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Abstract:  
 

This study investigates the interplay between advanced sampling techniques and 

machine learning models to predict residential property sale prices using a diverse 

dataset encompassing structural, locational, and economic attributes. Emphasizing 

Stratified Extreme Ranked Set Sampling (SERSS), the research systematically 

evaluates the impact of five sampling methods—SERSS, Cluster, Bootstrap, 

Systematic, and Random Sampling—on various machine learning algorithms, including 

CatBoost, Random Forest, ElasticNet, and FIkNN. The findings reveal that SERSS 

significantly enhances the generalizability and robustness of predictive models by 

capturing both central and extreme data tendencies, outperforming traditional methods 

in preserving dataset variability. Ensemble methods like CatBoost, Random Forest and 

similarity algorithm like FIkNN consistently demonstrated superior predictive accuracy, 

achieving the Mean Absolute Error (MAE) between $85 and $650, and high R² values 

across structured sampling techniques. Conversely, unstructured methods such as 

Random Sampling introduced biases, leading to substantial deviations in predictions. 

These results underscore the critical importance of aligning sampling methodologies 

with model-specific characteristics to optimize performance. This study provides 

actionable insights for researchers and practitioners in predictive modeling, offering a 

framework for integrating sampling strategies with advanced machine learning models 

to tackle heterogeneous datasets effectively. 

 

1. Introduction 
 

Forecasting housing prices is a multifaceted and 

consequential task spanning diverse domains, 

including real estate and financial analytics. 

Accurate predictions of housing market trends 

provide valuable insights for policymakers, 

investors, and prospective homeowners. With the 

growing abundance of data and the advancements 

in machine learning methodologies, house price 

prediction has become a dynamic field of academic 

inquiry. However, the efficacy of predictive models 

is often contingent on the quality and 

representativeness of the data used for training and 

evaluation. This raises the fundamental question: 

how do various sampling techniques influence the 

performance and robustness of machine learning 

models in predicting house prices. 

Traditional statistical approaches to sampling, such 

as simple random sampling, often fail to account 

for the inherent heterogeneity present in complex 

datasets like housing markets. Housing datasets 

typically exhibit high variability due to factors such 

as location, property size, and market conditions. 

Ignoring these variations can result in biased 

models that do not generalize well to unseen data. 

Stratified sampling techniques, particularly those 

designed to address extreme values or tails of the 

distribution, can enhance the representativeness of 

the sample, thereby improving model reliability and 

interpretability [1]. 

Among advanced sampling methods, Stratified 

Extreme Ranked Set Sampling (SERSS) has gained 

attention for its ability to better capture the 

underlying structure of data distributions. SERSS 

emphasizes both the extreme and central tendencies 

of data strata, offering a more nuanced 

representation of the population. This approach has 

been particularly effective in domains where rare or 

extreme observations carry significant importance, 

such as anomaly detection and financial risk 

analysis. Despite its theoretical advantages, the 
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practical implications of SERSS on machine 

learning models, especially in the context of house 

price prediction, remain underexplored [2]. 

Parallel to advancements in sampling 

methodologies, the machine learning landscape has 

witnessed the emergence of diverse algorithms 

ranging from traditional linear regression to 

sophisticated ensemble methods like Gradient 

Boosting, Catboost. Each algorithm brings unique 

strengths to the task of prediction, yet their 

performance is often intertwined with the nature of 

the data they are trained on. This study seeks to 

bridge this gap by systematically evaluating how 

different sampling techniques, including SERSS, 

random sampling, systematic sampling, and 

bootstrap sampling, impact the predictive 

capabilities of various machine learning models. 

The novelty of this research lies in its comparative 

approach. By employing both advanced and 

conventional sampling techniques, we aim to 

identify the conditions under which specific 

sampling methods enhance the predictive accuracy 

of machine learning algorithms. Furthermore, we 

delve into the theoretical and practical trade-offs 

associated with each sampling strategy, providing a 

comprehensive analysis of their implications for 

model performance and generalizability. 

This study also recognizes the importance of real-

world validation. Rather than relying solely on 

simulated datasets, we utilize real housing market 

data, incorporating diverse features such as 

property attributes, economic indicators, and 

location-specific variables. By evaluating model 

performance across multiple sampling techniques 

and comparing their predictions against true sale 

prices, we seek to uncover actionable insights that 

can inform future research and practical 

applications in house price prediction. 

In summary, this work addresses a critical gap in 

the intersection of sampling methodologies and 

machine learning applications. By systematically 

analyzing the interplay between sampling 

techniques and predictive models, we aim to 

contribute to the growing body of knowledge in 

data science and its applications to real-world 

challenges. Another innovative aspect of this study 

is the application of the Feature Importance k 

Nearest Neighbor (FIkNN) algorithm, which has 

recently entered the literature and has a high 

prediction accuracy, together with other machine 

learning methods. The findings of this study are 

expected to provide valuable guidelines for 

researchers and practitioners, paving the way for 

more robust and reliable predictive modeling in the 

housing market and beyond. 

House price prediction has emerged as a critical 

area of research, with significant advancements 

fueled by the application of machine learning (ML) 

algorithms. These advancements have been driven 

by the growing demand for accurate predictive 

models capable of addressing the complexities and 

heterogeneity inherent in real estate datasets. While 

considerable attention has been paid to optimizing 

model accuracy and computational efficiency, the 

role of data sampling techniques in shaping model 

performance remains a relatively underexplored 

domain. Addressing this gap is essential, as 

unbiased and representative datasets are crucial for 

developing robust and generalizable predictive 

models. 

Ensemble methods, such as Random Forests and 

Gradient Boosting Machines (GBM), have 

demonstrated superior performance in capturing the 

non-linear and complex relationships prevalent in 

real estate data. Sharma and Gill (2024) highlighted 

that these methods not only improve predictive 

accuracy but also exhibit resilience against 

overfitting when applied to diverse datasets [3]. 

These capabilities make ensemble methods 

particularly effective in addressing the challenges 

posed by high-dimensional and heterogeneous real 

estate data. 

Recent studies have also explored specialized 

algorithms tailored for housing market prediction. 

Shao et al. (2024) introduced a comprehensive 

framework for rental price prediction using the 

CatBoost algorithm, which integrates advanced 

visualization and data management tools [4]. 

Implemented in Halifax, Canada, this system 

demonstrated CatBoost’s precision and adaptability 

in forecasting rental market trends, highlighting its 

business viability and contribution to the digital 

transformation of real estate management. 

