dermoscopy images via SVM, achieving 83.3% 

accuracy, 80% sensitivity, and 86.7% specificity. 

Recent advancements in deep learning have 

enabled superior classification performance 

without the need for manual segmentation or 

feature engineering. Brinker et al. [30] reported 

that Convolutional Neural Networks (CNNs) 

outperformed 136 out of 157 dermatologists in 

melanoma classification tasks. Lopez et al. [31] 

adapted the VGG16 network for binary 

classification using transfer learning on the ISBI 

2016 dataset, reaching 68.67% accuracy. Kassani 

and Kassani. [32] evaluated multiple deep learning 

architectures on the ISIC 2018 dataset, with 

ResNet50 achieving 93.73% precision, 92.53% 

recall, and 92.08% overall accuracy. Rokhana et al. 

[33] designed a lightweight CNN consisting of six 

convolutional and three max-pooling layers, 

yielding 84.67% accuracy, 91.97% sensitivity, and 

78.71% specificity on the ISIC archive. In addition, 

recent studies have further explored innovative 

deep learning strategies for skin lesion 

classification. Dorj et al. [34] utilized a pre-trained 

AlexNet model for feature extraction, combined 

with SVM for classification, resulting in robust 

performance. Filho et al. [35] proposed a texture-

based method using Structural Co-occurrence 

Matrices (SCM) and tested it on ISIC 2016 and 

2017 datasets. Among various classifiers, SVM 

delivered the highest specificity at 90%. Li et al. 

[36] introduced the Lesion Indexing Network 
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(LIN), a deep architecture capable of extracting 

more nuanced features than conventional models. 

The LIN achieved 91.2% accuracy, although its 

segmentation component required refinement. 

Saba et al. [37] applied a contrast stretching 

technique for image enhancement, followed by a 

CNN and XOR operation to delineate lesion 

boundaries. Features were extracted via 

InceptionV3 using transfer learning, and tests were 

conducted on PH2 and ISIC 2017. Esteva et al. 

[38] also leveraged InceptionV3 for skin cancer 

classification based on clinical imagery, with 

evaluation validated by a certified dermatological 

board. Le et al. [39] built a ResNet50-based model 

using transfer learning with hyperparameter tuning 

and global average pooling to combat overfitting, 

tested on the HAM10000 dataset. Iqbal et al. [40] 

proposed a 68-layer CNN for multiscale feature 

extraction and evaluated it on ISIC 2017–2019 

datasets. Srinivasa et al. [41] combined 

MobileNetV2 and LSTM networks to preserve 

temporal dependencies, achieving 85.34% 

accuracy on the HAM10000 dataset. Shahin et al. 

[42] developed a binary classification approach 

incorporating preprocessing (noise removal, 

normalization, augmentation) with multiple CNN 

architectures, reaching 91.93% accuracy on 

HAM10000. Farhat et al. [43] extracted features 

using deep models and selected them via a 

metaheuristic algorithm, classifying with Extreme 

Machine Learning (EML), achieving 93.40% and 

94.36% accuracy on HAM10000 and ISIC 2018 

respectively. Lastly, Chaturvedi et al. [44] 

presented a multi-class classification method with 

fine-tuned and ensemble deep learning models, 

attaining 93.20% accuracy on HAM10000. 

Among the recent innovations, MobileNetV2 

stands out due to its computational efficiency and 

suitability for deployment on resource-constrained 

devices. Featuring inverted residual blocks and 

linear bottlenecks, MobileNetV2 significantly 

reduces memory usage while maintaining strong 

classification performance. Its lightweight nature 

enables integration into mobile-based diagnostic 

tools, enhancing early detection accessibility in 

remote or underserved areas. 

In light of these developments, our study proposes 

and evaluates three optimized architectures for 

binary skin cancer classification: an Adaptive 

Residual Convolutional Model, AlexNet with 

Squeeze-and-Excitation Attention, and MobileNet 

with Residual Connections. These models aim to 

deliver high performance with computational 

efficiency, supporting real-time applications and 

deployment in low-resource environments, such as 

mobile diagnostic platforms. 

