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Abstract:  
 
Timely identification of prostate cancer significantly enhances the likelihood of 

successful treatment; however, diagnostic uncertainty remains a common challenge. This 

study introduces a Fuzzy Medical Expert System (F-MES) based on Mamdani inference, 

aiming to improve the accuracy of risk estimation for prostate cancer. The system 

incorporates four clinically validated input parameters: patient age, prostate-specific 

antigen (PSA), prostate volume (PV), and the percentage of free PSA (%FPSA) to 

produce a quantitative output representing Prostate Cancer Risk (PCR) in percentage. 

Designed for use in clinical environments such as hospitals and urology clinics, the F-

MES provides risk interpretation and biopsy recommendations aligned with medical 

guidelines. A total of 500 fuzzy rules, adapted from standard clinical criteria, were 

implemented on this system within the Mamdani framework. We have implemented the 

FMES by using MATLAB and had several intensive numerical experiments, based on an 

evaluation of 90 benchmark patient records. We also compared the results to those of the 

previous research. It is shown that the FMES has a better performance that the other 

previous approach. It gives an accuracy of 81.11%, surpassing previous fuzzy models, 

which ranged from 60% to 77.5%. Performance metrics indicate a precision of 76.47%, 

recall of 88.64%, specificity of 73.91%, and an F1-score of 82.11%. 

 

1. Introduction 

 

Prostate cancer continues to represent a major global 

health burden, ranking among the leading causes of 

cancer-related morbidity and mortality in men, 

particularly those over the age of 50. Achieving 

early and precise diagnosis is critical for improving 

treatment success rates.  Key risk factors include 

advanced age, genetic predisposition, obesity, and 

lifestyle influences [1]. In 2022 alone, prostate 

cancer ranked as the second most common cancer in 

men, accounting for more than 1.4 million new 

diagnoses and over 375,000 fatalities worldwide [2]. 

Despite the availability of conventional diagnostic 

tools such as prostate-specific antigen (PSA) 

testing, magnetic resonance imaging (MRI), and 

prostate biopsy, these approaches often suffer from 

limited specificity and interpretability. This 

diagnostic uncertainty requires decision support 

tools that can process ambiguous input data while 

maintaining clinical transparency.  

In response to these diagnostic challenges, several 

researchers have explored the application of 

artificial intelligence (AI) and machine learning 

(ML) techniques for predicting prostate cancer risk. 

Approaches including Support Vector Machines 

(SVM), Random Forests, and deep learning have 

demonstrated strong predictive capabilities [3], [4]. 

However, their adoption in clinical practice is often 

hindered by their "black-box" nature, which limits 
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http://www.ijcesen.com
mailto:sjfeolino@mymail.mapua.edu.ph


Rusliyawati, Admi Syarif, Sutyarso, Akmal Junaidi/ IJCESEN 11-3(2025)4454-4465 

 

4455 

 

the transparency needed by clinicians to make well-

informed and accountable decisions.  In the field of 

oncology, explainability is vital, particularly when 

diagnostic outcomes influence invasive 

interventions or life-changing treatment decisions. 

While deep learning models like Convolutional 

Neural Networks (CNNs) excel in tasks such as 

image analysis, their complex structures and lack of 

interpretability present barriers to widespread 

clinical implementation [5].  

One of the AI approaches that is popular for 

diagnosing medical problems is Mamdani fuzzy 

inference systems. The methods have been 

implemented for various medical applications, 

including various cancer risk prediction. However, 

several studies reported that the methods have the 

accuracies ranging from 60% to just under 80%, 

while promising, fall short of the clinical threshold 

generally considered acceptable for high-stakes 

screening tools. For instance, Mahanta and Panda 

[6] achieved 68.07% accuracy with 240 rules in their 

model. Similarly, Rawat et al. [7] observed a 

marginal improvement with an accuracy of 77.05% 

using 255 rules. These systems offer transparency, 

their limited rule sets and domain granularity, which 

constrain to capture of the complexity of real-world 

clinical data. Consequently, they often struggle to 

balance sensitivity and specificity, which are both 

critical in avoiding overdiagnosis and 

underdiagnosis. As a result, these systems often 

struggle to balance sensitivity and specificity 

adequately, which is crucial for avoiding both 

overdiagnosis and underdiagnosis in prostate cancer 

screening. Therefore, there is a clear need to 

enhance the diagnostic robustness of fuzzy systems 

by expanding rule coverage, aligning with validated 

clinical guidelines, and integrating real-world 

patient data. 