Neural network-based approaches have further 

expanded the capabilities of predictive modeling in 

real estate. For example, Kansal et al. (2023) 

evaluated multiple algorithms, including Random 

Forest Regression, XGBoost, and Voting 

Regressor, identifying Random Forest as the most 

accurate model (98.21%) for real estate price 

forecasting during the Covid-19 pandemic [5]. The 

study emphasized locality and construction 

composition as primary determinants of property 

prices, underscoring the importance of feature 

selection in predictive modeling. 

The exploration of sampling methods has provided 

complementary avenues for enhancing the accuracy 

and reliability of machine learning models. 

Sampling techniques play a pivotal role in 

determining the representativeness of training 

datasets, which directly impacts model 

performance. Stratified sampling methods, 

particularly Stratified Extreme Ranked Set 

Sampling (SERSS), have gained prominence for 
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their ability to capture both central tendencies and 

extreme values in data. Naz et al. (2024) 

demonstrated that SERSS consistently 

outperformed systematic and cluster sampling in 

heterogeneous datasets, ensuring that 

underrepresented subgroups were adequately 

represented [6]. 

Cluster sampling offers an alternative approach by 

grouping data into homogenous clusters, which can 

mimic real-world scenarios where complete data 

access is impractical. Hasanin et al. (2019) 

emphasized the importance of domain knowledge 

in forming such clusters, noting that neighborhood-

based clustering effectively captures localized 

trends in real estate data [7]. This perspective is 

particularly valuable in datasets where spatial or 

demographic characteristics significantly influence 

housing prices. 

Bootstrap sampling, another widely adopted 

technique, has been integral to ensemble methods 

like Bagging and Boosting. Park and Bae (2015) 

demonstrated its utility in generating diverse 

training sets, enhancing the stability and 

performance of models across varying datasets [8]. 

By addressing the inherent randomness in data 

selection, bootstrap sampling mitigates bias and 

improves the robustness of predictions. 

The limitations of individual sampling techniques 

have led to the development of hybrid approaches 

that combine their strengths. For instance, Sowah et 

al. (2021) introduced the Hybrid Cluster-Based 

Undersampling Technique (HCBST), which 

effectively addresses class imbalance issues by 

integrating cluster-based undersampling and Sigma 

Nearest Oversampling [9]. This method 

significantly improved classification model 

performance across various benchmarks, providing 

insights into the potential of hybrid sampling 

frameworks for regression tasks in real estate. 

Similarly, Saylı and Başarır (2022) explored the 

integration of ranked set sampling with cluster 

sampling, demonstrating its effectiveness in 

improving model performance in heterogeneous 

environments [10]. These approaches underscore 

the value of tailoring sampling strategies to the 

specific characteristics of the dataset and the 

predictive task at hand. 

Recent studies have highlighted the growing 

importance of integrating advanced sampling 

techniques with state-of-the-art machine learning 

algorithms to address real-world challenges in 

house price prediction. Ja’afar et al. (2021) 

conducted a systematic review of machine learning 

techniques for real estate valuation, identifying 

Random Forest as an optimal algorithm for its 

accuracy and adaptability [11]. Their findings align 

with broader trends emphasizing the role of 

ensemble methods and stratified sampling in 

improving model reliability. 

Digital transformation in real estate management 

has further underscored the need for efficient 

sampling and predictive methodologies. Shao et al. 

(2024) demonstrated the business applicability of 

predictive frameworks that integrate sampling 

strategies with visualization tools, enabling non-

professional users to leverage data-driven insights 

for informed decision-making [4]. 

The findings from these studies collectively 

underscore the interdependence between sampling 

strategies and machine learning algorithms in house 

price prediction. SERSS, bootstrap, cluster, random 

and systematic sampling methods each offer unique 

advantages, and their integration with advanced ML 

algorithms has the potential to address the 

complexities of real estate datasets effectively. By 

systematically evaluating these techniques and their 

impact on predictive models, this study aims to 

bridge critical gaps in the literature, offering 

actionable insights for researchers and practitioners 

seeking to optimize house price prediction 

frameworks. 

 

2. Materials and Methods 

 
2.1 Data and Preprocessing 

The dataset utilized in this study was derived from 

publicly available repositories and comprised a 

comprehensive collection of residential property 

attributes, encompassing structural, locational, and 

transactional features [12]. A systematic data 

preprocessing pipeline was designed and 

implemented to ensure data quality, consistency, 

and suitability for machine learning applications. 

Below, the key steps in data preparation, including 

cleaning, feature selection, and transformation, are 

detailed. 

 

2.2 Data Description and Initial Handling 

The dataset contained both numerical and 

categorical attributes, reflecting various 

characteristics of residential properties. Numerical 

attributes included variables such as LotArea, 

OverallQual, YearBuilt, and SalePrice, while 

categorical attributes encompassed features like 

Neighborhood, BuildingType, and RoofStyle. 

Python’s pandas library was used to import the 

dataset, with attributes separated into numerical and 

categorical groups to facilitate tailored 

preprocessing. 

To address missing values and prevent downstream 

modeling issues, a two-step imputation strategy was 

applied: 



Ali İhsan Çetin / IJCESEN 11-2(2025)3743-3758 

 

3746 

 

Numerical Attributes: Missing values were imputed 

using the median to preserve the distribution's 

central tendency. 

Categorical Attributes: Missing values were 

imputed using the mode, ensuring the most 

frequently occurring category was retained. 

This strategy effectively minimized data loss while 

maintaining the dataset's distributional integrity. 

 

2.3 Correlation Analysis and Feature Selection 

To enhance predictive power and interpretability, a 

detailed correlation analysis was conducted on the 

numerical attributes. A pairwise correlation matrix 

was generated, revealing relationships between 

variables. For instance: Variables such as 

OverallQual (r=0.79) and GrLivArea (r=0.71) 

demonstrated strong positive correlations with the 

target variable, SalePrice. Other variables, such as 

MasVnrArea (r=0.02), WoodDeckSF (r=0.32), and 

OpenPorchSF (r=0.32), showed weak correlations 

and were considered less relevant for predicting 

SalePrice. To avoid multicollinearity, variables 

with a correlation coefficient above 0.50 with each 

other were flagged for elimination. For example: 

GarageCars and GarageArea had a high 

intercorrelation (r=0.88), and one of them 

(GarageArea) was excluded. Similarly, 1stFlrSF 

and TotalBsmtSF (r=0.82) were highly correlated, 

leading to the exclusion of 1stFlrSF. Additionally, 

features with a correlation coefficient below 0.30 

with the target variable were removed. Examples 

include: MasVnrArea, WoodDeckSF, and 

OpenPorchSF. The matrix identifies variable pairs 

with high intercorrelation (correlation coefficient |r| 

> 0.50), which were flagged for further evaluation 

to avoid multicollinearity. After generating 

correlation matrix, redundant variables with high 

intercorrelation were removed. The final set of 

features retained after this process included 

LotArea, OverallQual, YearBuilt, GrLivArea, and 

others that exhibited both high correlation with 

SalePrice and low intercorrelation with other 

predictors. This step ensured that only informative 

and non-redundant features were included, 

improving model efficiency. 