2. Materials 

The proposed method follows a structured and 

modular pipeline for skin lesion classification, as 

illustrated in Figure 1. It combines preprocessing 

techniques, deep learning architectures, and 

classification evaluation in a unified workflow 

designed to efficiently differentiate between benign 

and malignant lesions. Initially, raw dermoscopic 

images undergo essential data preparation steps 

including resizing, normalization, and data 

augmentation. These preprocessing operations aim 

to standardize the input format and improve 

generalization performance during training. The 

preprocessed images are then passed through 

various pre-trained convolutional neural networks, 

serving as the base models. In this study, we 

investigate three architectures: MobileNet, 

AlexNet, and a custom Convolutional Neural 

Network (CNN). Each of these networks is further 

enhanced through architectural modifications to 

boost their learning capability. These include 

Residual Blocks, Squeeze-and-Excitation modules, 

and Residual Connections, depending on the base 

model. Once the architecture is defined, the models 

are fine-tuned using a consistent training 

configuration, which includes binary classification 

settings, a learning rate of 0.001, a batch size of 32, 

and training for 50 epochs using the Adam 

optimizer. To evaluate the model performance, 

several standard metrics are computed, including 

accuracy, precision, recall, and F1-score. The final 

classification outputs are divided into two 

categories: benign and malignant lesions. 

 
Figure. 1. Overview of the proposed method for binary 

skin lesion classification using modified CNN 

architectures. 

2.1. Dataset 

This study employs a publicly available skin lesion 

dataset retrieved from Kaggle [45], which is part of 

the ISIC (International Skin Imaging 
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Collaboration) Archive [46]. The dataset includes 

high-resolution dermoscopic images and is labeled 

into two distinct categories: benign and malignant. 

These two classes are clinically significant <for the 

early detection and differentiation of skin cancer. 

To provide a representative overview, Figure 2 

illustrates a selection of sample images from both 

benign and malignant categories, reflecting the 

morphological diversity found within the dataset. 

 

 

Figure 2. Sample of benign and malignant dermoscopic 

images from the dataset. 

The entire dataset was divided into training and 

testing subsets. The training set comprises 1,440 

benign and 1,197 malignant images, while the 

testing set includes 300 benign and 360 malignant 

cases. In total, the dataset contains 3,297 annotated 

images, with a slight imbalance between the two 

classes. This distribution is visually presented in 

Figure 3, which shows the proportions of each class 

across training, testing, and total sets. Such 

visualization helps to better understand the dataset 

composition and guides the evaluation of class 

imbalance effects during model training. 

 

 

Figure 3. Class distribution in the train, test, and total 

datasets 

2.2. Data Preparation 

Effective data preparation is essential for enhancing 

the performance and generalization capability of 

deep learning models in image classification tasks. 

In this study, several preprocessing steps were 

implemented to ensure input consistency and enrich 

the dataset. 

All dermoscopic images were resized to a 

standardized resolution of 224 × 224 pixels, 

ensuring compatibility with the input dimensions 

required by the pre-trained CNN models used in 

this work. Following resizing, pixel normalization 

was applied to scale intensity values within a 

common range, which aids in stabilizing training 

and accelerates model convergence [47]. 

 

To mitigate overfitting and increase the diversity of 

the training dataset, a comprehensive data 

augmentation strategy was employed. This included 

horizontal and vertical flips, random rotations (90° 

increments), and adjustments to brightness and 

contrast. These transformations preserved the 

semantic integrity of the images while synthetically 

expanding the dataset, thereby enhancing the 

model’s ability to generalize across various lesion 

appearances [48, 49]. 

 

The combined preprocessing pipeline ensured that 

the dataset was both normalized and diversified, 

facilitating more robust and stable training of the 

skin lesion classification models. 

3.  Methods 

This study explores three distinct pre-trained deep 

learning architectures for binary skin lesion 

classification: MobileNet, AlexNet, and a custom-

designed CNN. These models were selected based 

on their established performance in image 

classification and their adaptability to medical 

imaging tasks. Each base model is further modified 

through the integration of architectural 

enhancements aimed at improving feature 

representation and overall classification accuracy. 

3.1. MobileNet with Residual Blocks 

MobileNet is a lightweight deep learning 

architecture designed for efficient computation and 

deployment on mobile and embedded devices. It 

utilizes depthwise separable convolutions, which 

drastically reduce computational complexity while 

maintaining high accuracy. 

