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Abstract:  
 

The heterogeneous cellular network has emerged as a critical infrastructure in supporting 

diverse Internet of Things (IoT) based services. As next-generation technologies continue 

to evolve, they will provide a unified framework capable of seamlessly connecting huge 

number of IoT devices. This integration will support the complex requirements of modern 

IoT-driven business processes. To achieve maximum capacity for IoT applications there 

is a need to integrate multiple wireless network technologies which makes the 

environment dense. However, this network densification also raises interference levels 

from neighbouring devices which can negatively impact the Quality of Service (QoS). In 

a dense IoT environment with limited radio resources there is need of efficient radio 

resource allocation strategy to maintain QoS across various connected devices. This work 

presents a distributed reinforcement learning based power allocation algorithm for 

heterogeneous IoT networks. We also propose a reward function that accounts for the 

QoS needs of multiple IoT users, promotes fairness, and ensures reliable connectivity. 

We carry out complexity analysis and convergence analysis of our proposed algorithm 

and also we explore different learning frameworks to evaluate the performance of the 

algorithm. Results demonstrated that the proposed method is effective in improving 

network capacity and other performance measures in dense heterogeneous environment 

 

1. Introduction 
 

The rapid advancement of the Internet of Things 

(IoT) has driven a substantial increase in devices 

utilizing wireless networks to support diverse 

applications across sectors like smart cities, 

healthcare, energy, and industry. Forecasts indicate 

that the global number of IoT devices could reach to 

billions by 2030 [2]. To meet the varying needs of 

the increasing number of IoT devices it is necessary 

to integrate multiple wireless networks. This 

integration creates dense heterogeneous network 

architecture with numerous base stations, access 

points, and devices within the coverage region with 

an objective to ensure seamless connectivity and 

efficient service delivery across a wide range of 

applications. However, such densification can cause 

higher interference due to overlapping frequencies 

thereby impacting network reliability. To address 

the growing demands of reliable and low latency 

services from IoT devices, one of the possible 

solutions is to deploy heterogeneous networks 

where small cells are overlaid within the coverage 

area of macro cells. In dense heterogeneous 

networks interference is a limiting factor which 

potentially affects the performance. Hence, an 

effective power allocation strategy is essential to 

enhance network capacity while meeting QoS 

requirements, ensuring fairness, and keeping SINR 

above the threshold for reliable connectivity across 

all IoT devices. This process involves dynamically 

adjusting transmission power to reduce interference 

and improve overall performance. 

Various power allocation methods for 

heterogeneous wireless networks have been studied 

in the literature and are generally classified into 

optimization-based and learning-based techniques. 

Optimization-based techniques require full channel 
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state information (CSI) for resource management 

and also it is difficult to acquire CSI in dynamic 

environment [3]–[10]. On the other hand, learning-

based approaches provide a flexible alternative by 

using adaptive techniques to optimize power 

allocation without the need for complete channel 

information. These methods adjust themselves 

according to evolving network conditions and can 

operate in distributed or decentralized frameworks 

which make them well-suited for dynamic and large 

scale IoT networks. In [3], Peng et al. addressed an 

energy-efficient power allocation in heterogeneous 

access networks using a convex optimization 

framework. Similarly, Zhang et al. [4] tackled the 

power allocation challenge in dense heterogeneous 

wireless networks by formulating it as a convex 

problem and through this method, they obtained 

analytical solutions to effectively manage resources 

and optimize user associations. Farooq et al. [5] 

presented a method to reduce interference in two-

layer heterogeneous IoT networks by jointly 

optimizing uplink user association and power 

allocation along with maintaining the QoS 

requirement. In [6], Song et al. framed the issue as a 

multi-objective optimization problem to balance 

between energy efficiency and QoS in IIoT. Wang 

et al. [7] formulated the power control optimization 

problem for UAV networks. In [8], Bakht et al. 

proposed a cognitive radio-based approach for 

jointly managing power control and user assignment 

in 5G heterogeneous networks. Ha et al. [9] 

addressed the uplink channel and power allocation 

using a distributed and low-complexity algorithm 

that outperformed traditional exhaustive methods. 

Likewise, Kai et al. [10] developed a framework for 

channel allocation and power control in D2D 

communication to enhance network capacity.  

For learning-based techniques, such as RL-based 

power allocation approaches, they are particularly 

effective in dynamic environments because of their 

ability to adapt and respond to changing conditions. 

These algorithms continuously interact with 

environment and update their strategies through 

feedback which make them well-suited for changing 

environment. In [11], Saad et al. presented a 

distributed architecture based cooperative Q-

learning algorithm for power allocation, focusing on 

ensuring the QoS of macrocell users and does not 

take into account the QoS needs of femtocell users. 

A Q-learning-based power allocation approach is 

developed to improve overall network capacity 

while meeting QoS demands and their method also 

focuses on balanced resource distribution between 

macrocell and femtocell users [12, 13]. Shahid et al. 