In this research, we develop a new Fuzzy Medical 

Expert System (F-MES)  for diagnosing prostate 

cancer risks. We utilize four clinically validated 

parameters: patient age, total prostate-specific 

antigen (PSA), prostate volume (PV), and the 

percentage of free PSA (%fPSA) as core inputs for 

assessing prostate cancer risk and supporting 

clinical decision-making. These factors are 

extensively documented in urological oncology 

literature for their predictive value in distinguishing 

between benign prostatic conditions and 

malignancies, thereby enhancing diagnostic 

precision and stratifying patients by risk level. Our 

novel innovation of the F-MES lies in its extensive 

knowledge base, comprising 500 IF–THEN fuzzy 

rules constructed through expert clinical 

consultation and grounded in internationally 

recognized standards, such as those recommended 

by the European Prostate Cancer Risk Calculator 

(EPCRC) and the World Health Organization 

(WHO). The rules are distributed across 24 

linguistic domains, allowing the system to deliver 

granular, context-aware interpretations of input 

data. This design improves the system’s 

generalizability to diverse patient populations and 

enhances its robustness in real-world diagnostic 

environments. 

This system employs the Mamdani inference 

method in conjunction with centroid 

defuzzification, a widely recognized technique that 

determines the center of gravity of the resulting 

fuzzy set to produce continuous Prostate Cancer 

Risk (PCR) scores expressed as percentages. This 

defuzzification strategy enables more clinically 

interpretable and flexible risk stratification 

compared to conventional binary or categorical 

classification schemes. Such flexibility is 

particularly valuable in oncology, where diagnostic 

ambiguity and overlapping symptoms are common 

challenges [12]. 

Compared to machine learning models like SVMs 

and deep neural networks, the F-MES offers a 

transparent, rule-based decision-making framework 

specifically tailored for prostate cancer risk 

prediction. Interpretability remains a fundamental 

requirement in clinical settings, where healthcare 

providers must understand the rationale behind 

system-generated recommendations to ensure safe 

and accountable patient care [13]. Mamdani-type 

fuzzy inference systems have shown considerable 

promise in various medical domains, such as 

diabetes management, cardiovascular risk 

assessment, and cancer screening. Their ability to 

capture expert knowledge in a manner that is both 

linguistically interpretable and mathematically 

rigorous makes them highly appropriate for clinical 

decision support applications [14]. 

To evaluate the performance of our FMES 

approach, we have done intensive experiments by 

using a standard test problem of 90 patient records. 

We compared the results to those of the previous 

research.  It is shown that the FMES has a better 

performance than the other previous approaches. 

The system was validated using biopsy-confirmed 

patient records, where key performance indicators, 

accuracy, precision, recall, specificity, and F1-score 

were computed to evaluate predictive performance. 

The FMES gives an accuracy of 81.11%, surpassing 

previous fuzzy models, which ranged from 60% to 

77.5%. Performance metrics indicate a precision of 

76.47%, a recall of 88.64%, a specificity of 73.91%, 

and an F1-score of 82.11%. This evaluation 

framework enables a rigorous assessment of the 

system's clinical reliability and utility. The 

overarching goal is to deliver an interpretable and 

reliable tool for early prostate cancer detection that 
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reduces the likelihood of unnecessary biopsies and 

enhances the efficiency of diagnostic pathways in 

urological oncology. 

The structure of this paper is organized as follows: 

Section 2 outlines the research methodology, 

including the system architecture, input variables, 

fuzzy rule base formulation, and the Mamdani 

inference mechanism used in the proposed Fuzzy 

Medical Expert System (F-MES). Section 3 presents 

the experimental design, dataset characteristics, 

performance evaluation metrics, and results 

obtained from clinical validation. Section 4 

discusses the findings, compares the system’s 

performance with existing models, and highlights its 

strengths and limitations. Finally, Section 5 

concludes the study by summarizing key 

contributions and suggesting future research 

directions to further enhance the model’s clinical 

applicability and scalability. 

 

2. Research Method 

 

This section describes the development process and 

structure of the proposed Fuzzy Medical Expert 

System (F-MES) designed to improve prostate 

cancer risk assessment. The methodology combines 

fuzzification of clinical variables, application of 

Mamdani inference, and defuzzification using the 

centroid method. The process follows a structured 

flow from data preparation to system evaluation.  

 

2.1. Dataset and Preprocessing 

 

The research workflow begins with the data 

collection phase, where clinical information is 

obtained from patient medical records, including 

biopsy-confirmed cases. The dataset was sourced 

from a previous clinical study consisting of 119 

patient records [15]. The collected dataset then 

undergoes a data pre-processing stage, which 

involves data selection and labeling. During this 

process, key diagnostic parameters namely age, total 

prostate-specific antigen (PSA), prostate volume 

(PV), and percentage of free PSA (%fPSA) are 

selected based on established clinical guidelines. 

These variables are aligned with reference ranges 

recommended by the European Prostate Cancer 

Risk Calculator (EPCRC), which defines typical 

thresholds for prostate cancer risk assessment (e.g., 

age between 50–75 years, PSA levels of 0.4–50 

ng/mL, PV of 10–110 mL, and %fPSA ranging from 

0–100). After applying the selection criteria based 

on the European Prostate Cancer Risk Calculator 

(EPCRC) and data preprocessing steps, 90 valid 

patient cases were selected. 