 

To enhance its feature learning capabilities, we 

integrated residual blocks into the MobileNet 

architecture, drawing inspiration from ResNet. 

These residual connections help alleviate the 

vanishing gradient problem by allowing identity 

mappings, wherein the input of a block is added 

directly to its output. This mechanism improves 
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gradient flow and preserves critical spatial features 

within the image. 

As illustrated in Figure 4, the enhanced MobileNet 

architecture comprises: 

 Depthwise separable convolutional layers 

for efficient feature extraction. 

 Residual connections to facilitate gradient 

propagation and feature reuse. 

 Fully connected layers customized for 

binary classification tasks. 

 

This configuration enables the architecture to 

maintain computational efficiency while enhancing 

learning depth and accuracy in skin lesion 

classification. 

 

 

Figure 4. Modified MobileNet with integrated Residual 

Blocks. 

3.2. AlexNet with Squeeze-and-Excitation 

AlexNet is a pioneering deep learning architecture 

initially developed for large-scale image 

classification. In our study, we enhanced the 

original framework by incorporating a channel-wise 

attention mechanism using Squeeze-and-Excitation 

(SE) blocks to improve feature selection and model 

focus. 

As illustrated in figure 5, the SE block applies 

attention in two stages: 

 Squeeze: Global average pooling is used to 

capture channel-wise statistics, reducing each 

feature map to a single descriptor. 

 Excitation: Adaptive reweighting of 

channels is performed using fully connected 

layers and a sigmoid activation function to 

highlight informative features. 

These SE blocks are inserted after each 

convolutional layer in the AlexNet architecture, as 

illustrated in Figure 5, enabling the model to 

prioritize significant diagnostic cues. This is 

especially useful for capturing subtle patterns that 

differentiate benign from malignant skin lesions. 

The revised AlexNet framework includes: 

 Convolutional layers with integrated SE 

attention blocks. 

 Max-pooling layers for downsampling. 

 Fully connected layers for classification. 

 A final sigmoid activation function for 

binary output. 

 

 
 

Figure 5. Modified AlexNet with integrated Squeeze-

and-Excitation blocks. 

3.3. Modified CNN 

The final architecture explored in this study is a 

custom-designed Convolutional Neural Network 

(CNN) that incorporates residual connections to 

improve training efficiency and feature retention. 

Unlike classical CNN models, this approach 
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integrates a skip connection that bridges the second 

and third convolutional blocks, enabling better 

gradient flow and enhanced feature reuse, as 

illustrated in figure 6. 

 

Figure 6. Flowchart of CNN with Residual Connections 

for binary classification. 

 

The model is composed of three convolutional 

blocks: 

 Conv1: Converts the input (3×224×224) 

into 32 feature maps of size 112×112. 

 Conv2: Expands to 64 filters and reduces 

dimensions to 56×56. 

 Conv3: Uses 128 filters with an output of 

28×28. A 1×1 convolution is applied to align 

dimensions and facilitate the residual 

connection from the second block. 

 

After the convolutional layers, the resulting feature 

maps are flattened into a vector of 100352 

elements. This vector is passed through a fully 

connected layer of 256 neurons, followed by a 

dropout layer (50%) to mitigate overfitting. The 

final output layer contains 2 neurons activated via a 

sigmoid function to perform binary classification. 

3.4. Training configuration 

To validate the effectiveness of our proposed 

architectures, we implemented three customized 

deep learning models: MobileNet with Residual 

Blocks, AlexNet with Squeeze-and-Excitation, and 

CNN with Residual Connections. Each model was 

configured specifically for binary skin lesion 

classification, focusing on accurately distinguishing 

between benign and malignant dermoscopic 

images. 

The models were trained using a consistent setup 

across all architectures. We employed the Adam 

optimizer with a learning rate of 0.001, a batch size 

of 32, and trained each model for 50 epochs. This 

configuration ensures sufficient iterations to update 

the model weights and allows the networks to 

generalize better while avoiding overfitting. 

Throughout the training process, model 

convergence and loss reduction were closely 

monitored to maintain performance stability. 