[14] presented a docitive Q-learning approach for 

power allocation in heterogeneous architecture and 

performance is evaluated against independent Q-

learning method. Zhang et al. [15] developed a 

learning-based power control method for networks 

with randomly distributed base stations which aims 

to maximize system capacity and their approach 

outperformed the traditional water-filling power 

allocation technique. Meng et al. [16] introduced a 

data-driven power allocation method for 

heterogeneous cellular networks to enhance sum-

rate performance and their results demonstrated that 

data-driven techniques outperform traditional 

model-based methods. Ding et al. [17] presented a 

deep RL-based approach for power control and their 

approach shows improved energy efficiency and 

faster convergence as compared to conventional 

methods. Giannopoulos et al. [18] presented a 

demand-aware power allocation strategy designed 

to maximize user throughput while addressing 

individual user requirements. Wang et al. [19] 

developed a power allocation scheme for 

underwater acoustic networks aimed at maximizing 

node capacity and they also analyze the model’s 

convergence behavior. Jiang et al. [20] proposed a 

Q-learning-based spectrum and power control 

method for D2D underlay networks aimed at 

maximizing network capacity and results shows an 

improvement over random power allocation 

method. A deep RL-based power control approach 

is applied to dense networks with the goal of 

maximizing sum-rate and energy efficiency within a 

multi-agent framework and its performance is 

compared against traditional resource allocation 

algorithms [21, 22, 23]. Sun et al. [24] introduced a 

joint approach combining deep deterministic policy 

gradient and unsupervised learning for channel and 

power allocation in centralized architecture which 

aims to enhance the energy efficiency of modern 

communication systems. Based on the existing 

literature we can say that learning-based power 

allocation algorithms outperform optimization-

based methods in dynamic heterogeneous wireless 

networks. However, all learning approaches focus 

on maximizing network resources under specific 

constraints and often overlook reliability in dense 

heterogeneous wireless environments. Hence, our 

work focuses on fulfilling the gaps which arises in 

dense networks and hence, it is as follows:  

 

• Reliability becomes a key challenge in 

interference limited dense heterogeneous networks. 

To tackle this, a reward function is designed that 

ensures QoS for both macrocell and smallcell users 

alongwith also maintaining the required SINR level 

which is necessary to meet the performance 

demands of IoT devices. 

• To deliver optimal performance in dynamic 

environments, we present a scalable and flexible 

distributed Q-learning based power allocation for 
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dense heterogeneous IoT networks. As compared to 

traditional Q-learning, our method reduces 

computational effort, minimizes memory 

requirements, and achieves faster convergence by 

narrowing the exploration to a smaller state space.  

• We carry out convergence analysis and 

complexity analysis of our proposed Q-learning 

based power allocation method for heterogeneous 

IoT networks. We conduct comprehensive 

simulations to analyze the performance and examine 

the behavior under both static and dynamic learning 

rates. We compare our work with other learning 

strategies and findings highlight the algorithm’s 

flexibility, reliability, and suitability for diverse IoT 

applications.  

The organization of this paper is as follows: Section 

2 introduces the system model and details the power 

allocation problem. Section 3 explains the key 

elements of the Q-learning algorithm. Section 4 

presents the simulation results and analysis and 

finally section 5 concludes the paper with a 

summary and suggestions for future work. 

 

 

Figure 1. Heterogeneous IoT wireless network 

architecture 

 
Table 1. Abbreviations 

Symbols Descriptions 

5G Fifth Generation 

B5G 

AWGN 

Beyond Fifth Generation 

Additive White Gaussian Noise 

IoT 

RL 

Internet of Things 

Reinforcement Learning 

IIoT Industrial Internet of Things 

D2D Device to Device 

QoS Quality of Service 

MBS Macro Base Station 

SBS 

MUD 

SUD 

IL 

CL 

DL 

Small Base Station 

Macrocell User Device 

Smallcell User Device 

Independent Learning 

Cooperative Learning 

Docitive Learning 

𝑆 Set of all States 

𝐴 Set of all Actions 

𝑆𝑡 State at time 𝑡 
𝐴𝑡 
𝑟 

Action at time 𝑡 
Reward Function 

𝜆 Discount Factor 

𝛼   Learning rate 

 

2. System Model and Problem Formulation 
 

We consider a heterogeneous IoT wireless network 

architecture consisting of a single macro base station 

(MBS) and N small base stations (SBSs). The MBS 

supports M macrocell user devices (MUDs), while 

each SBS connects to different types of IoT-enabled 

smallcell user devices (SUDs), as illustrated in Fig. 

1. To minimize interference between users served by 

the same base station, resource multiplexing is 

utilized. Thus, for simplicity and without affecting 

generality, it is assumed that each of the N SUDs is 

connected to a unique SBS.  