Following pre-processing, the dataset is input into 

the prediction model, which employs the Mamdani 

fuzzy inference mechanism to generate risk 

estimations. The output of this system is then 

evaluated through a comprehensive performance 

analysis, utilizing standard classification metrics 

including accuracy, precision, recall (sensitivity), 

and specificity. The final result of this workflow is 

a quantified estimate of prostate cancer risk, which 

is intended to support early diagnosis and guide 

clinical decision-making. The process steps are 

shown in Figure 1. 

 
Figure 1. The design of the research work 

 

2.2. System Design 

 

The proposed Fuzzy Medical Expert System (F-

MES) adopts a fuzzy logic approach to enhance 

interpretability and flexibility in handling imprecise 

clinical data, offering an alternative to traditional 

binary logic systems. Fuzzy logic is a computational 

framework that extends classical binary logic by 

allowing variables to take on continuous values 

between 0 and 1. This approach enables nuanced 

reasoning in situations involving uncertainty, 

imprecision, or overlapping data common 

characteristics in medical diagnostics. In this study, 

fuzzy logic is applied to map four clinical 

parameters (Age, PSA, PV, and %fPSA), into fuzzy 

linguistic terms through domain-informed 

membership.  

The core inference mechanism uses a rule base 

consisting of 500 fuzzy IF–THEN rules, formulated 

after consultation with medical experts. The 

Mamdani inference method is frequently utilized in 

medical expert systems because of its rule-based 

structure, which closely mirrors how clinicians 

formulate diagnostic reasoning in linguistic terms. 

This model, first introduced by Ebrahim Mamdani 

in 1975. Within this framework, each rule is 

constructed in a standard IF–THEN format and 

evaluated by applying the minimum operator to 

determine the extent to which the input values 

satisfy the antecedent conditions, commonly 

referred to as the rule’s firing strength. The 

outcomes of all activated rules are then combined 

using the maximum operator to generate an 

aggregated fuzzy output. This approach facilitates 

both transparency and interpretability, making it 

especially suitable for clinical decision support 

where explainability is essential.  

The system then performs defuzzification using the 

centroid method to transform the aggregate fuzzy set 

into a clear numeric value that represents the 
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predicted Prostate Cancer Risk (PCR) in percentage 

form. All phases of development, including 

fuzzification, inference, and defuzzification, were 

implemented using MATLAB software [16]. The 

system architecture is structured into three main 

components: (1) input fuzzification, (2) fuzzy 

inference using the Mamdani method, and (3) 

defuzzification via the centroid technique. This 

architecture is illustrated in Figure 2, which maps 

clinical input to final PCR output. 

 
 

Figure 2. The F-MES system architecture 

 

2.3. Fuzzification of Input and Output Variables 

The fuzzification process converts clear clinical 

measurements into linguistic terms using domain-

specific membership functions, which allows the 

system to manage the uncertainty inherent in 

medical data [17] [18].  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Input and output variables of the F-MES 

 

2.3.1. Input Variables 

 

The FMES system uses four clinical input 

parameters: Age, PSA, PV, and %fPSA. Each input 

is classified into a fuzzy set according to established 

clinical standards and expert recommendations. 

 

a) Age 

 

Age is categorized into five fuzzy sets based on 

WHO aging criteria [19]: Very Young, Young, 

Middle, Old, and Very Old. The corresponding 

fuzzification scheme is shown in Table 1, and the 

membership functions are presented in Figure 4. 

 

Figure 4. Membership functions for “AGE” 

 
Table 1. Fuzzification of “Age” input variable 

Input Variable Crisp Set Fuzzy Set 

Age (year) 0-35 Very Young 

25-44 Young 

40-56 Middle 

52-75 Old 

67-100 Very Old 

 

b) Prostate-Specific Antigen (PSA) 

 

PSA is a protein biomarker whose levels tend to 

increase with age [20]. Based on the clinically 

validated range of 0.4–50 ng/ml from the European 

Prostate Cancer Risk Calculator, PSA was divided 

into five fuzzy categories: Very Low, Low, Normal, 

High, and Very High. The fuzzification mapping is 

shown in Table 2, and the membership functions in 

Figure 5. 

 

Figure 5. Membership functions for “PSA” 
 

Table 2. Fuzzification of “PSA” input variable 

Input Variable Crisp Set Fuzzy Set 

PSA (ng/ml) 0-4 Very Low 

2-8 Low 

4-12 Normal 

8-16 High 

12-50 Very High 

 

c) Prostate Volume (PV) 

 

The prostate, a gland located just below the bladder, 

produces seminal fluid. Its volume (PV) was 

calculated using the prolate ellipsoid formula (TPV 

= π/6 * Width * Length * Height), which relies on 

A

P

P
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measuring the organ's dimensions [21], [22]. 

Enlargement is common after age 60 due to 

hormonal changes [23]. PV was classified into four 

fuzzy categories: Small, Medium, Large, and Very 

Large. Table 3 highlights the fuzzification details, 

and Figure 6 displays the corresponding 

membership functions. 