2.4 Outlier Detection and Stratification Variable 

Selection 

Outliers were identified using the interquartile 

range (IQR) method. Observations falling below 

Q1−1.5×IQR or above Q3+1.5×IQR were flagged 

as potential outliers. The extent of outliers across 

numerical features was evaluated, and their 

distributions were further examined for normality 

using the Shapiro-Wilk test. 

Based on this analysis, the variable GrLivArea was 

selected as the stratification criterion due to its 

relatively high number of outliers and a distribution 

close to normality (p-value > 0.05). This attribute 

allowed the dataset to be divided into strata that 

represented both central and extreme data 

tendencies. SERS sampling ensured proportional 

representation across these strata, enhancing the 

representativeness and robustness of the dataset for 

predictive modeling. 

The preprocessing pipeline successfully addressed 

challenges such as missing values, 

multicollinearity, and outlier detection, ensuring a 

clean and representative dataset. By selecting 

informative features and employing stratification 

based on GrLivArea, the study established a robust 

foundation for evaluating the interaction between 

sampling techniques and machine learning models. 

 

2.5 Feature Elimination and Selection Pipeline 

The feature elimination process followed a 

structured approach: 

Correlation Thresholding: Features with |r| < 0.30 

with SalePrice were excluded. 

Multicollinearity Reduction: Among features with 

high intercorrelation (|r| > 0.50), only the most 

relevant feature with higher correlation to SalePrice 

was retained. 

Final Features: The final list of features included 

those that were both predictive of SalePrice and 

independent of one another. This resulted in the 

retention of critical variables like OverallQual, 

GrLivArea, and YearBuilt. 

The preprocessing pipeline effectively addressed 

challenges such as missing values, 

multicollinearity, and outlier detection, resulting in 

a clean and representative dataset. By retaining key 

features and employing stratification based on 

GrLivArea, this study established a robust 

foundation for evaluating sampling techniques and 

machine learning models. 

 

2.6 Sampling Strategy and Preparation 

To evaluate the impact of different sampling 

methods on machine learning models, five 

strategies were implemented: 

SERS Sampling: Stratified Sampling ensures 

proportional representation of the population across 

predefined strata. By dividing the dataset into 

homogeneous subgroups (e.g., based on categorical 
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or numerical variables such as neighborhood or 

quality scores), this method preserves the 

underlying structure and variability of the data. It is 

particularly effective for datasets with imbalanced 

distributions or significant outliers, as it reduces 

sampling bias and improves the generalizability of 

machine learning models. For instance, in house 

price prediction, stratification might be based on 

property quality or geographical location to ensure 

that high-value and low-value properties are 

equally represented [13]. 

Random Sampling: Random Sampling selects 

observations arbitrarily, without considering their 

distribution within the dataset. While it serves as a 

simple baseline, this method often suffers from 

limitations, such as the underrepresentation of rare 

or critical data segments. This can lead to models 

that fail to capture nuanced patterns, particularly in 

heterogeneous datasets. Despite its drawbacks, 

random sampling provides a reference point for 

comparing the effectiveness of more structured 

approaches. 

Bootstrap Sampling: Bootstrap Sampling creates 

diverse subsets of the dataset by resampling with 

replacement. This method introduces variability 

into the data, enhancing model robustness by 

reducing overfitting and improving generalization. 

Bootstrap is particularly useful for ensemble 

methods like bagging and Random Forest, where 

repeated resampling helps create multiple diverse 

training datasets. The method's ability to balance 

variability and computational efficiency makes it a 

valuable addition to predictive modeling workflows 

[14]. 

Systematic Sampling: Systematic Sampling 

involves selecting data points at fixed intervals 

(e.g., every nth observation). This approach is 

straightforward to implement and can yield 

representative samples when the dataset lacks 

periodic patterns. However, systematic sampling 

may inadvertently introduce biases if the data 

exhibits periodicity that aligns with the sampling 

interval. For example, in house price prediction, 

systematic sampling might unintentionally 

oversample properties listed during specific 

timeframes if periodic trends exist in the dataset 

[15]. 

Cluster Sampling: Cluster Sampling divides the 

dataset into distinct clusters, such as geographical 

regions or neighborhoods, and selects observations 

from each cluster. This method mirrors real-world 

groupings, making it particularly suited for datasets 

where natural clusters exist. However, the success 

of cluster sampling heavily depends on the 

homogeneity within clusters. If clusters vary 

significantly in their internal characteristics, the 

representativeness of the sample may be 

compromised. For instance, in house price 

prediction, cluster sampling based on 

neighborhoods might capture localized trends but 

struggle to generalize across diverse regions [16]. 

The implementation of these sampling strategies 

involved stratifying the dataset based on the 

selected variable, ensuring that both central and 

extreme tendencies were preserved in the sample. 

This step aimed to capture the underlying 

heterogeneity of the dataset and support meaningful 

comparisons across sampling techniques. 

 

2.7 Sampling Strategy and Preparation 

The study leveraged a diverse suite of machine 

learning models, spanning linear, ensemble, kernel-

based, and distance-based approaches, to 

investigate the interplay between sampling 

strategies and predictive performance: 

K-nearest neighbors (KNN) is a non-parametric, 

instance-based learning algorithm that classifies 

data points by assigning the majority class of the k 

closest training examples in the feature space, 

based on a defined distance metric. Feature 

Importance K-nearest neighbors (FIKNN) is a 

novel algorithmic adaptation that integrates feature 

importance derived from random forests into the 

traditional KNN framework, enhancing 

classification accuracy by weighting feature 

contributions in the distance computation [17]. 

Linear Regression: Linear Regression forms the 

foundation of predictive modeling by fitting a linear 

equation to the data. While it provides a quick and 

interpretable baseline, its simplicity often results in 

poor performance when non-linear relationships 

dominate the dataset. In the context of house price 

prediction, Linear Regression struggles to capture 

interactions among features like Neighborhood and 

OverallQual. 

Ridge Regression: Ridge Regression addresses 

overfitting by adding an L2 regularization term to 

the cost function. This penalty reduces the 

magnitude of coefficients, leading to a more stable 

model. Ridge Regression is particularly effective in 

datasets with multicollinearity, as it retains all 

features but shrinks their impact to minimize 

redundancy. 

Lasso Regression: Lasso Regression incorporates 

an L1 regularization term, which not only reduces 

overfitting but also performs feature selection by 

shrinking some coefficients to zero. This makes it 

especially useful in high-dimensional datasets, 

where irrelevant features can be automatically 

excluded to simplify the model. 