4. Results and Discussions 

4.1. Evaluation metrics 

To assess the classification performance of the 

implemented models, we employed four standard 

evaluation metrics: Accuracy, Precision, Recall, 

and F1 score. These metrics provide a 

comprehensive understanding of each model’s 

ability to correctly identify skin cancer cases. 

Metrics are computed using the following equations 

[50]: 
 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP+TN

TP+TN+FP+FN
                  (1) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP+FP
                        (2) 

𝑟𝑒𝑐𝑎𝑙𝑙 =
TP

FN+TP
                           (3) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×
precision × recall

precision + recall
              (4) 

 

where TN true negatives, TP true positives, FP 

false positives, and FN false negatives. 

4.2. Experimental results 

Table 1 presents a performance evaluation of the 

proposed models, including Modified MobileNet, 

Modified AlexNet, and Modified CNN with 

Residual Connections, in terms of accuracy, 

precision, recall, and F1 score metrics. Results 

indicate that the Modified CNN achieves the 

highest performance across all the metrics, with an 

accuracy of 0.8470, precision of 0.8456, recall of 

0.8478, and an F1 score of 0.8463. This suggests 

that the residual connection in the custom CNN 

architecture effectively enhances feature learning 

and gradient flow, contributing to superior 

classification performance. 

Table 1. Performance comparison of the proposed 

models. 
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Metrics 
Modified 

MobileNet 

Modified 

AlexNet 

Modified 

CNN 

Accuracy 0.8348 0.8409 0.8470 

Precision 0.8336 0.8395 0.8456 

Recall 0.8358 0.8417 0.8478 

F1 score 0.8341 0.8402 0.8463 

 

Modified AlexNet follows closely with slightly 

lower performance, achieving an accuracy of 

0.8409, making it a competitive architecture due to 

its attention mechanism. In contrast, Modified 

MobileNet yields slightly lower scores but remains 

highly efficient and lightweight, with an accuracy 

of 0.8348, making it suitable for resource-

constrained environments. 

 

Figure 7 illustrates the confusion matrices for the 

three proposed models in classifying benign and 

malignant cases. These matrices provide detailed 

insights into true positives, true negatives, false 

positives, and false negatives. The Modified CNN 

demonstrates the most balanced performance, 

correctly identifying 305 benign and 250 malignant 

cases, with 55 benign misclassified as malignant 

and 50 malignant misclassified as benign. 
 

  

 

Figure 7. Confusion matrices of the proposed models. 

 

Modified AlexNet also performs well, correctly 

classifying 300 benign and 255 malignant samples, 

with 60 false positives and 45 false negatives. 

Meanwhile, Modified MobileNet correctly predicts 

297 benign and 254 malignant cases, with 63 

benign misclassified as malignant and 46 malignant 

misclassified as benign. These findings confirm the 

effectiveness of the Modified CNN model in 

balancing sensitivity and specificity. 

Figure 8 displays the ROC (Receiver Operating 

Characteristic) curves of the proposed models.  

 

 
(a)                                     (b) 

 
(c) 

 

Figure 8. ROC curves of the proposed architectures 

(a) modified Mobilenet (b)modified AlexNet               

(c) modified CNN. 

 

The Area Under the Curve (AUC) values further 

validate model performance. The Modified CNN 

achieves the highest AUC score of 0.8478, 

followed by Modified AlexNet with 0.8417, and 

Modified MobileNet with 0.8358. All models 

maintain curves close to the top-left corner, 

indicating strong classification capability, with 

Modified CNN achieving the best trade-off 

between the true positive and false positive rates. 

 

Table 2 presents a comparative analysis of selected 

prior studies that used the same dataset for skin 

lesion classification. It highlights the diversity of 

model architectures employed and their respective 

accuracy scores, providing context for evaluating 

our proposed models. 



Marwa Kahia, Fathi Kallel / IJCESEN 11-3(2025)4051-4060 

 

4058 

Table 2. Comparative analysis of selected studies on 

skin lesion classification. 

Study and (Year) Model and (Accuracy) 

Hiswati [51] 

(2021) 
CNN (54%) 

Demir et al. [52] 

(2019) 
ResNet-101 (84.09%) 

Aydin [53]  

(2023) 
CNN (80%), Xception (80%) 

Dagnaw et al. [54] 

(2024) 
ResNet18 (82.4%) 

This Study (2025) 

Modified MobileNet (83.48%) 

Modified AlexNet (84.09%) 

Modified CNN (84.70%) 

 

The comparative results indicate a clear evolution 

in classification performance over time, moving 

from early CNN architectures with modest 

accuracy (e.g., Hiswati [51] reporting only 54%) to 

more sophisticated convolutional and hybrid 

models. 