 

Figure 6. Membership functions for “PV” 

 

Table 3. Fuzzification of “PV” input variable 

Input Variable Crisp Set Fuzzy Set 

PV (ml) 0-30 Small 

20-50 Medium 

40-80 Large 

65-110 Very Large 
 

 

d) Percentage of Free PSA (%Fpsa) 

 

Prostate-specific antigen (PSA) circulates in the 

bloodstream in both free and protein-bound forms 

[24], [25]. This biomarker is instrumental in 

differentiating between benign and malignant 

prostate conditions [26]. Based on medical 

standards, %fPSA was categorized into five fuzzy 

sets: Very Low, Low, Normal, High and Very High. 

Table 4 presents the fuzzification approach, and 

Figure 6 illustrates its membership functions 

 

 
Figure 7. Membership functions for “%FPSA” 

 

Table 4. Fuzzification of “%fPSA” input variable 

Input Variable Crisp Set Fuzzy Set 

%fPSA (ml) 0-17 Very Low 

8-33 Low 

25-50 Normal 

41-76 High 

65-100 Very 

High 

 

2.3.2.  Output Variable 

 

The output variable, Prostate Cancer Risk (PCR), 

has a sharp percentage value between 0% and 100%, 

mapped into five fuzzy categories: Very Low, Low, 

Middle, High, and Very High. The fuzzification 

scheme is shown in Table 5, and the membership 

functions are illustrated in Figure 8. Patients with 

PCR > 50% are considered high risk and are 

recommended for further diagnostic evaluation, 

such as biopsy.  

 

 
Figure 8. Membership functions for output “PCR 

 

2.4. Fuzzy Rule Base  

 

The fuzzy rule base integrates four clinically 

significant input variables Age, PSA, PV, and 

%fPSA, each divided into multiple fuzzy sets: Age 

(5), PSA (5), PV (4), and %fPSA (5). The 

combination of these sets yields a total of 500 fuzzy 

rules (5 × 5 × 4 × 5), enabling the system to model 

a wide range of diagnostic scenarios. Each rule 

adheres to a standard IF–THEN structure. For 

instance: 

IF Age is Old AND PSA is High AND PV is 

Medium AND %fPSA is Low THEN PCR is High 

These rules were developed in consultation with 

medical experts and aligned with clinical guidelines 

provided by the World Health Organization (WHO) 

and the European Prostate Cancer Risk Calculator 

(EPRCC) [6]. The system categorizes the Prostate 

Cancer Risk (PCR) into five linguistic output levels: 

Very Low, Low, Middle, High, and Very High. To 

distinguish clinically significant cases, a threshold 

value of 50% was applied. Patients with PCR ≥ 50% 

are classified as high risk, warranting further 

diagnostic evaluations such as prostate biopsy. This 

threshold is consistent with EPCRC and WHO 

recommendations. Representative fuzzy rules are 

shown in Table 6 to illustrate the inference structure: 

This system utilizes the Mamdani inference method, 

which is preferred in medical decision-making due 

to its linguistic interpretability and transparency. 

Rule evaluation is conducted using the minimum 

(min) operator to determine firing strength, while 

maximum (max) aggregation combines outputs 

from all active rules [27], [28], [29]. Compared to 

alternatives like the Sugeno and Tsukamoto models, 

Mamdani offers superior readability for human 

experts and is better suited to handling complex 

nonlinear relationships often observed in clinical 

data [30], [31]. 
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Table 6. Expert fuzzy system rules for prostate cancer risk 

Rule IF Conditions Then 

Outcome 

Age PSA PV %FPSA PCR 

1 Very 

Young 

Very Low Medium Normal Low 

2 Young Normal Small High Normal 

3 Middle Very High Very 

Large 

Very Low High 

4 Old High Medium Very High Normal 

5 Very Old Normal Small Very Low Very High 

...      

500      

 

2.5. Inference and Defuzzification Process 

 

The proposed F-MES adopts the Mamdani fuzzy 

inference method, a widely recognized approach in 

medical expert systems due to its intuitive structure 

and ability to model nonlinear and uncertain clinical 

relationships [28]. This method facilitates 

interpretable reasoning that is aligned with clinical 

judgment, making it well-suited for healthcare 

diagnostics [29].  