We focus on a downlink communication scenario 

where MUDs experience interference from multiple 

SBSs, while SUDs may face interference from both 

the MBS and other SBSs. Let 𝑝𝑡
𝑀 be the power 

transmitted by MBS at time 𝑡 and 𝑝𝑡
𝑛, 𝑓𝑜𝑟 𝑛 =

1,2… .𝑁 be the power transmitted by the 𝑛𝑡ℎ SBS at 

time 𝑡 respectively. Let 𝑔𝑚𝑏𝑠,𝑚𝑢𝑑 represents the 

channel gain between MBS and the MUD and 

𝑔𝑠𝑏𝑠𝑛, ,𝑚𝑢𝑑 represents the gain between 𝑛𝑡ℎ SBS and 

MUD. Similarly, let 𝑔𝑠𝑏𝑠𝑛, ,𝑠𝑢𝑑𝑛  represents the gain 

between 𝑛𝑡ℎ  SBS and its serving SUD and 

𝑔𝑚𝑏𝑠,𝑠𝑢𝑑𝑛 represents the gain between MBS and 𝑛𝑡ℎ 

SUD. The noise variance is denoted by  𝜎2. Thus, 
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the capacity 𝐶𝑡
𝑚 of the 𝑚𝑡ℎ MUD at time 𝑡 is given 

by following expression 

 

𝐶𝑡
𝑚 = log2 (1 + 

 𝑝𝑡
𝑀𝑔𝑚𝑏𝑠,𝑚𝑢𝑑

∑ 𝑝𝑡
𝑛𝑁

𝑛=1 𝑔𝑠𝑏𝑠𝑛, ,𝑚𝑢𝑑 + 𝜎
2
)   (1) 

 

  Similarly, the capacity 𝐶𝑡
𝑛 of 𝑛𝑡ℎ SUD at time 𝑡 is 

given by following expression: 

 
𝐶𝑡
𝑛

=  log2 (+ 
 𝑝𝑡
𝑛𝑔𝑠𝑏𝑠𝑛, ,𝑠𝑢𝑑𝑛

𝑝𝑡
𝑛𝑔𝑚𝑏𝑠,𝑠𝑢𝑑𝑛 + ∑ 𝑝𝑡

𝑖𝑁
𝑖=1,𝑖≠𝑛  𝑔𝑠𝑏𝑠𝑖 ,𝑠𝑢𝑑𝑖 + 𝜎

2
) (2) 

 

 
In this work, we assume that the MBS transmits with 

a constant power level. Let 𝑝𝑚𝑖𝑛 and 𝑝𝑚𝑎𝑥 represent 

the minimum and maximum allowable transmit 

power levels for all SBSs, respectively. 

Furthermore, the minimum QoS requirements for 

SUDs and MUDs are denoted by Γ𝑆𝑈𝐷 and Γ𝑀𝑈𝐷 

along with the minimum received SINR thresholds 

needed to maintain a reliable connection are given 

by 𝑆𝐼𝑁𝑅𝑚𝑖𝑛
𝑆𝑈𝐷 for SUDs and 𝑆𝐼𝑁𝑅𝑚𝑖𝑛

𝑀𝑈𝐷 for MUDs. 

The main goal is to maximize the total capacity of 

all SBSs within a densely deployed network, while 

ensuring that the QoS demands of all IoT users are 

met. Based on this, we define the following 

optimization problem: 

 

max
{𝑝𝑡
1,𝑝𝑡

2……𝑝𝑡
𝑁 }
   ∑𝐶𝑡

𝑛

𝑁

𝑛=1

,        (3) 

 

𝑠. 𝑡.  𝑝𝑚𝑖𝑛 ≤ 𝑝𝑡
𝑛  ≤  𝑝𝑚𝑎𝑥  , ∀𝑛 = 1,2…𝑁, (3𝑎) 

 

𝐶𝑡
𝑚  ≥  Γ𝑀𝑈𝐷 , ∀𝑚 = 1,2……𝑀,                     (3𝑏) 

 

𝐶𝑡
𝑛  ≥  Γ𝑆𝑈𝐷 , ∀𝑛 = 1,2……𝑁,                         (3𝑐) 

 

𝑆𝐼𝑁𝑅𝑡
𝑚  ≥  𝑆𝐼𝑁𝑅𝑚𝑖𝑛

𝑀𝑈𝐷 , ∀𝑚 = 1,2……𝑀,     (3𝑑) 
 

𝑆𝐼𝑁𝑅𝑡
𝑛  ≥  𝑆𝐼𝑁𝑅𝑚𝑖𝑛

𝑆𝑈𝐷 , ∀𝑛 = 1,2……𝑁          (3𝑒) 

 
The constraint in (3a) ensures that the transmit 

power of each SBS remains within the defined 

minimum and maximum limits. Constraints (3b) and 

(3c) enforce the minimum capacity requirements for 

MUDs and SUDs, respectively, while (3d) and (3e) 

ensure that the received SINR for both MUDs and 

SUDs stays above the required thresholds. 

However, the optimization problem described in Eq. 

(3) is non-convex due to the SINR expression, 

which involves coupled variables in both numerator 

and denominator and it forms a ratio of linear and 

affine components. Since, the problem is non-

convex which makes it difficult to solve using 

conventional optimization techniques. To address 

this, we introduce reinforcement learning approach 

capable of handling the dynamic conditions of 

heterogeneous networks efficiently. 

 

3. Design of Proposed Algorithm 
 

Section 3.1 outlines the fundamental components of 

the Q-learning algorithm and introduces a reward 

function designed to enhance power allocation 

efficiently. In Section 3.2, different learning rate 

configurations are analyzed to evaluate their effect 

on algorithm performance. Section 3.3 explores 

multiple modes of collaboration among agents and 

how they are incorporated into the proposed 

learning-based framework. 