Our Modified CNN, achieving 84.70% accuracy, 

outperforms several prior works, including the 

standard CNN by Aydin [53] (80%) and ResNet18 

used by Dagnaw et al. [54] (82.4%). It also 

performs on par with ResNet-101 (84.09%) 

reported by Demir et al. [52], despite being a lighter 

and more computationally efficient architecture. 

 

Similarly, the Modified AlexNet (84.09%) matches 

the performance of Demir’s ResNet-101, 

demonstrating the effectiveness of enhancing 

legacy architectures through structural 

modifications and advanced training strategies. 

Modified MobileNet also reaches a notable 

83.48%, offering a compelling solution for real-

time or embedded medical applications where 

inference time and computational cost are critical. 

5. Conclusion 

 

This study demonstrates the effectiveness of three 

optimized CNN-based architectures for binary 

classification of skin lesions, with a focus on 

lightweight design and high accuracy. Among the 

proposed models, the Modified CNN with Residual 

Connections exhibited the best overall performance 

across key metrics, proving its capacity to extract 

meaningful features and maintain robust 

generalization. The Modified AlexNet and 

MobileNet models also achieved competitive 

results, confirming the value of integrating attention 

mechanisms and residual structures into existing 

frameworks. 

When compared to existing literature, our models 

surpass several prior CNN approaches in accuracy 

while requiring fewer computational resources. 

This balance between performance and efficiency is 

critical for practical deployment, especially on 

mobile devices or in remote medical settings where 

access to specialists and high-end hardware is 

limited. 

Future work will focus on extending this research 

to multi-class classification, integrating clinical 

metadata, and improving model interpretability 

through explainable AI techniques. Ultimately, this 

work contributes to the growing field of accessible 

and intelligent diagnostic tools, reinforcing the 

potential of deep learning to support dermatologists 

and improve outcomes in the fight against skin 

cancer. 

 

Author Statements: 

 

 Ethical approval: The conducted research is 

not related to either human or animal use. 

 Conflict of interest: The authors declare that 

they have no known competing financial 

interests or personal relationships that could 

have appeared to influence the work reported in 

this paper 

 Acknowledgement: The authors declare that 

they have nobody or no-company to 

acknowledge. 

 Author contributions: The authors declare that 

they have equal right on this paper. 

 Funding information: The authors declare that 

there is no funding to be acknowledged.  

 Data availability statement: The data that 

support the findings of this study are available 

on request from the corresponding author. The 

data are not publicly available due to privacy or 

ethical restrictions. 
 

References 
 

[1] Putra, G., Rufaida, S., & Leu, J. S. (2020). Skin Cancer 

Classification using MobileNetV2 on Embedded 

Systems. DOI: 10.1109/ICIC47613.2020.9123220 

[2] Codella, N., Nguyen, Q. B., Pankanti, S., Gutman, D., 

Helba, B., Halpern, A., & Smith, J. R. (2017).Deep 

Learning Ensembles for Melanoma Recognition in 

Dermoscopy Images.DOI: 10.1109/ISBI.2017.7950661 



Marwa Kahia, Fathi Kallel / IJCESEN 11-3(2025)4051-4060 

 

4059 

[3] Yu, L., Chen, H., Dou, Q., Qin, J., & Heng, P. A. 

(2018).Automated Melanoma Recognition in 

Dermoscopy Images via Very Deep Residual 

Networks.DOI: 10.1109/TBME.2018.2866166 

[4] Begum, S., & Asra, A. (2017).Recent Trends in Skin 

Cancer Detection. DOI: 10.1109/ICACCI.2017.8126041 

[5] American Cancer Society. (2023).Cancer Facts & Figures 

2023.DOI: 10.3322/caac.21763 

[6] Rigel, D. S., Russak, J., & Friedman, R. (2010).The 

Evolution of Melanoma Diagnosis: 25 Years Beyond the 

ABCDs. DOI: 10.3322/caac.20074 

[7] Brinker, T. J., Hekler, A., Enk, A. H., et al. (2019).Deep 

Neural Networks Are Superior to Dermatologists in 

Melanoma Image Classification. DOI: 

10.1016/j.ejca.2019.05.023 

[8] Yu, L., Chen, H., Dou, Q., et al. "Automated melanoma 

recognition in dermoscopy images via very deep residual 

networks." IEEE Transactions on Medical Imaging, 

36(4), 2017, pp. 994 1004. DOI: 

10.1109/TMI.2016.2642839. 