The inference process in the proposed system 

involves four main stages. First, the fuzzification 

stage maps each explicit input variable (Age, PSA, 

PV, and %fPSA) into a corresponding fuzzy set 

using a predefined triangular or trapezoidal 

membership function. Next, during rule evaluation, 

the minimum (min) operator is used to determine the 

firing strength, which indicates the extent to which 

the input values satisfy the antecedent conditions of 

each fuzzy rule. These activated rules are then 

aggregated using the maximum (max) operator, 

resulting in a composite fuzzy set that captures the 

combined effect of all applicable rules on Prostate 

Cancer Risk (PCR). To transform fuzzy outputs into 

precise and clinically interpretable risk scores, this 

study employs the centroid defuzzification 

technique, also known as the center of gravity 

(COG) or center of area (COA) method. This 

technique determines the equilibrium point of the 

aggregated fuzzy output by computing the weighted 

average across its domain, thus providing a single 

crisp value representative of the fuzzy inference 

result. The centroid method is widely used due to its 

intuitive interpretation and consistency in medical 

decision-making contexts [32]. As a result, it 

produces a single, crisp Prostate Cancer Risk (PCR) 

value that maintains the interpretability required in 

medical decision-making, while ensuring smooth 

transitions between risk categories based on the 

underlying fuzzy logic structure [33]. Centroid 

defuzzification is mathematically expressed in 

Equation (1): 

 

𝒁 =  
∫ 𝝁𝒄(𝒛) ∗ 𝒛 𝒅𝒛

∫ 𝝁𝒄(𝒛)𝒅𝒛
 

 (1) 

 

In the above Equation (1), 𝜇𝑐(z) denotes the degree 

of membership at a given point z. These parameters 

determine the interval over which the weighted 

average is computed. By applying this method, the 

system generates a risk score that is not only 

obtained through a rigorous mathematical 

formulation but also aligns with clinical reasoning, 

offering a more flexible and interpretable alternative 

to the rigid binary thresholds commonly used in 

traditional diagnostics. 

To illustrate the performance of the proposed Fuzzy 

Medical Expert System (F-MES), a simulation was 

conducted for a patient with the following clinical 

values: Age = 75 years, PSA = 10 ng/ml, Prostate 

Volume (PV) = 34 ml, and %fPSA = 7.6. Based on 

the predefined membership function, these crisp 

values were converted into fuzzy degrees as follows: 

each input value is converted into fuzzy membership 

degrees as follows: 

 

 Age = 75, µOld = 0.62 

 PSA = 10, µNormal = 0.55, µHigh = 0.50 

 PV = 34, µMedium = 0.93  

 %fPSA = 7.6, µVery Low = 1 

 

Based on these fuzzy degrees, several rules were 

activated. The firing strength (α) for each rule was 

computed using the minimum operator. Sample 

evaluations are presented below: 

 Rule 1: IF Age is Very Old AND PSA is 

Normal AND PV is Medium AND %fPSA is Very 

Low THEN PCR is High 

α1 = min (0.62, 0.50, 0.93, 1) = 0.50 

 Rule 2: IF Age is Very Old AND PSA is 

High AND PV is Medium AND %fPSA is Very 

Low THEN PCR is Very High 

α2 = min (0.62, 0.50, 0.93, 1) = 0.50 

The aggregated fuzzy output was obtained by 

applying the maximum (max) operator to all rule 

outputs. 
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= max (α1, α2)  

= max (0.50, 0.50)  

= 0.50  

Each activated rule contributes to shaping the output 

membership function, resulting in a composite 

fuzzy region. The defuzzification process was 

carried out using the centroid method via the 

MATLAB Fuzzy Logic Toolbox, which produced a 

final Prostate Cancer Risk (PCR) score of 72.1%. 

Since this value is below the established clinical 

threshold of 50%, the system advised that a biopsy 

is not required for this patient. All stages of 

fuzzification, rule evaluation, aggregation, and 

defuzzification were implemented systematically 

within MATLAB. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9. Calculation of PCR for Age=75 years, 

PSA=10 ng/ml, PV=34 ml, and %fPSA=7.6 

 

2.6. Performance Evaluation 

 

The performance of the proposed Fuzzy Medical 

Expert System (F-MES) was assessed using a 

dataset of 90 clinically validated cases. System-

generated predictions were compared with actual 

biopsy outcomes and further verified through 

manual fuzzy logic inference. Evaluation metrics 

were derived from the confusion matrix, 

encompassing Accuracy, Precision, Recall 

(Sensitivity), Specificity, and F1-score, as defined 

in Equations (2) through (6).   

 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑠𝑒
∗ 100% 

 (2) 

   

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

𝑇𝑃

𝑇𝑃 +  𝐹𝑃
 

(3) 

   

 
𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 

(4) 

   

 
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  

𝑇𝑁

𝑇𝑁 +  𝐹𝑃
 

(5) 

   

 
𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 

(6) 

 

3. Numerical Experiment and Results 

 

3.1. Numerical Experiment 

 