ElasticNet: ElasticNet combines the strengths of 

Ridge and Lasso by balancing L1 and L2 penalties. 

This hybrid approach is well-suited for datasets 
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with correlated features, as it maintains the stability 

of Ridge while selectively excluding less relevant 

features like Lasso. For house price prediction, 

ElasticNet effectively balances feature selection 

and predictive accuracy [18]. 

Random Forest: Random Forest aggregates 

predictions from multiple decision trees, each 

trained on a random subset of data and features. 

This "bagging" approach reduces variance and 

overfitting, making it robust for datasets with high 

variability. In this study, Random Forest performed 

well across various sampling methods, thanks to its 

ability to handle diverse features like LotArea and 

YearBuilt. 

Gradient Boosting: Gradient Boosting sequentially 

trains weak learners (typically decision trees), 

optimizing residual errors at each iteration. This 

approach excels in capturing non-linear interactions 

and fine-tuning predictions. However, Gradient 

Boosting requires careful tuning to prevent 

overfitting, especially in small or noisy datasets. 

AdaBoost: AdaBoost focuses on difficult-to-predict 

instances by assigning higher weights to 

misclassified samples during each training iteration. 

While effective for handling outliers, its sensitivity 

to noise can limit its performance in datasets with 

high variability, as observed in the study [19]. 

SVR maps features into higher-dimensional spaces 

using kernel functions, enabling it to model non-

linear relationships effectively. While powerful, 

SVR is computationally expensive and sensitive to 

feature scaling, making it less suitable for large, 

heterogeneous datasets like the one used in this 

study. 

Decision Trees split the data into subsets based on 

feature thresholds, making them highly 

interpretable and intuitive. However, their tendency 

to overfit when used in isolation limits their 

applicability in complex datasets. They serve as the 

building blocks for ensemble models like Random 

Forest and Gradient Boosting, where their 

weaknesses are mitigated. 

These models extend traditional boosting 

frameworks with advanced features to enhance 

performance, scalability, and robustness. 

XGBoost: XGBoost improves Gradient Boosting 

by incorporating efficient computation, tree 

pruning, and L2 regularization to prevent 

overfitting. It is highly scalable, making it suitable 

for large datasets. In this study, XGBoost 

performed well in structured sampling scenarios, 

demonstrating its ability to handle diverse data 

distributions. 

CatBoost: CatBoost is specifically designed to 

handle categorical features directly, eliminating the 

need for extensive preprocessing. By reducing 

gradient bias and optimizing computations, 

CatBoost excels in datasets with mixed data types. 

Its exceptional performance in this study highlights 

its adaptability and robustness in capturing 

complex, non-linear interactions [20]. 

These models were selected to capture a range of 

predictive capabilities, from linear relationships to 

complex, non-linear interactions. 

 

2.8 Feature Scaling and Transformation 

To ensure consistency across all features and 

mitigate scaling-related biases, numerical attributes 

were standardized using the StandardScaler. This 

step was particularly crucial for distance-based 

models, such as Support Vector Regression (SVR) 

and k-Nearest Neighbors (kNN), which are 

sensitive to the magnitudes of individual features. 

Standardization transformed the numerical 

attributes into a common scale, ensuring that all 

features contributed equally to the machine learning 

process. This uniform scaling enhanced the 

interpretability and stability of the models and was 

a key component of the preprocessing pipeline. 

 

2.9 Comprehensive Nature of the Pipeline 

The preprocessing pipeline comprehensively 

addressed challenges such as missing data, 

multicollinearity, and outliers, while 

simultaneously ensuring the dataset's 

representativeness and uniform scaling. By 

employing rigorous feature selection and advanced 

sampling techniques, the pipeline established a 

clean and robust dataset. These preprocessing 

measures laid a solid foundation for the evaluation 

of machine learning models, facilitating meaningful 

comparisons of the impact of different sampling 

strategies. The pipeline’s detailed and structured 

approach not only enhanced the reliability of the 

results but also ensured their interpretability, 

providing actionable insights into the relationship 

between data quality and predictive performance. 

 

3. Results and Discussions 
 

The quality of machine learning models heavily 

depends on the data used for training. Sampling 

techniques are instrumental in ensuring that the 

dataset used is representative, balanced, and 

suitable for generalization. This study evaluates the 

performance of SERS, bootstrap, systematic, 

random, and cluster sampling techniques across 

various machine learning models applied to 

residential property price prediction, aiming to 

understand their impact on predictive accuracy, 

robustness, and generalizability. Table 1 showcases 

the top-performing sampling and model 
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combinations based on Mean Absolute Error 

(MAE), Root Mean Squared Error (RMSE), and R² 

metrics. Among the listed methods, Cluster 

Sampling paired with CatBoost achieved the 

highest accuracy, with an impressively low MAE of 

85.91 and R² of 0.89, demonstrating the 

effectiveness of combining structured sampling 

with a robust ensemble model. 

Models like ElasticNet also performed consistently 

well, particularly under Bootstrap Sampling and 

Cluster Sampling, with MAE values of 449.56 and 

542.06, respectively. These results highlight 

ElasticNet's capability to balance feature selection 

and regularization across diverse sampling 

methods. 

Distance-sensitive models such as FIkNN benefited 

from the structured representation offered by 

Cluster Sampling, achieving an MAE of 628.16, 

which significantly outperformed classic kNN in 

previous comparisons. This demonstrates the 

advantage of incorporating feature-specific weights 

in models dealing with heterogeneous datasets. 

Overall, ensemble models like CatBoost and linear 

models such as ElasticNet dominate the top ranks, 

indicating their adaptability and robustness across 

different sampling techniques. The results 

emphasize the importance of matching appropriate 

sampling methods with model-specific strengths to 

achieve optimal predictive performance. 

 

3.1 Performance of Sampling Techniques 

The effectiveness of sampling techniques plays a 

critical role in shaping the accuracy and reliability 

of machine learning models, particularly in 

complex datasets. In this study, structured sampling 

methods such as Cluster Sampling and Bootstrap 

Sampling consistently outperformed unstructured 

approaches, demonstrating their ability to enhance 

predictive accuracy and mitigate biases. 

Cluster Sampling emerged as the most effective 

sampling method, particularly when paired with 

ensemble models such as CatBoost, which achieved 

the lowest Mean Absolute Error (MAE) of 85.91 

and a high R² value of 0.89. This technique's ability 

to segment data into homogenous clusters enabled 

models to capture localized patterns effectively, 

reducing variability and enhancing generalization. 

Models like ElasticNet and Ridge Regression also 

benefited from this structured approach, achieving 

MAE values of 542.06 and 625.41, respectively. 