 

3.1. Elements of Q-Learning  

 

States: Let 𝑺 = [𝑆1, 𝑆2, ………𝑆𝑁] denote the 

collection of states for all 𝑁 SBSs where 𝑆𝑛, 

𝑓𝑜𝑟 𝑛 = 1,2…… . . 𝑁 corresponds to the state of the 

𝑛𝑡ℎ SBS. The state of an SBS is defined by two key 

parameters:  𝑆 = [𝐷𝑚𝑏𝑠, 𝐷𝑚𝑢𝑑], where 𝐷𝑚𝑏𝑠 refers 

to the distance between SBS and MBS and 𝐷𝑚𝑢𝑑 

refers to the distance between SBS and MUD. In the 

following, let 𝑑𝑚𝑏𝑠,𝑠𝑏𝑠𝑛 represent the distance 

between MBS and 𝑛𝑡ℎ SBS and this distance is 

partitioned into X equal segments and the value of 

𝐷𝑚𝑏𝑠 is defined based on these segments 

 
𝐷𝑚𝑏𝑠  ∈ {1,2, …… . 𝑋}                            (4) 

 

The distance indicator 𝐷𝑚𝑏𝑠 = 𝑥 if distance 

between 𝑛𝑡ℎ SBS and MBS satisfies both the 

condition i.e.  

 

𝑑𝑚𝑏𝑠,𝑠𝑏𝑠𝑛 ≥ 𝑑𝑚𝑏𝑠,𝑠𝑏𝑠(𝑥−1)  and  𝑑𝑚𝑏𝑠,𝑠𝑏𝑠𝑛 < 𝑑𝑚𝑏𝑠,𝑠𝑏𝑠𝑥. 

 

Similarly, let  𝑑𝑚𝑢𝑑𝑚,𝑠𝑏𝑠𝑛 represents distance 

between 𝑛𝑡ℎ SBS and 𝑚𝑡ℎ MUD and we partitioned 

the distance into Y equal segments. Hence, distance 

indicator 𝐷𝑚𝑢𝑑 of each SBS consists of M index 

values, i.e. one for each MUD and it is expressed as 

𝐷𝑚𝑢𝑑
𝑚 = {1,2, … . .𝑀} reflecting the segmented 

distance levels to all MUDs:  

 
𝐷𝑚𝑢𝑑
𝑚  ∈  {1,2, …… . 𝑌}                         (5) 

where 𝐷𝑚𝑢𝑑
𝑚 = 𝑦 if distance between each SBS to 

MUD ‘m’ satisfies both the condition 

 𝑑𝑚𝑢𝑑𝑚,𝑠𝑏𝑠𝑛 ≥ 𝑑𝑚𝑢𝑑,𝑠𝑏𝑠(𝑦−1)  and 𝑑𝑚𝑢𝑑𝑚,𝑠𝑏𝑠𝑛 <

 𝑑𝑚𝑢𝑑,𝑠𝑏𝑠𝑦 . 
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Thus, in the overall multi-agent framework, the 

complete set of states is denoted as 𝑺 =
[𝑆1, 𝑆2, ………𝑆𝑁], where each individual state 𝑆𝑛 

for the 𝑛𝑡ℎ SBS is defined as 𝑆𝑛 = [𝐷𝑚𝑏𝑠
𝑛 , 𝐷𝑠𝑢𝑑

𝑛 ], 
with 𝑛 = 1,2…… . . 𝑁. Since the location of an SBS 

is fixed, its state remains constant over time. This 

property allows SBSs with the same state to share 

their Q-tables effectively. Instead of exchanging the 

full Q-table, they only need to share the specific row 

related to the common state. This approach 

minimizes complexity and improves the learning 

efficiency. 

Action: Let  𝑨 = [𝐴1, 𝐴2, ………𝐴𝑁], represent the 

collection of actions for all N SBSs where 𝐴𝑛, 

corresponds to the action choices available to 

the 𝑛𝑡ℎ SBS. The transmission power for each SBS 

is discretized by dividing the range from 𝑝𝑚𝑖𝑛 and 

𝑝𝑚𝑎𝑥 into 𝑍 uniform levels. As a result, the action 

set for each SBS is composed of 𝑍  possible transmit 

power values within this defined range and is 

represented as: 

 

𝐴𝑛 ∈ {𝑎1, 𝑎2, ………𝑎𝑍}                         (6) 

 

Here, 𝑎𝑛 represents the chosen transmit power level 

for the 𝑛𝑡ℎ SBS from its corresponding action set.  

Reward Function: The reward function is pivotal 

in reinforcement learning algorithms as it assesses 

the desirability of the agent's actions within its 

environment. In the context of optimization 

problems, the reward function is often aligned with 

the objective function that needs to be maximized or 

minimized. The authors in [11, 12, 13] have defined 

reward functions which we termed as RwF1, RwF2 

and RwF3 respectively and all reward functions is 

in accordance with the optimization problem of 

maximizing the total capacity of all SUDs but all the 

reward functions fails to maintain a minimum 

acceptable SINR for reliable connection which is 

important in dense heterogeneous IoT network 

where interference is a limiting factor. Motivated by 

the shortcomings of the reward functions as defined 

in [11, 12, 13], we have proposed our reward 

function which is in positive relation with the 

optimization problem and also consider the QoS of 

both SUDs and MUDs. Also our reward function 

maintains a minimum received SINR level for 

reliable connection. We can conclude that reliability 

is utmost important to meet the needs of various IoT 

based applications in various sectors, and hence we 

have defined our reward function and termed as 

PRwF and can be expressed as follows: 