A total of 90 patient records were selected from an 

initial pool of 119 cases, following eligibility 

criteria outlined in the European Prostate Cancer 

Risk Calculator (EPRCC) [34]. The inclusion 

criteria ensured that all patients were male, aged 

above 50 years, and had prostate-specific antigen 

(PSA) values within the range of 0.4–50 ng/mL, 

volume prostate range of 10-50 ml, which aligns 

with international clinical screening thresholds. The 

system was developed using a Mamdani-based 

Fuzzy Medical Expert System (F-MES) 

architecture, incorporating four primary clinical 

input variables: age, PSA level, prostate volume 

(PV), and percentage of free PSA (%fPSA). These 

inputs were fuzzified into linguistic categories, 

processed through a knowledge base consisting of 

500 fuzzy rules, and evaluated using Mamdani 

inference. The aggregated fuzzy output was 

defuzzied using the centroid method to generate a 

Prostate Cancer Risk (PCR) score, expressed as a 

percentage. A threshold of 50% PCR was used to 

differentiate between high-risk and low-risk patients 

in accordance with WHO and EPCRC 

recommendations. The outputs were validated 

against biopsy-confirmed diagnoses, serving as the 

ground truth for evaluating the model's diagnostic 

performance. 

 

3.2. Results and Discussion 

 

Based on our numerical experiments, it is noted that 

the F-MES achieved notable predictive accuracy in 

distinguishing between positive prostate cancer and 

negative cases. From the 90 patients evaluated, the 

system correctly identified 39 true positives and 32 

true negatives, resulting in an overall accuracy of 

81.11%. The confusion matrix (Table 8) shows that 

the model produced 12 false positives and 5 false 

negatives, suggesting a high recall (88.64%) and 

relatively strong specificity (73.91%). Precision 

reached 76.47%, and the F1-score stood at 82.11%, 

confirming a balanced performance between 

sensitivity and specificity. 

Such performance metrics indicate the model's 

capability to reduce both underdiagnosis and 

overdiagnosis, two major challenges in prostate 

cancer screening. The inference mechanism, 

grounded in 500 medically informed fuzzy rules, 

enables nuanced interpretation of overlapping 

clinical values. This attribute is particularly 
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important in identifying borderline cases that 

traditional binary classification methods often fail to 

address effectively. Moreover, the consistent 

prediction outcomes of the F-MES with a low mean 

absolute error (MAE) of 11.16% reinforce its 

reliability for use in preliminary screening or as a 

clinical second opinion. The interpretability of the 

model, achieved through Mamdani inference and 

centroid defuzzification, allows clinicians to 

understand the reasoning behind each prediction, 

enhancing the trustworthiness of the system in real-

world medical contexts. 
 

Table 7. Comparison of clinical-based and F-MES-based assessments 

Patient 

ID 

Age 

(Year) 

PSA 

(ng/ml) 

PV 

(ml) 

%fPSA Biopsy 

Result 

Mahanta et al. [6] F-MES 

PCR 

(%) 

Biopsy 

Result 

PCR 

(%) 