These results underscore the value of Cluster 

Sampling in providing balanced representation, 

which is particularly critical for datasets with 

diverse distributions. 

Bootstrap Sampling, a widely used resampling 

method, demonstrated robust performance across 

various models. By introducing controlled 

variability, it effectively reduced overfitting while 

maintaining representation of rare and extreme data 

points. For instance, ElasticNet recorded an MAE 

of 449.56 under Bootstrap Sampling, showcasing 

the method's adaptability to data heterogeneity. 

Similarly, Random Forest achieved a competitive 

MAE of 805.98, highlighting Bootstrap Sampling's 

utility in enhancing model robustness for ensemble 

techniques. 

Systematic Sampling delivered mixed results, 

excelling in scenarios where structured data 

selection aligned with model assumptions. For 

example, Random Forest achieved an MAE of 

541.02 with this method, benefiting from the 

systematic representation of feature variability. 

However, its periodic sampling approach 

occasionally introduced biases, making it less 

consistent for models sensitive to irregular patterns. 

Random Sampling, as anticipated, exhibited 

significant performance variability. While 

ElasticNet achieved a relatively low MAE of 

455.64, other models, such as Decision Tree, 

recorded higher errors (MAE of 553.66), 

highlighting the limitations of this unstructured 

method. The lack of proportional representation led 

to underrepresentation of critical data segments, 

adversely impacting the performance of models 

reliant on uniform data distributions. 

In conclusion, structured sampling techniques such 

as Cluster and Bootstrap Sampling consistently 

provided superior results, particularly when paired 

with robust models. These methods effectively 

addressed data variability and ensured balanced 

representation, making them indispensable in 

predictive modeling workflows. Conversely, 

unstructured approaches like Random Sampling 

often led to performance variability, underscoring 

the need for careful selection of sampling strategies 

in real-world applications. 

 
3.2 Performance of Machine Learning Models 

The selection of machine learning models plays an 

equally pivotal role in predictive accuracy, with 

ensemble models consistently outperforming other 

techniques. In this study, robust ensemble methods 

such as CatBoost and Random Forest demonstrated 

superior adaptability across sampling methods, 

while linear and distance-sensitive models 

displayed varying degrees of success depending on 

the sampling strategy. 

CatBoost, an advanced gradient boosting algorithm, 

consistently delivered the best performance, 

achieving the lowest MAE of 85.91 under Cluster 

Sampling. Its unique ability to handle categorical 

data natively and model complex, non-linear 
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relationships enabled it to excel in capturing both 

localized and global patterns within the dataset. 

This adaptability, coupled with Cluster Sampling's 

homogeneity, facilitated CatBoost's high R² of 0.89, 

underscoring its robustness.ElasticNet, a hybrid 

linear model combining L1 and L2 regularization, 

emerged as a versatile performer across multiple 

sampling methods. It achieved competitive MAE 

values of 449.56 under Bootstrap Sampling and 

455.64 under Random Sampling, demonstrating its 

ability to balance feature selection and prediction 

accuracy. The model's reliance on structured data 

distributions made it particularly well-suited for 

Bootstrap and Cluster Sampling, where 

representation of critical data points was preserved. 

Random Forest, a bagging-based ensemble model, 

delivered strong results under Systematic Sampling, 

achieving an MAE of 541.02. Its ability to model 

non-linear relationships and reduce overfitting 

through feature bagging contributed to its success. 

However, the model's performance declined with 

unstructured approaches like Random Sampling, 

where it recorded an MAE of 837.80, highlighting 

its dependency on structured data representation. 

FIkNN, a feature-weighted k-nearest neighbors 

variant, demonstrated a clear advantage over its 

unweighted counterpart, classic kNN. By 

incorporating feature-specific weights, FIkNN 

effectively emphasized relevant features while 

downplaying less critical ones, enabling it to handle 

heterogeneous datasets more effectively. This 

approach resulted in an MAE of 628.16 under 

Cluster Sampling, significantly outperforming 

classic kNN, which recorded an MAE of 798.91 

under the same method. These results highlight the 

importance of incorporating domain knowledge 

into distance-sensitive models to enhance predictive 

accuracy.Conversely, classic kNN and Support 

Vector Regression (SVR) struggled across most 

sampling methods, particularly unstructured ones 

like Random Sampling. SVR recorded some of the 

highest MAE values, exceeding 17,000, reflecting 

its sensitivity to data variability and lack of 

scalability in diverse datasets. These findings 

emphasize the limitations of simpler models when 

applied to complex, real-world data. 

In summary, ensemble models such as CatBoost 

and Random Forest consistently outperformed 

linear and distance-sensitive models, showcasing 

their ability to capture non-linear interactions and 

adapt to diverse sampling techniques. Structured 

sampling methods further amplified their strengths, 

ensuring balanced data representation and robust 

predictions. These findings reinforce the critical 

importance of aligning sampling strategies with 

model-specific capabilities to achieve optimal 

predictive accuracy. The five charts illustrate the 

average predictions versus the real mean sale price 

for different machine learning models across five 

sampling methods: Bootstrap, Cluster, Random, 

SERS, and Systematic. Each model’s predictive 

performance is represented by its deviation from 

the real mean (denoted as "Real Mean") in these 

visualizations.Bootstrap sampling demonstrates 

relatively stable performance for ensemble models 

such as CatBoost and Random Forest, which stay 

closely aligned with the real mean (Figure 1). 

ElasticNet also performs well under this sampling 

method, with minimal deviations. However, 

distance-based models, like SVR, exhibit 

significant underperformance, as evidenced by a 

sharp dip far below the real mean. AdaBoost, on the 

other hand, overestimates significantly, producing 

predictions that deviate far beyond the real mean. 

CatBoost and ElasticNet exhibit robust and 

consistent performance with minor deviations from 

the real mean. SVR highlights its sensitivity to 

bootstrapped data, struggling with representation 

variability.Under cluster sampling, CatBoost 

emerges as the top-performing model, maintaining 

predictions almost perfectly aligned with the real 

mean. Linear models, such as ElasticNet and Ridge 

Regression, also achieve competitive results. 

However, decision trees and distance-based models, 

such as SVR, exhibit significant variability. The 

inherent grouping in cluster sampling benefits 

models capable of capturing localized trends, while 

others, like AdaBoost, suffer from pronounced 

overestimation. Cluster sampling is particularly 

effective for CatBoost and ElasticNet. Distance-

based models such as kNN and SVR are less suited 

for clustered datasets due to their reliance on 

uniform distributions.Random sampling introduces 

variability that disproportionately impacts models 

reliant on structured data. ElasticNet and CatBoost 

perform moderately well, with average predictions 

close to the real mean. However, SVR and Decision 

Trees show substantial underperformance, 

deviating significantly from the real mean due to 

unstructured and unbalanced data representation. 