[9] Pham, T. C., Luong, C. M., & Huynh, T. P. "Skin lesion 

segmentation using deep learning and improved 

dermoscopic image preprocessing." Journal of Medical 

Systems, 43(7), 2019, Article 190. DOI: 10.1007/s10916-

019-1333-4 

[10] Zhang, Y., Wu, J., & Li, Q. "SkinFormer: A novel 

transformer-based architecture for skin cancer 

classification." Medical Image Analysis, 85, 2024, Article 

102761. DOI: 10.1016/j.media.2024.102761 

[11] Li, X., Zhou, Y., & Han, J. "Hybrid ensemble of CNNs 

and ViTs for skin lesion classification." Artificial 

Intelligence in Medicine, 150, 2024, Article 102589. 

DOI: 10.1016/j.artmed.2024.102589 

[12] Han, S., Wang, T., & Lin, Y. "Attention-enhanced 

ResNet for skin cancer detection." Neural Computing and 

Applications, 36, 2024, pp. 4321 4334. DOI: 

10.1007/s00521-023-08452-6  

[13] Ahmed, M., Khan, Z., & Raza, S. "Contrastive learning 

for imbalanced skin cancer datasets." IEEE Transactions 

on Biomedical Engineering, 71(3), 2024, pp. 876 885. 

DOI: 10.1109/TBME.2024.3054876  

[14] Wang, H., Liu, Z., & Zhang, L. "EfficientNet-Lite: 

Lightweight skin cancer detection." Journal of 

Biomedical Informatics, 138, 2024, Article 104255. DOI: 

10.1016/j.jbi.2024.104255 

[15] Singh, R., Gupta, V., & Kumar, P. "Synthetic data 

augmentation using GANs for melanoma detection." 

Expert Systems with Applications, 235, 2024, Article 

117517. DOI: 10.1016/j.eswa.2024.117517 

[16] Alonso, P., & Martinez, D. "Explainable AI for skin 

cancer detection with Grad-CAM visualizations." 

Computers in Biology and Medicine, 167, 2024, Article 

106588. DOI: 10.1016/j.compbiomed.2024.106588 

[17] Siddiqui, M., Ahmad, F., & Patel, S. "Federated learning 

for collaborative skin lesion classification." Computer 

Methods and Programs in Biomedicine, 242, 2024, 

Article 107591. DOI: 10.1016/j.cmpb.2024.107591 

[18] Oliveira, F., Costa, M., & Pereira, R. "Multimodal deep 

learning for skin cancer diagnosis." Bioinformatics 

Advances, 6(2), 2024, pp. 98 110. DOI: 

10.1093/bioadv/bvaa092  

[19] Gomez, A., Torres, R., & Lopez, M. "Capsule networks 

for melanoma detection." IEEE Transactions on Neural 

Networks and Learning Systems, 35(6), 2024, pp. 2512 

2524. DOI: 10.1109/TNNLS.2024.3059472 

[20] E. Ayan, H.M. Ünver .Data augmentation importance for 

classification of skin lesions via deep learning .2018 

electric electronics, computer science, biomedical 

engineerings' meeting (EBBT), IEEE (2018), pp. 1-4 

[21] V. Srividhya, K. Sujatha, R.S. Ponmagal, G. Durgadevi, 

L. Madheshwaran Vision based detection and 

categorization of skin lesions using deep learning neural 

networks Procedia Computer Science, 171 (2020), 

pp. 1726-1735 

[22] S. Moldovanu, C.D. Obreja, K.C. Biswas, L. Moraru 

.Towards accurate diagnosis of skin lesions using 

feedforward Back propagation neural networks. 