Biopsy 

Result 

1 51 6.76 15 4.14 Positive 57.78 Positive 55 Positive 

2 51 44 83 31.82 Positive 30 Negative 43.6 Negative 

3 53 4.5 39 18.89 Negative 19.96 Negative 43.1 Negative 

4 53 5.83 25 6.86 Negative 53.32 Positive 55 Positive 

5 53 8.34 25 7.43 Negative 73.83 Positive 61.7 Positive 

6 54 5.62 28 14.95 Negative 21.96 Negative 47.1 Negative 

7 54 17.3 90 27.46 Negative 30 Negative 48.3 Negative 

8 54 17.3 45 8.9 Positive 73.91 Positive 71.2 Positive 

9 55 10.51 54 22.45 Negative 23.57 Negative 47.5 Negative 

10 56 8.9 26 34.16 Negative 18.8 Negative 47.5 Negative 

11 56 9.05 39 8.51 Positive 74.07 Positive 55 Positive 

12 57 12.56 52 65.84 Negative 30 Negative 43.4 Negative 

13 58 4.48 67.5 16.07 Negative 16.09 Negative 42.5 Negative 

14 58 4.62 48 11.04 Negative 17.62 Negative 43.8 Negative 

15 58 5.2 58 23.46 Negative 12.8 Negative 40 Negative 

16 58 16.39 27 92.07 Negative 30 Negative 45 Negative 

17 59 8.36 55 7.54 Positive 74.31 Positive 55 Positive 

18 59 18.2 77 17.75 Negative 73.76 Positive 55 Positive 

19 59 19.48 79 25 Positive 30 Negative 55 Positive 

20 59 22.51 42 7.02 Negative 74.22 Positive 81.6 Positive 

21 59 22.65 66 10.82 Negative 73.88 Positive 76.7 Positive 

22 60 6.58 65 14.74 Negative 24.82 Negative 44.9 Negative 

23 60 10.6 30 16.79 Positive 61.27 Positive 55 Positive 

24 60 11.45 46 19.48 Negative 53.47 Positive 50.9 Positive 

25 60 14.79 38 6.9 Positive 74.39 Positive 76.4 Positive 

26 60 15.51 35 21.02 Negative 30 Negative 43 Negative 

27 61 4.6 37 10.87 Negative 25.02 Negative 30.7 Negative 

28 61 10.33 62 25.36 Negative 23.78 Negative 48.5 Negative 

29 61 10.36 35 19.79 Negative 47.88 Negative 48 Negative 

30 61 10.59 56 17 Positive 60.72 Positive 59.3 Positive 

31 61 18.3 62 6.99 Positive 74.46 Positive 82.1 Positive 

32 62 6.12 52 24.18 Negative 12.86 Negative 40 Negative 

33 62 6.2 25 4.35 Positive 56.05 Positive 55 Positive 

34 62 8.37 43 11.23 Negative 40.23 Negative 48.7 Negative 

35 62 8.79 45 10.92 Positive 48.39 Negative 50.8 Positive 

36 62 20 53 5.2 Positive 74.55 Positive 82.1 Positive 

37 63 8.8 31 22.5 Positive 19.22 Negative 55 Positive 

38 64 5.7 36 29.82 Negative 12.71 Negative 45.7 Negative 

39 64 6.96 45 9.2 Negative 60.28 Positive 36.7 Negative 

40 64 8 40 7.5 Positive 74.39 Positive 55 Positive 

41 64 11.08 26 10.11 Negative 59.05 Positive 47.1 Negative 

42 64 16.28 21 6.94 Positive 74.7 Positive 82.3 Positive 

43 65 4.39 30 21.64 Negative 13.42 Negative 42.1 Negative 

44 65 5.15 47 15.73 Negative 19.46 Negative 44.9 Negative 

45 65 7.61 23 5.78 Positive 70.95 Positive 55 Positive 

46 65 7.82 75 22.76 Negative 13.04 Negative 40 Negative 

47 65 8.33 32 14.53 Positive 38.08 Negative 55 Positive 

48 66 4.38 33 23.52 Negative 12.78 Negative 42.1 Negative 

49 66 6.72 61 13.84 Positive 25.38 Negative 46.4 Negative 
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Patient 

ID 

Age 

(Year) 

PSA 

(ng/ml) 

PV 

(ml) 

%fPSA Biopsy 

Result 

Mahanta et al. [6] F-MES 

PCR 

(%) 

Biopsy 

Result 

PCR 

(%) 

Biopsy 

Result 

50 66 7.65 89 23.66 Negative 12.9 Negative 40 Negative 

51 66 9 74 18.89 Positive 53.84 Positive 44.7 Negative 

52 66 9.86 49 23.83 Negative 21.69 Negative 47.1 Negative 

53 67 4.39 28 0.91 Negative 23.99 Negative 35 Negative 

54 67 5.65 24 10.27 Positive 46.65 Negative 51.1 Positive 

55 67 6.24 65 21.96 Negative 13.31 Negative 40 Negative 

56 67 8.2 36 20.37 Positive 31.78 Negative 55 Positive 

57 67 9.68 41 7.44 Positive 74.18 Positive 55 Positive 

58 67 15.93 69 6.09 Positive 74.82 Positive 74.9 Positive 

59 67 28 47 15 Positive 74.15 Positive 67.4 Positive 

60 68 5.09 47 2.36 Negative 42.96 Negative 46 Negative 

61 68 5.51 45 11.25 Negative 21.28 Negative 48 Negative 

62 68 7.2 33 3.61 Positive 67.21 Positive 55 Positive 

63 68 9.25 91 3.57 Positive 74.03 Positive 45.7 Negative 

64 68 12.1 61 16.12 Negative 74.25 Positive 56.8 Positive 

65 68 23.7 109 10.04 Positive 73.55 Positive 60 Positive 

66 69 8.8 34 8.98 Positive 74.4 Positive 64.3 Positive 

67 69 11.06 38 29.84 Negative 26.64 Negative 49.5 Negative 

68 69 15.31 74 30.57 Positive 30 Negative 60 Positive 

69 70 5.39 42 12.8 Negative 19.91 Negative 47.5 Negative 

70 70 13 40 15.46 Negative 74.39 Positive 68 Positive 

71 70 19.2 44 10.1 Positive 73.49 Positive 75.6 Positive 

72 70 21.94 29 7.11 Positive 75.17 Positive 81.2 Positive 

73 70 27.7 63 8.99 Negative 74.4 Positive 78.2 Positive 

74 71 6.08 48 21.38 Positive 13.52 Negative 47.5 Negative 

75 71 12.64 50 7.99 Positive 74.39 Positive 66.7 Positive 

76 71 22 57 12 Positive 74.59 Positive 71.4 Positive 

77 72 6.64 32 27.41 Negative 12.43 Negative 49.4 Negative 

78 72 13.31 33 3.83 Positive 74.4 Positive 74.3 Positive 

79 72 13.31 33 3.76 Positive 74.4 Positive 74.3 Positive 

80 72 20 48 7.9 Positive 74.22 Positive 81.2 Positive 

81 72 46 36 10.7 Positive 73.81 Positive 74.4 Positive 

82 73 4.65 41 41.94 Negative 12.52 Negative 15.2 Negative 

83 73 7.25 19 5.52 Negative 67.73 Positive 76.2 Positive 

84 73 7.6 74 31.32 Positive 12.09 Negative 54.5 Positive 

85 73 19 90 6.84 Positive 73.98 Positive 76.9 Positive 

86 73 29.52 91 9.82 Negative 73.73 Positive 76.9 Positive 

87 73 47.4 87 15.89 Positive 74.11 Positive 63 Positive 

88 74 12.52 27 11.82 Negative 74.47 Positive 73.9 Positive 

89 75 4.61 16 17.57 Positive 18.39 Negative 55 Positive 

90 75 10 34 7.6 Positive 73.98 Positive 72.1 Positive 

3.3. Comparative Performance Analysis 

 