𝑟𝑚
𝑛(𝑡) =  

{
  
 

  
 𝑑𝑛𝐶𝑡

𝑛 − 
1

𝑑𝑛
(𝐶𝑡

𝑚 − Γ𝑀𝑈𝐷)
2 − (𝐶𝑡

𝑛 − Γ𝑆𝑈𝐷)
2, 𝑖𝑓 𝑏𝑜𝑡ℎ 𝐸𝑞. (3𝑑) 𝑎𝑛𝑑 𝐸𝑞. (3𝑒)

                                                                                            𝑖𝑠 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑  
  
  

𝑣 ,             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

    (7) 

 

Where 𝑣 is a large negative constant value. The 

large negative reward discourages the selection of 

infeasible solutions that violate the constraints. 

This effectively forces the optimization algorithm 

to explore only the feasible region of the solution 

space, guiding the search toward valid solutions. 

The parameter 𝑑𝑛 is defined as ratio of distance of 

 𝑛𝑡ℎ  SBS to the MUD normalized by the constant 

𝑑𝑡ℎ. The parameter 𝑑𝑡ℎ helps to determine whether 

 𝑛𝑡ℎ  SBS is near or far from MUD. For instance, 

if distance is less than 𝑑𝑡ℎ, it indicates that the 

interference from the 𝑛𝑡ℎ SBS has a greater impact 

on the MUD compared to any other SBS located 

farther away where the distance is more than 𝑑𝑡ℎ. 

The total reward of SBS can be calculated as: 

𝑟𝑛(𝑡) =  ∑ 𝑟𝑚
𝑛(𝑡)

𝑀

𝑚=1

                       (8) 

 

3.2 Q-Value, Update Rule, and Learning Rate 

Parameters 

 

Building on the previously defined states, actions, 

and reward functions, the Q-value for the proposed 

power allocation algorithm [27–30] can be 

formulated. At time t, given the state 𝑆𝑡  ∈ 𝑺 and 

action 𝐴𝑡  ∈ 𝑨, the 𝑄( 𝑆𝑡 , 𝐴𝑡  ), represents the 

expected value for all N SBSs 

 
𝑄𝑡+1( 𝑆𝑡 , 𝐴𝑡  ) = 𝑄( 𝑆𝑡 , 𝐴𝑡  )

+ 𝛼 [𝑟𝑡+1 𝜆 max
𝐴𝑡+1

𝑄( 𝑆𝑡+1, 𝐴𝑡+1 )

− 𝑄( 𝑆𝑡 , 𝐴𝑡  )]                          (9) 

 

The values of α and λ are provided in Table 1. 

Solving Equation (9) requires Bellman optimality 

principle which involves exploring a large search 

space and hence increases the complexity. Unlike 
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standard Q-learning that uses a single agent, 

distributed Q-learning employs multiple agents 

collaborating to achieve a common goal. This 

framework allows each agent to benefit from 

shared information thus improving the overall 

outcome. Moreover, interaction and cooperation 

among agents help overcome individual 

weaknesses, leading to quicker and more efficient 

decision-making. 

Next, we investigate two types of learning rates, 

denoted as  𝛼, in Eq. (9). Specifically: 

1. Fixed learning rate: When 𝛼 is constant, 

learning process is more suited for dynamic 

environments. Here, we consider  𝛼 = 1/2. 

2. Dynamic learning rate: In this case we consider 

𝛼 = 1 (𝑁𝑆,𝐴 + 1)⁄ , where 𝑁𝑆,𝐴 represents the 

frequency of occurrence of the state action pair 

(𝑆, 𝐴). By reducing 𝛼 at an appropriate rate we can 

achieve convergence to correct 𝑄 function. 

 

3.3 Collaboration Strategies in Multi-Agent 

Reinforcement Learning 

 

The interaction among multiple SBSs in the 

decision-making process constitutes a multi-agent 

reinforcement learning scenario, and we examine 

different learning approaches within this context:- 

 

• Independent learning (IL): In independent 

learning, each agent focuses solely on maximizing 

its own reward without accounting for the 

performance or rewards of other agents. 

Accordingly, the decision-making process for 

the 𝑛𝑡ℎ  SBS is based entirely on its individual 

learning and experience: 

 
𝐴𝑛 = argmax

𝐴∈𝑨
𝑄𝑛( 𝑆𝑛 , 𝐴 )             (10) 

 

Cooperative learning (CL): In contrast to 

independent learning, cooperative learning 

considers the actions of other SBSs, which helps to 

improve both learning efficiency and system 

performance. Within this approach, each SBS 

makes decisions by factoring in the behavior of 

others, leading to faster convergence and better 

outcomes. The cooperative action selection is 

defined accordingly: 

 

𝐴𝑛 = argmax
𝐴∈𝑨

 ∑ 𝑄𝑖( 𝑆𝑖 , 𝐴 )

1≤𝑖≤𝑁

         (11) 

 

Docitive learning (DL): Docitive Learning focuses 

on maximizing the collective Q-value of all SBSs 

by allowing agents to share knowledge, thereby 

accelerating convergence and improving 

performance. This collaborative objective can be 

mathematically formulated as: 

 

𝐴𝑛 = argmax
𝐴∈𝑨

[max
𝑖∈𝑁

𝑄𝑖( 𝑆𝑖 , 𝐴 )]        (12)

 

Algorithm 1: Distributed 𝑄-learning Based Power Allocation. 