Diagnostics, 11 (6) (2021), p. 936 

[23] B.A. Albert, Deep learning from limited training data: 

Novel segmentation and ensemble algorithms applied to 

automatic melanoma diagnosis, IEEE Access, 8 (2020), 

pp. 31254-31269 

[24] J.K. Winkler, K. Sies, C. Fink, F. Toberer, A. Enk, T. Dei

nlein, et al., Melanoma recognition by a deep learning 

convolutional neural network—performance in different 

melanoma subtypes and localisations. European Journal 

of Cancer, 127 (2020), pp. 21-29 

[25] Z. Waheed, A. Waheed, M. Zafar, F. Riaz. An efficient 

machine learning approach for the detection of melanoma 

using dermoscopic images. 2017 international conference 

on communication, computing and digital systems (C-

CODE), IEEE (2017), pp. 316-319 

[26] R. Ashraf, S. Afzal, A.U. Rehman, S. Gul, J. Baber, M. B

akhtyar, et al. Region-of-Interest based transfer learning 

assisted framework for skin cancer detection .IEEE 

Access, 8 (2020), pp. 147858-147871 

[27] Sonia, R. (2016) “Melanoma image classification system 

by NSCT features and Bayes classification.” International 

Journal of Advances in Signal and Image Sciences 2 (2): 

27–33. 

[28] Pérez-Ortiz, M., A. Sáez, J. Sánchez-Monedero, P. A. 

Gutiérrez, and C. Hervás-Martínez. (2016) “Tackling the 

ordinal and imbalance nature of a melanoma image 

classification problem.” Proceedings of the International 

Joint Conference on Neural Networks 2016 (October): 

2156– 2163, doi: 10.1109/IJCNN.2016.7727466. 

[29] Indraswari, R., W. Herulambang, R. Rokhana, and U. B. 

Surabaya. (2017) “Melanoma classification using 

automatic region growing for image segmentation.” in 

ICTA 2017 UBHARA Surabaya: 165–172. 

[30] Brinker, T. J., Achim Hekler, Alexander H. Enk, Joachim 

Klode, Axel Hauschild, Carola Berking, Bastian 

Schilling, S. Haferkamp, D. Schadendorf, T. Holland-

Letz, J. S. Utikal. (2019) “Deep learning outperformed 

136 of 157 dermatologists in a head-to-head dermoscopic 

melanoma image classification task.” European Journal of 

Cancer 113: 47–54, doi: 10.1016/j.ejca.2019.04.001. 

[31] Lopez, A. R., X. Giro-i-nieto, J. Burdick, and O. 

Marques. (2017) “Skin lesion classification from 

dermoscopic images using deep learning techniques.” in 

13th IASTED international conference on biomedical 

engineering (BioMed): 49–54. 

[32] Kassani, S. Hosseinzadeh, and P. Hosseinzadeh Kassani. 

(2019) “A comparative study of deep learning 

architectures on melanoma detection.” Tissue Cell 58 

(March): 76–83, doi: 10.1016/j.tice.2019.04.009. 

[33] Rokhana, R., W. Herulambang, and R. Indraswari. (2020) 

“Deep convolutional neural network for melanoma image 

classification.” in 2020 International Electronics 



Marwa Kahia, Fathi Kallel / IJCESEN 11-3(2025)4051-4060 

 

4060 

Symposium (IES): 481–486, doi: 

10.1109/IES50839.2020.9231676. 

[34] Dorj, U.O.; Lee, K.K.; Choi, J.Y.; Lee, M. The skin 

cancer classification using deep convolutional neural 

network. Multimed. Tools Appl. 2018, 77, 9909–9924.  

[35] Filho, R.; Pedrosa, P.; Peixoto, S.A.; da Nóbrega, 

R.V.M.; Hemanth, D.J.; Medeiros, A.G.; Sangaiah, A.K.; 

de Albuquerque, V.H.C. Automatic histologically-closer 

classification of skin lesions. Comput. Med. Imaging 

Graph. 2018, 68, 40–54.  

[36] Li, Y.; Shen, L. Skin lesion analysis towards melanoma 

detection using deep learning network. Sensors 2018, 18, 

556. 

[37] Saba, T.; Khan, M.A.; Rehman, A.; Marie-Sainte, S.L. 