Random sampling poses challenges for models like 

SVR and Decision Trees due to its lack of structure. 

CatBoost and ElasticNet maintain reasonable 

stability despite the randomness.SERS sampling 

delivers the most consistent and accurate results 

across all models, particularly ensemble models 

like CatBoost and Random Forest. These models 

closely align with the real mean, reflecting SERS 

sampling's ability to preserve proportional 

representation across strata. Notably, SVR again 

demonstrates significant underperformance, 

indicating its limited adaptability to structured 

datasets. SERS sampling consistently outperforms 

other methods, ensuring accurate predictions for 
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ensemble models. Models like AdaBoost show 

variability, highlighting their limitations in 

structured sampling. 

Systematic sampling displays mixed results. 

Ensemble models and ElasticNet maintain 

reasonable predictive accuracy, closely following 

the real mean. However, SVR and Decision Trees 

reveal inconsistencies, reflecting the periodic 

sampling bias introduced by this method. AdaBoost 

continues to deviate significantly, illustrating its 

inability to adapt to systematic patterns. ElasticNet 

and ensemble models benefit from systematic 

sampling's structured selection process. Models like 

SVR and AdaBoost struggle with periodic biases 

inherent to this method.Best Performers: CatBoost 

and ElasticNet emerge as the most consistent 

performers across sampling techniques, benefiting 

from their flexibility and ability to capture complex 

patterns.Underperformers: SVR and AdaBoost 

consistently demonstrate poor performance, largely 

due to their sensitivity to data structure and 

representation.Impact of Sampling: SERS sampling 

proves to be the most reliable method overall, 

minimizing deviations for most models, while 

random and systematic sampling introduce 

variability that disproportionately impacts simpler 

models.These visualizations underscore the critical 

role of sampling strategies in ensuring accurate and 

reliable machine learning predictions. Structured 

sampling methods, such as SERS and cluster 

sampling, pair effectively with ensemble models to 

deliver robust results. Conversely, simpler models 

require more tailored sampling approaches to 

mitigate inherent weaknesses. These five charts in 

Figure 2 illustrate mean absolute error (MAE) 

across models for different sampling techniques.  

In the bootstrap sampling method, FIkNN 

consistently outperformed other models with the 

lowest Mean Absolute Error (MAE), signifying its 

robustness in predicting sale prices with minimal 

deviation from the real mean. On the contrary, 

Support Vector Regression (SVR) and AdaBoost 

exhibited significantly high errors, with AdaBoost 

reaching an MAE exceeding $30,000. This stark 

contrast underscores the importance of selecting 

models that align well with the inherent variability 

introduced by bootstrap sampling. Ensemble 

methods and linear models like Ridge and Lasso 

Regression also performed adequately, maintaining 

MAE below $1,000, further showcasing the 

balanced performance of bootstrap sampling. 

The performance within cluster sampling mirrored 

trends seen in bootstrap sampling, with FIkNN and 

ElasticNet maintaining relatively low MAE values. 

CatBoost also demonstrated exemplary 

performance in this sampling technique, further 

cementing its adaptability to data segments defined 

by localized clusters. SVR once again performed 

poorly, illustrating its vulnerability to uneven 

cluster distributions. AdaBoost struggled 

considerably, with an MAE nearing $25,000, 

reinforcing its sensitivity to imbalanced or diverse 

data distributions inherent in clustering methods. 

Under random sampling, linear models such as 

Ridge and ElasticNet demonstrated commendable 

performance with MAE values consistently below 

$1,000. However, FIkNN maintained its superior 

position, affirming its robustness across various 

sampling techniques. SVR, as expected, delivered 

suboptimal results with MAE values reaching 

$17,500, reflecting its inefficiency in handling 

unstructured data selection. Similarly, AdaBoost 

faced difficulties, with high MAE values indicating 

its struggles with randomness-induced variability. 

Ensemble models and tree-based methods, 

including Random Forest, performed moderately 

but lacked the precision of FIkNN and ElasticNet. 

The SERS sampling method exhibited the broadest 

range of MAE values across models. Despite the 

structured nature of the SERS approach, 

AdaBoost's MAE surged past $60,000, highlighting 

its limitations in adapting to proportional data 

distributions. Linear models and ensemble methods 

achieved consistent performance, yet they were 

outshined by FIkNN and CatBoost. The results 

underscore the advantage of methods like FIkNN, 

which leverage feature-specific weights to balance 

data diversity effectively.Systematic sampling 

yielded relatively competitive results for models 

such as FIkNN and ElasticNet, both achieving low 

MAE values. However, SVR once again showed 

pronounced underperformance, with an MAE 

exceeding $10,000. AdaBoost exhibited the highest 

MAE within systematic sampling, exceeding 

$9,000, underscoring its inability to generalize 

effectively with periodic data patterns. The 

structured nature of systematic sampling appeared 

to benefit linear models and Random Forest, which 

achieved moderate success in maintaining 

prediction accuracy. 
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Figure 1. Prediction Accuracy vs Real Mean Across 

Sampling Methods 

 

 

 

Figure 2. Mean Absolute Error (MAE) Across Models 

for Different Sampling Techniques 
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Figure 3. Heatmap of Sampling Methods vs. Models: Analysis of MAE 

 

 

Figure 4. Radar Chart of Machine Learning Model Performance Across Sampling Methods 

The MAE values across all sampling techniques 

highlight the robustness of FIkNN and ElasticNet 

as models that can generalize well across diverse 

data distributions. Conversely, SVR consistently 

underperformed across all sampling methods, 

indicating its incompatibility with the inherent 

characteristics of these sampling techniques. The 

results also reaffirm the adaptability of ensemble 

methods like CatBoost, particularly in cluster and 

SERS sampling scenarios, while emphasizing the 

importance of aligning model characteristics with 

sampling method tendencies for optimal prediction 

accuracy. In Figure 3 the heatmap provides a 

detailed comparative visualization of the absolute 
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difference between model predictions and the real 

mean sale price across various sampling techniques. 

Each cell represents the Mean Absolute Error 

(MAE) for a specific combination of sampling 

method and machine learning model, with lower 

values (cooler colors) indicating better 

performance. 

SERS Sampling consistently delivers the smallest 

differences from the real mean across nearly all 

models. This reflects its strength in providing 

proportional representation, ensuring that the 

dataset's variability is well-preserved. Notably, 

CatBoost under SERS Sampling achieves the 

lowest deviation, highlighting its synergy with 

structured sampling. Ensemble methods and 

ElasticNet also demonstrate solid performance, 

further reinforcing the effectiveness of SERS 

Sampling. 