To assess the efficacy of the proposed F-MES, a comparative analysis was performed against a previously 

developed fuzzy-based diagnostic model by Mahanta et al. [4]. As summarized in Table 9 and illustrated in 

Figure 10, the F-MES achieved substantial performance gains across all evaluated metrics. Specifically, the 

system recorded an accuracy of 81.11%, compared to 68.07% in the earlier model. Similarly, recall (88.64%), 

precision (76.47%), specificity (73.91%), and F1-score (82.11%) also improved significantly over Mahanta's 

corresponding values of 66.07%, 73.33%, 69.81%, and 69.84%, respectively. These improvements are 

attributable to two primary factors: the expanded fuzzy rule base 500 rules across 24 domains and the use of 

refined, clinically aligned membership functions during fuzzification. This configuration enables the F-MES 

to model more granular clinical relationships and adapt to patient variability more effectively than systems 

with fewer linguistic terms and limited rule sets. The system's high recall value highlights its effectiveness in 

identifying patients with elevated prostate cancer risk, a crucial requirement in clinical diagnostics to prevent 

missed or delayed treatment. Although the specificity (73.91%) is moderately  
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Table 8. Comparison of clinical-based and F-MES-based assessments 

Performance metric F-MES Total 

Positive Negative  

Doctor Positive 39 (TP) 12 (FP) 51 

Negative 5 (FN) 34 (TN) 39 

Total 44 46 90 

 

Table 9. Comparative performance of fuzzy-based diagnostic models including F-MES Evaluation 

Authors and 

Year 

Domains Fuzzy 

Rules 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

Specificity 

(%) 

F1-

Score 

Mahanta et al., 

2020 [6] 

16 240 68.07 73.33 66.67 69.81 69.84 

This Study 

(2025) 

24 500 81.11 76.47 88.64 73.91 82.11 

improved compared to the previous model  

(69.81%), it still reflects meaningful progress in 

minimizing unnecessary biopsy recommendations, 

thus reducing the burden on patients and healthcare 

resources. Additionally, the F1-score of 82.11%, 

which harmonizes precision and recall, indicates the 

system's ability to maintain balanced performance in 

scenarios involving diagnostic uncertainty. This 

reliability is particularly important for diseases like 

prostate cancer, where overlapping biomarker 

values are common.  

 
Figure 10. Performance Comparison between the 

Proposed F-MES and Mahanta et al.’s (2020)[6] 

 

In contrast to black-box approaches such as Support 

Vector Machines (SVM) and deep neural networks, 

which often suffer from limited interpretability, the 

F-MES operates on transparent, rule-based 

reasoning. The adoption of the Mamdani inference 

method ensures that predictions are not only 

accurate but also explainable, an essential feature 

for integration into clinical workflows where 

decisions must be justifiable and aligned with 

professional judgment. F-MES not only 

demonstrates superior diagnostic accuracy but also 

meets the practical requirements of clinical 

interpretability and transparency. These qualities 

position it as a reliable tool for supporting prostate 

cancer screening, particularly as a second-opinion 

system or a component of intelligent clinical 

decision support platforms. 

 

4. Conclusion 
 

This research proposes and assesses a Fuzzy 

Medical Expert System (F-MES) based on 

Mamdani inference, aimed at improving early-stage 

prostate cancer risk prediction. The system utilizes 

clinically validated input parameters, including age, 

PSA levels, prostate volume (PV), and the 

percentage of free PSA (%fPSA). The FMES adopts 

a comprehensive rule base consisting of 500 fuzzy 

rules, derived from established clinical guidelines, 

that forms the foundation of the system's reasoning 

process. We have done intensive experiments by 

using 90 standard datasets from the literature. The 

experimental results show that the FMES 

outperforms the results in the previous research. The 

model achieved a diagnostic accuracy of 81.11%, 

surpassing existing fuzzy-based approaches. Further 

performance evaluation showed robust predictive 

capability, with a precision of 76.47%, a recall of 

88.64%, a specificity of 73.91%, and an F1-score of 

82.11%. Future enhancements will involve 

incorporating genetic and lifestyle-related factors 

and deploying the system on a cloud-based platform 

to increase its scalability and availability across 

diverse healthcare settings. 
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