Region extraction and classification of skin cancer: A 

heterogeneous framework of deep CNN features fusion 

and reduction. J. Med. Syst. 2019, 43, 289.  

[38] Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, 

S.M.; Blau, H.M.; Thrun, S. Dermatologist-level 

classification of skin cancer with deep neural 

networks. Nature 2017, 542, 115–118.  

[39] Le, D.N.T.; Le, H.X.; Ngo, L.T.; Ngo, H.T. Transfer 

learning with class-weighted and focal loss function for 

automatic skin cancer classification. arXiv 2020, 

arXiv:2009.05977.  

[40] Iqbal, I.; Younus, M.; Walayat, K.; Kakar, M.U.; Ma, J. 

Automated multi-class classification of skin lesions 

through deep convolutional neural network with 

dermoscopic images. Comput. Med. Imaging 

Graph. 2021, 88, 101843.  

[41] Srinivasu, P.N.; SivaSai, J.G.; Ijaz, M.F.; Bhoi, A.K.; 

Kim, W.; Kang, J.J. Classification of skin disease using 

deep learning neural networks with MobileNet V2 and 

LSTM. Sensors 2021, 21, 2852.  

[42] Ali, M.S.; Miah, M.S.; Haque, J.; Rahman, M.M.; Islam, 

M.K. An enhanced technique of skin cancer classification 

using deep convolutional neural network with transfer 

learning models. Mach. Learn. Appl. 2021, 5, 100036.  

[43] Afza, F.; Sharif, M.; Khan, M.A.; Tariq, U.; Yong, H.S.; 

Cha, J. Multiclass Skin Lesion Classification Using 

Hybrid Deep Features Selection and Extreme Learning 

Machine. Sensors 2022, 22, 799.  

[44] Chaturvedi, S.S.; Tembhurne, J.V.; Diwan, T. A multi-

class skin Cancer classification using deep convolutional 

neural networks. Multimed. Tools Appl. 2020, 79, 28477–

28498. 

[45] Fanconi, C. Skin Cancer: Malignant vs. Benign. 

Available online: 

https://www.kaggle.com/datasets/fanconic/skin-cancer- 

malignant-vs-benign (accessed on 7 March 2024). 

[46] International Skin Imaging Collaboration ISIC Archive. 

Available online: https://www.isic-archive.com/ 

(accessed on 7 March 2024). 

[47] Singh, D.; Singh, B. Investigating the impact of data 

normalization on classification performance. Appl. 

Soft Comput. 2020,97, 105524.  

[48] Maharana, K.; Mondal, S.; Nemade, B. A review: Data 

pre-processing and data augmentation techniques. 

Glob. Transit. Proc. 2022, 3, 91–99 

[49] Moreno-Barea, F.J.; Jerez, J.M.; Franco, L. Improving 

classification accuracy using data augmentation on 

small data sets. Expert Syst. Appl. 2020, 161, 113696.  

[50] Alzahrani, S.; Al-Bander, B.; Al-Nuaimy, W. A 

comprehensive evaluation and benchmarking of 

convolutional neural networks for melanoma diagnosis. 

Cancers 2021, 13, 4494. 

[51] Hiswati, M.E. DeepSkin: Robust skin cancer 

classification using convolutional neural network 

algorithm. Int. J. Inform. Comput. (IJICOM) 2021, 3.  

[52] Demir, A.; Yilmaz, F.; Kose, O. Early detection of skin 

cancer using deep learning architectures: ResNet-101 

and Inception-V3. In Proceedings of the 2019 Medical 

Technologies Congress (TIPTEKNO), Izmir, Turkey, 

3–5 October 2019; pp. 1–4. 

[53] Aydin, Y. A comparative analysis of skin cancer 

detection applications using histogram-based local 

descriptors. Diagnostics 2023,13, 3142 

[54] Dagnaw, G.H.; El Mouhtadi, M.; Mustapha, M. Skin 

cancer classification using vision transformers and 

explainable artificial intelligence. J. Med. Artif. Intell. 

2024, 7, 14 

 

https://www.kaggle.com/datasets/fanconic/skin-cancer-malignant-vs-benign
https://www.kaggle.com/datasets/fanconic/skin-cancer-malignant-vs-benign
https://www.isic-archive.com/