FIkNN emerges as a strong performer, maintaining 

low deviations across all sampling methods, 

particularly under Cluster and Bootstrap Sampling. 

Its ability to incorporate feature-specific weights 

contributes significantly to its robustness, enabling 

it to adapt effectively to diverse sampling 

strategies. In contrast, Classic kNN struggles with 

higher deviations, underscoring the importance of 

weighted metrics in improving prediction accuracy. 

AdaBoost consistently shows the highest deviations 

across all sampling methods, with deviations 

exceeding $30,000 in SERS Sampling and $20,000 

in Random Sampling. Similarly, Support Vector 

Regression (SVR) underperforms, especially in 

Systematic and Random Sampling, due to its 

sensitivity to data variability and reliance on 

structured, scaled input data. 

Cluster and Bootstrap Sampling perform 

competitively, particularly for CatBoost and 

ElasticNet. While Cluster Sampling excels for 

models adept at capturing localized trends, such as 

Decision Trees, it struggles with models like SVR, 

which are highly sensitive to uneven distributions. 

Bootstrap Sampling introduces controlled 

variability, yielding low deviations for ElasticNet 

and Random Forest, but challenges models like 

Classic kNN and AdaBoost. 

Systematic Sampling achieves moderate success, 

particularly for Random Forest and ElasticNet. 

However, the periodic selection process 

occasionally biases the sampling, affecting 

performance for models like SVR and AdaBoost, 

which rely on uniform data representation. The 

results highlight Systematic Sampling's limitations 

in datasets with complex patterns or extreme 

variability. 

Random Sampling exhibits substantial variability in 

model performance, with linear models like 

ElasticNet and Ridge Regression performing 

relatively well, while ensemble methods and SVR 

suffer from higher deviations. This reflects the 

limitations of unstructured data selection, which 

often fails to capture critical trends or outliers 

effectively. In Figure 4, the radar chart provides a 

comparative visualization of machine learning 

model performance across various sampling 

methods. SERS sampling demonstrates the most 

consistent and superior performance, with ensemble  
 

Table 1. Comparison of Machine Learning Models and Sampling Methods Based on Performance Metrics 

Sample 

Type 

Model Real Mean 

Sale Price 

Avg 

Prediction 

 MAE RMSE R² Adjusted 

R² 

Cluster 

Sample CatBoost 180921,1959 181007,1085 85,9125 85,9125 0,8914 0,8903 

Bootstrap 

Sample ElasticNet 180921,1959 180471,6402 449,5557 449,5557 0,8550 0,8535 

Random 

Sample ElasticNet 180921,1959 181376,8347 455,6387 455,6387 0,8544 0,8529 

Systematic 

Sample 

Random 

Forest 180921,1959 181462,2146 541,0187 541,0187 0,8458 0,8443 

Cluster 

Sample ElasticNet 180921,1959 181463,2602 542,0643 542,0643 0,8457 0,8442 

Random 

Sample 

Decision 

Tree 180921,1959 180367,5357 553,6602 553,6602 0,8446 0,8430 

Cluster 

Sample 

Ridge 

Regression 180921,1959 181546,6097 625,4137 625,4137 0,8374 0,8358 

Cluster 

Sample 

Lasso 

Regression 180921,1959 181547,0555 625,8596 625,8596 0,837 0,8357 

Cluster 

Sample 

Linear 

Regression 180921,1959 181547,0666 625,8707 625,8707 0,8374 0,8357 

Cluster 

Sample FIkNN 180921,1959 180293,0384 628,1574 628,1574 0,8371 0,8355 
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models like CatBoost and Random Forest achieving 

the smallest normalized differences from the real 

mean. Conversely, random sampling shows the 

largest variability, with models like SVR and 

AdaBoost exhibiting significantly worse 

performance. Bootstrap and systematic sampling 

deliver moderate results, particularly benefiting 

ensemble models, while cluster sampling shows 

mixed effectiveness, excelling in localized patterns 

but struggling with heterogeneous data. The chart 

underscores the critical role of structured sampling 

in enabling robust and accurate predictions. 

 

4. Conclusions 

 
This study provides critical insights into the 

interplay between sampling techniques and 

machine learning models in the domain of house 

price prediction, demonstrating how 

methodological rigor can enhance model 

performance in complex and heterogeneous 

datasets. The findings emphasize the pivotal role of 

structured sampling methods, particularly SERS 

Sampling and its enhanced variant, Stratified 

Extreme Ranked Set Sampling (SERSS), in 

achieving superior predictive accuracy, robustness, 

and generalizability. 

The dataset used in this study focuses on predicting 

Sale Prices of residential properties, incorporating a 

diverse set of features that reflect structural, 

locational, and transactional characteristics. Key 

variables include numerical features such as 

LotArea, OverallQual, YearBuilt, and GrLivArea, 

which capture property size, quality, and condition. 

Categorical attributes, such as Neighborhood, 

RoofStyle, and ExteriorMaterial, provide critical 

context about locational and aesthetic factors 

influencing property valuation. This rich feature set 

offers a comprehensive view of the factors 

impacting house prices, making it an ideal 

foundation for evaluating the efficacy of sampling 

and modeling techniques. 

SERS Sampling emerged as the most effective 

approach across all evaluated models, enabling 

proportional representation of the data's inherent 

variability. By capturing balanced distributions 

across strata, this method facilitated robust feature 

learning, which translated into exceptional model 

performance. Notably, CatBoost achieved an 

outstanding R² value of 0.891 and a remarkably low 

Mean Absolute Error (MAE) of $85.91 when 

paired with Cluster Sampling, showcasing the 

synergistic benefits of structured data 

representation and advanced ensemble learning. 

Random Forest and ElasticNet also demonstrated 

strong compatibility with systematic and bootstrap 

sampling techniques, achieving MAE values as low 

as $541.02 and $449.56, respectively. These 

outcomes highlight the efficacy of structured 

sampling in mitigating biases and capturing 

nuanced patterns within the data. 

The SERSS methodology extended the advantages 

of SERS Sampling by explicitly integrating central 

and extreme data tendencies, significantly 

enhancing the prediction accuracy of models 

handling non-linear interactions. Ensemble models, 

such as Random Forest and Gradient Boosting, 

trained on SERSS samples achieved consistent R² 

values above 0.84, with CatBoost emerging as the 

top performer, delivering robust predictions and 

minimal deviations from the real mean. These 

results validate the theoretical underpinnings of 

SERSS, which prioritize capturing complex 

relationships across diverse data strata. 