1. Input: 𝑀, 𝑁 and position of MBS, SBSs, MUDs, SUDs; gains 𝑔𝑚𝑏𝑠,𝑚𝑢𝑑 , 𝑔𝑠𝑏𝑠 ,𝑚𝑢𝑑, 𝑔𝑚𝑏𝑠,𝑠𝑢𝑑, 𝑔𝑠𝑏𝑠 ,𝑠𝑢𝑑 and 𝜎2 ; 

transmission power 𝑝𝑡
𝑀, 𝑝𝑚𝑖𝑛  and   𝑝𝑚𝑎𝑥; QoS parameters Γ𝑀𝑈𝐷, Γ𝑆𝑈𝐷, 𝑆𝐼𝑁𝑅𝑚𝑖𝑛

𝑀𝑈𝐷 and 𝑆𝐼𝑁𝑅𝑚𝑖𝑛
𝑆𝑈𝐷; other variables 𝑋, 𝑌 

, 𝑍, 𝜆 𝛼 and ε  etc. 

2. Initialization: Initialize 𝑖𝑡𝑒𝑟 = 0, 𝑄 = 0, 𝑁𝑆,𝐴 = 0 and temp 𝑄-table 𝑄∑  ,𝑡 = 0. 

3. for 𝑖𝑡𝑒𝑟 ∈  [1, 𝑖𝑡𝑒𝑟𝑚𝑎𝑥] 
4. Calculate 𝑄∑  ,𝑡 = ∑ 𝑄𝑛𝑛∈𝑁  

5. for all SBS 𝑛 ∈ [1, 𝑁] 
6. Generate random 𝑡𝑒𝑚𝑝 value 

7. if 𝑖𝑡𝑒𝑟 <  𝜃 ∗ 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 and 𝑡𝑒𝑚𝑝 <  𝜀 then 

8.      Randomly selects an action. 

9. else 
10.      Selects an action for given SBS according to learning mode. 

11. end if 

12. end for 
13. Calculate SUDs and MUDs capacity. 

14. for all SBS 𝑛 ∈ [1, 𝑁] 
15. Calculate total reward. 

16. Update the 𝑄 table. 

17. Observe new state. 

18. end for 

19. if |∑ 𝑄𝑗𝑛∈𝑁 − 𝑄∑  ,𝑡|2 <  𝛽  

20. Capture results and exit. 

21. end if 

22. end for 
23. End. 
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4. Numerical Results and Discussions 
 

4.1 . Simulation Parameters 

 

We consider a heterogeneous IoT wireless network 

as illustrated in Fig. 1, comprising a single macro 

base station (MBS), one MUD  (M = 1) and number 

of SBSs (𝑁 =  16) each serving one SUD. To 

simulate a densely deployed scenario with 

significant interference, the MUD is positioned 

centrally among the SBSs and SUDs, following the 

layout described in [13]. The MBS transmitted 

power 𝑝𝑡
𝑀and noise power 𝜎2 is set to be 50𝑑𝐵𝑚 

and −120𝑑𝐵 respectively. The transmit power of all 

SBSs varies between a minimum of −20𝑑𝐵𝑚 and a 

maximum of 25𝑑𝐵𝑚, with a step of 1.5 𝑑𝐵𝑚 

resulting in 31 possible power levels (𝑁𝑝 = 31). 

The simulation is structured around three concentric 

layers centered on the MBS and MUD. Both MUD 

and SUD require a minimum data rate of 2 𝑏/𝑠/𝐻𝑧, 

represented by thresholds Γ𝑀𝑈𝐷 and Γ𝑆𝑈𝐷 The 

minimum SINR requirements i.e. 𝑆𝐼𝑁𝑅𝑚𝑖𝑛
𝑀𝑈𝐷 and 

𝑆𝐼𝑁𝑅𝑚𝑖𝑛
𝑆𝑈𝐷 are set to 5 𝑑𝐵. Additional simulation 

parameters include i.e.  𝛼 = 0.5, 𝜆 = 0.9, 𝜀 = 0.1 

and 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 = 50000. 

In this study, we assume that both the macro and 

small base stations operate on a common carrier 

frequency of 𝑓 =  0.9𝐺𝐻𝑧. The signal attenuation 

between MBS and the MUD, as well as the link 

between the SBS and its serving SUD, is given as 

𝑃𝐿 =  62.3𝑑𝐵 +  40𝑙𝑜𝑔10(𝑑/5). Likewise, the 

signal attenuation between the MBS and a SUD, as 

well as between the 𝑖𝑡ℎ SBS and 𝑗𝑡ℎ  SUD is 

determined as 𝑃𝐿 =  62.3 +  32𝑙𝑜𝑔10(𝑑/5)  +
 𝑃𝐿𝑖. Here 𝑃𝐿𝑖 is an additional loss component 

calculated using an empirical model as given in [25] 

with the number of walls 𝑁𝑊 = 2 considered in the 

scenario. 

 

4.2  Fairness 
 

In a multi-agent framework, maintaining fairness 

across several devices plays a vital role in improving 

network efficiency. To assess this aspect in our 

simulations, we adopt Jain's fairness index [26] as a 

standard metric. This index enables us to quantify 

how evenly the resources are distributed among 

SUDs and facilitates resource allocation strategies 

in terms of fairness. The mathematical expression of 

the fairness index is given as follows: 

 

𝑓(𝑐1, 𝑐2, …… . . 𝑐𝑁) =
(∑ 𝑐𝑛

𝑁
𝑛=1 )2

𝑁∑ 𝑐𝑛
2𝑁

𝑛=1

                  (13) 

 

Where 𝑐𝑛  denotes the capacity allocated to the  𝑛𝑡ℎ  

SBS among total SBS in the network. 

 
4.3 . Performance comparison of proposed 

reward function with other reward functions. 

 

We evaluate and assess the effectiveness of the 

proposed reward function (PRwF) by comparing its 

performance against existing reward functions 

defined in [11, 12, 13] and we denote them as RwF1, 

RwF2 and RwF3 respectively. To assess the 

performance we consider fixed learning rate (𝛼 = 

0.5) and cooperative learning structure. The results 

presented in Fig. 2 are obtained by averaging the 

outcomes over 100 independent simulation runs to 

ensure reliability and consistency in the comparison. 

Fig. 2(a) illustrates that with increasing numbers of 

SBSs, the average capacity for the MUD drops 

below the required threshold when using RwF1 and 

RwF2, indicating their limitations in preserving QoS 

under dense conditions. Conversely, RwF3 and the 

PRwF maintain MUD capacity above the threshold, 

showcasing greater resilience to interference and 

better resource management. This confirms the 

capability of PRwF to sustain QoS and enhance 

network performance in high-density scenarios Fig. 

2(b) presents the comparison of various reward 

functions in meeting the minimum capacity needs of 

SUDs as there is increase in SBS. RwF1 and RwF2 

fail to maintain the required capacity once the SBS 

count exceeds 6, indicating their inefficiency in 

dense deployments. RwF3 performs better and 

sustains capacity up to 12 SBSs, while the PRwF 

extends this support up to 16 numbers of SBS. These 

findings underline the superior capability of PRwF 

in effectively controlling interference and allocating 

resources, enabling reliable performance even under 

high network density. Fig. 2(c) depicts the aggregate 

capacity of SUDs, which is the main goal of the 

optimization. As the number of SBSs grows, the 

PRwF consistently delivers greater aggregate 

capacity than the other reward functions. When the 

number of SBS reaches to maximum, PRwF 

achieves about 5% higher aggregate capacity as 

compared to RwF3, showing a clear enhancement. 

The improvement is even more pronounced against 

RwF1 and RwF2, emphasizing PRwF’s stronger 

capability in optimizing resource distribution. Fig. 

2(d) presents a comparison of the fairness index 

among SUDs, showcasing how well different 

reward functions allocate resources fairly. The 

results reveal that the PRwF attains a higher fairness 

index than the others, promoting a more equitable 

capacity distribution among SUDs. When the 

number of SBS reaches to maximum, RwF3 
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achieves a fairness index of 0.9183, whereas PRwF 

outperforms with a value of 0.9499, reflecting 

improved fairness. Conversely, RwF1 and RwF2 

struggle to maintain fairness as network density 

increases, resulting in greater capacity imbalance. 

These findings highlight that PRwF not only 

enhances overall capacity but also supports fair 

resource sharing, making it ideal for dense network 

environments. Fig. 2(e) shows the likelihood of 

SUDs experiencing an SINR below the required 

threshold, indicating potential outages. The data 

clearly indicate that the PRwF significantly reduces 

outage probability compared to other reward 

functions. While RwF1 and RwF2 have an average 

outage rate of 50%, meaning half of the SUDs fail 

to meet the minimum SINR as the number of SBSs 

grows, PRwF outperforms RwF3 by lowering 

outage probability by 60% when there are 16 SBSs. 

This highlights PRwF’s effectiveness in sustaining 

reliable connections and enhancing QoS, especially 

in dense network scenarios. Fig. 2(f) and Fig. 2(g) 

present the number of iterations and the computation 

time required for different reward functions during 

performance evaluation. While the proposed PRwF 

outperforms RwF1, RwF2, and RwF3 in terms of 

capacity, fairness, and outage probability, it requires 

slightly more iterations and longer calculation time 

to converge. This increase is due to large negative 

constant included in reward function which lead to 

slower convergence because the optimization 

algorithm may oscillate between feasible and 

infeasible regions and which focuses on achieving 

better resource allocation and QoS. Despite the 

marginal increase in computational time, the 

superior performance gains in key metrics such as 

capacity, fairness, and reliability make PRwF a 

favorable choice for dense network scenarios where 

optimized performance is critical. Additionally, 

Table 2 provides a concise comparison of the 

performance outcomes for various reward functions 

when there are maximum number of SBSs 

considered for simulation. 