The influence of features on Sale Prices was also 

evident in the performance of models trained on 

structured samples. Variables such as OverallQual 

and GrLivArea—indicators of a property's overall 

quality and living area—were strongly correlated 

with Sale Prices, driving model accuracy. On the 

other hand, less influential attributes, such as 

MoSold (Month Sold) and MiscVal (Miscellaneous 

Value), were deprioritized during feature selection 

to ensure model interpretability and efficiency. 

These results further underscore the importance of 

selecting meaningful predictors to enhance the 

alignment between sampling strategies and 

predictive objectives. 

Among the machine learning models, ensemble 

methods like CatBoost, Random Forest, and 

Gradient Boosting consistently outperformed linear 

and distance-based approaches. The ability of 

ensemble models to model intricate non-linear 

interactions enabled them to maintain high 

accuracy and resilience across all sampling 

techniques. In contrast, linear models such as Ridge 

Regression and Lasso Regression exhibited 

moderate success, particularly when paired with 

structured sampling methods, achieving MAE 

values in the range of $625.86 to $674.68 under 

Cluster and Random Sampling. However, their 

overall performance lagged behind ensemble 

models due to their limited capacity to capture non-

linear relationships. 

Unstructured sampling methods, such as Random 

Sampling, demonstrated notable limitations, 

particularly in datasets with significant variability 

and outliers. Models trained on random samples 

often exhibited higher deviations, with Decision 

Tree models recording an MAE exceeding $553.66 

and R² values dropping to 0.844. Such results 

underscore the critical need for structured sampling 

strategies to ensure representativeness and 

minimize model biases. 
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In conclusion, this study underscores the profound 

impact of structured sampling techniques, 

particularly Stratified Sampling and SERSS, in 

enhancing the performance of machine learning 

models on heterogeneous datasets. By enabling the 

balanced representation of influential features, such 

as OverallQual, GrLivArea, and YearBuilt, these 

methods ensure the reliable prediction of Sale 

Prices, even in complex scenarios. The superior 

results achieved by ensemble models like CatBoost 

and Random Forest solidify their suitability for 

capturing complex, non-linear relationships in 

predictive analytics. Future research should explore 

the integration of hybrid sampling methodologies 

and adaptive model architectures to further exploit 

the strengths of structured data representation, 

paving the way for even greater predictive accuracy 

and robustness in real-world applications. These 

findings not only reinforce the theoretical 

importance of sampling strategies but also offer 

practical guidance for optimizing machine learning 

workflows in diverse domains. 

Organizations dealing with complex and 

heterogeneous datasets should prioritize structured 

sampling techniques as foundational elements of 

their predictive modeling workflows. Stratified 

Sampling has consistently proven to be a highly 

effective approach, offering proportional 

representation across diverse data strata. This not 

only mitigates biases but also enhances the 

generalizability of machine learning models, 

particularly when dealing with datasets 

characterized by significant variability and extreme 

values. For such challenging scenarios, Stratified 

Extreme Ranked Set Sampling (SERSS) provides 

an even more powerful alternative by explicitly 

incorporating central and extreme data tendencies, 

thereby improving model accuracy, robustness, and 

reliability. 

The demonstrated superiority of ensemble methods, 

such as CatBoost, Random Forest, and Gradient 

Boosting, in capturing complex, non-linear 

interactions underscores their indispensable role in 

modern predictive analytics. These methods 

consistently deliver high accuracy and robustness 

across a variety of sampling strategies, making 

them especially valuable in high-dimensional 

datasets. For practitioners in fields such as real 

estate, finance, and healthcare—where data 

complexity is the norm—adopting ensemble 

methods in combination with structured sampling 

can yield significant predictive advantages. 

To optimize predictive performance, organizations 

should consider hybrid sampling frameworks that 

combine the strengths of stratified methods with the 

adaptive flexibility of techniques like bootstrap or 

cluster sampling. These hybrid approaches offer a 

balanced trade-off between computational 

efficiency and predictive accuracy, allowing data 

preparation workflows to be tailored to the specific 

characteristics of the dataset. For example, 

bootstrap sampling can introduce controlled 

variability, which enhances model training without 

sacrificing the structured representation provided 

by stratification. Cluster sampling, when properly 

aligned with dataset homogeneity, can further 

refine data selection, particularly in scenarios 

involving localized patterns. 

Maintaining diversity and avoiding unintentional 

biases during data collection are critical for 

ensuring that sampling techniques remain effective. 

Data sources should represent a wide range of 

segments, particularly those that are 

underrepresented, as these often contain key 

patterns that influence model outcomes. 

Furthermore, preprocessing pipelines must be 

robust, incorporating advanced imputation 

techniques for missing data, effective outlier 

detection, and precise scaling mechanisms. These 

steps not only ensure the reproducibility of results 

but also prepare datasets for the computational 

demands of ensemble methods and other advanced 

algorithms. 

Looking ahead, the development of dynamic 

sampling strategies that evolve based on real-time 

feedback from predictive models presents a 

promising research direction. Metrics such as error 

rates, feature importance, or uncertainty scores can 

be leveraged to iteratively refine sampling 

processes, aligning data representation with 

evolving modeling objectives. This feedback loop 

can help address dataset imbalances or shifts, 

ensuring that models adapt effectively to changing 

conditions. 

The scalability of stratified and SERSS methods is 

another critical area for future research. Adapting 

these techniques to distributed computing and big 

data frameworks could enable their application to 

massive datasets without compromising accuracy or 

computational efficiency. Integrating these methods 

into parallel processing environments, such as 

Hadoop or Spark, would make them more 

accessible to organizations operating at scale, 

ensuring their continued relevance in the era of big 

data. 

Domain-specific customizations of sampling and 

modeling techniques hold significant potential to 

improve performance in specialized fields. In the 

real estate domain, for example, integrating spatial 

and temporal dependencies into sampling and 

modeling workflows could significantly enhance 

predictive accuracy. Similarly, in healthcare, 

incorporating patient stratification based on 

demographics or disease severity could yield more 
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precise predictions. Such domain-aware adaptations 

combine methodological rigor with contextual 

insights, paving the way for transformative 

applications of machine learning. 

Finally, there is an urgent need for standardized 

benchmarks to evaluate the efficacy of sampling 

techniques across various machine learning tasks. 

These benchmarks should assess the impact of 

sampling on predictive accuracy, computational 

efficiency, and generalizability. By establishing 

clear evaluation frameworks, researchers and 

practitioners can better understand the trade-offs 

associated with different methodologies, guiding 

the adoption of sampling strategies that align with 

specific modeling objectives. Such benchmarks 

would also promote consistency in research and 

practice, driving advancements in both 

methodological development and real-world 

applications. 

By addressing these research gaps and exploring 

innovative directions, the field can unlock new 

opportunities to enhance predictive modeling 

workflows, bridging the gap between theoretical 

advancements and practical applications in machine 

learning. 
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