 
Figure 2. Average MUD Capacity 

 
Figure 3. SUDs Average Minimum Capacity 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Aggregate SUDs Capacity  

 

 
Figure 5 Jain Fairness Index 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 6. Probability of Outage 
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Figure 7. Number of Iterations 

 

 
Figure 8.  Time Duration 

 

Table 2. Comparison of Proposed Reward Function with other Reward Functions 
Reward 

Function 

QoS guarantee for 

both MUDs and SUDs 

Fairness Outage 

Probability 

Reliability Convergence 

RwF1 No 0.8918 High No Fast 

RwF2 Yes 0.9086 High No Slow 

RwF3 No 0.9183 High No Slow 

PRwF Yes 0.9499 Low Yes Slow 

4.4. Performance comparison of different 

learning modes 

 

We investigate the performance of our PRwF with 

various learning modes along with fixed and 

dynamic learning rate. The performance evaluation 

of PRwF highlights that CL consistently 

outperforms DL and IL across multiple metrics, 

primarily due to its coordinated decision-making 

and resource allocation. Various performance 

measures for different learning modes are shown in 

Fig. 3. From Fig. 3(a) we can conclude that DL 

shows some advantages in specific scenarios, such 

as higher capacity because, its ability to maintain 

consistent QoS across the network.  In Fig. 3(b) and 

Fig. 3(c) CL achieves superior capacity 

management by leveraging global network 

information, which allows it to optimize resource 

distribution more effectively, ensuring better QoS 

compliance even as the number of SUDs and SBSs 

increases. Additionally, from Fig. 3(d) we can 

conclude that CL demonstrates improved fairness in 

resource allocation by minimizing disparities in 

service quality, which is a critical factor in 

maintaining network stability and user satisfaction 

for both fixed and dynamic learning rate. The lower 

outage probability observed in Fig. 3(e) further 

emphasizes CL's ability to ensure reliable 

connectivity, reducing the likelihood of SUDs 

experiencing insufficient SINR. However for both 

fixed and dynamic learning rate CL will have 60% 

to 70% less outage probability than DL and IL when 

number of SBS is 16. In contrast, IL struggles due 

to its lack of coordination, leading to higher iteration 

counts as shown in Fig. 3(f) and longer convergence 

times as shown in Fig. 3(g), which can hinder real-

time network performance. Furthermore, we can 

conclude that the coordinated approach of CL offers 

a more robust solution for managing network 

resources efficiently, making it the most reliable 

learning mode for achieving optimal performance. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 9. Average MUD Capacity 

 

 
Figure 10. SUDs Average Minimum Capacity 
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Figure 11. Aggregate SUDs Capacity 

 

 
Figure 12. Jain Fairness Index 

 

 

 

 

 

 

 

 

 

 

 
Figure 

13. Probability of Outage 

 

 
Figure 14.  Number of Iterations 

 

 
Figure 15. Time Duration 

 
4.5. Convergence Analysis 

 

In our simulation we have assumed the number of 

iterations for our algorithm to be 50000, although it 

consistently converges well before reaching this 

limit. Fig. 2(f) illustrates the convergence behavior 

of the proposed work in relation with the number of 

SBSs. The order of iterations needed by the 

proposed algorithm is around 4 × 104  which is 

approximately in between 215 𝑡𝑜 216 and it is 

significantly a smaller fraction of the total iterations 

required by an exhaustive search, which would 

require 3216 = 280 iterations. This demonstrates 

that the proposed algorithm’s efficiency, offering a 

considerable reduction in computational complexity 

while still achieving convergence in large-scale 

network scenarios. 

 

4.6. Complexity Analysis 

 

In our work, we combine our power allocation 

algorithm with Independent Learning (IL), 

Cooperative Learning (CL), and Docitive Learning 

(DL) to enhance the performance of heterogeneous 

IoT systems. The algorithm is summarized in 

Algorithm 1 along with simulation parameters. In 

the initial loop stage, conducting a comprehensive 

search, containing 𝑍𝑁 elements in action set 𝑨, leads 

to a complexity of 𝑂(𝑍𝑁) for each SBS. 

Subsequently, in subsequent loop stage, updating 𝑄-

values also requires a complexity of 𝑂(𝑍𝑁). 
Assuming maximum iteration to be 𝑖𝑡𝑒𝑟𝑚𝑎𝑥, hence 

the overall complexity can be expressed as 

𝑂(𝑖𝑡𝑒𝑟𝑚𝑎𝑥  × 𝑁 × 𝑍
𝑁). 

 

5. Conclusion and Future Work 
 

This study focuses on optimizing power allocation 

in dense heterogeneous IoT networks with the goal 

of maximizing the total capacity of smallcell user 

devices (SUDs) while meeting their QoS needs. To 

this end, we introduced a reward function that 
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promotes fair resource distribution and ensures the 

minimum SINR for stable connections. Our 

approach uses a distributed Q-learning algorithm 

incorporating different learning strategies, which 

effectively improves network performance and 

reliability in interference-prone settings. The 

proposed method supports various industrial 

applications by efficiently handling power in 

complex environments. Future work will explore 

scalability in denser deployments and investigate 

cognitive radio integration for further enhancement 

of the model. 
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