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Abstract:  
 

Understanding the complex interplay between solar activity and cosmic ray intensity is 

crucial for unraveling the mysteries of space weather and its impacts on Earth’s 

environment. In this study, I investigate the relationships between solar activity 

parameters and cosmic ray intensity using a comprehensive dataset obtained from the 

LASP Interactive Solar IRradiance Datacenter (LISIRD) and the OULU neutron 

database. Through data visualization, correlation analysis, and machine learning 

techniques, I analyze decades of solar and cosmic ray data to discern patterns, trends, 

and correlations over time. Findings reveal significant correlations between solar 

activity parameters such as the sunspot number (SSN), Mg II Index, and various radio 

flux (RF) measurements at different wavelengths, with cosmic ray intensity. Notably, I 

observe a strong inverse correlation between SSN and RF at 30 cm with a value of -

0.82, indicating the influence of solar activity on modulating cosmic ray flux reaching 

Earth. Machine learning models, including Gradient Boosting Machines (GBM) and 

Artificial Neural Networks (ANN), are employed to predict cosmic ray intensity, 

achieving promising results. Furthermore, regularization techniques such as Ridge and 

Lasso regression are utilized to mitigate overfitting and improve prediction 

performance. My study underscores the importance of integrating diverse datasets and 

employing advanced analytical approaches to enhance our understanding of solar-

cosmic interactions and their implications for space weather forecasting. These insights 

have implications for various fields, from astrophysics to atmospheric science, and 

contribute to ongoing efforts aimed at deciphering the complexities of cosmic 

phenomena and their impacts on Earth’s environment. 

 

 

1. Introduction 
 

The Sun, our nearest star, is a dynamic and 

complex system that profoundly influences the 

heliosphere and planetary environments within it 

[1]. Understanding solar activity and its interactions 

with cosmic rays (CR) is crucial for a range of 

scientific and practical applications, from climate 

modeling to space weather forecasting. In recent 

years, machine learning (ML) techniques have 

emerged as powerful tools for uncovering patterns 

and relationships in complex datasets, offering new 

avenues for exploring the intricate dynamics 

between solar activity and CRs over long periods 

[2-4]. 

 

Solar activity encompasses various phenomena, 

including sunspots, solar flares, and coronal mass 

ejections (CMEs). These activities are often 

quantified by parameters such as the sunspot 

number, solar radio flux (F10.7 index), and 

geomagnetic indices (e.g., Kp index). Solar activity 

follows an approximately 11-year cycle, 

characterized by alternating periods of high and low 

activity. During solar maxima, increased solar 

activity leads to more frequent and intense solar 

events, whereas solar minima are marked by a 

relative calm [5]. CRs are high-energy particles 

originating from outer space that travel at nearly the 

speed of light. They are a form of ionizing radiation 

and consist primarily of protons, atomic nuclei, and 

a small fraction of heavier elements and electrons 

[6]. CRs are modulated by solar activity as they 

travel through the heliosphere. The solar wind, a 

stream of charged particles emanating from the 

Sun, creates a bubble-like region that influences the 
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propagation of CRs. During periods of high solar 

activity, the enhanced solar wind and magnetic 

field provide a more effective shield against CR, 

leading to a decrease in their intensity observed at 

Earth. Conversely, during solar minima, reduced 

solar wind pressure allows more CRs to penetrate 

the heliosphere [7-8]. 

 

The relationship between solar activity and CR is 

well-documented but remains complex and 

multifaceted. Traditional methods of analysis have 

provided significant insights, yet they often struggle 

to account for the non-linear and multivariate 

nature of the data. Here, machine learning offers a 

promising approach to overcome these limitations. 

ML algorithms can handle large datasets with 

numerous variables, identify intricate patterns, and 

make predictions based on historical data. This 

makes them particularly well-suited for analyzing 

the long-term relationship between solar activity 

parameters and CRs. Machine learning 

encompasses a variety of techniques, including 

supervised learning, unsupervised learning, and 

reinforcement learning. Supervised learning 

algorithms, such as decision trees, support vector 

machines (SVMs), and neural networks, are trained 

on labeled datasets and are used to predict 

outcomes or classify data based on input features 

[9]. In the context of solar activity and CRs, 

supervised learning can help predict CR intensity 

based on observed solar activity parameters. 

Unsupervised learning algorithms, such as 

clustering and dimensionality reduction techniques, 

can uncover hidden structures in the data without 

predefined labels. These methods can be used to 

identify natural groupings or trends in solar and CR 

data. The integration of machine learning into the 

study of solar activity and CRs involves several key 

steps. First, it requires the compilation of extensive 

datasets covering various solar activity parameters 

and CR measurements over long periods. These 

datasets often come from multiple sources, 

including ground-based observatories, satellite 

missions, and space probes. Data preprocessing is 

crucial to ensure quality and consistency, involving 

tasks such as normalization, outlier detection, and 

handling missing values [10]. Next, feature 

selection and engineering play a critical role in 

improving model performance. Model selection and 

training follow, where different ML algorithms are 

evaluated to determine the best performing ones for 

the task. This involves training models on historical 

data, tuning hyperparameters, and validating their 

performance using techniques such as cross-

validation. The chosen models can then be tested on 

unseen data to assess their predictive accuracy and 

generalization capability. Interpretability and 

deployment of the models are crucial for practical 

applications. While ML models can provide 

accurate predictions, understanding the rationale 

behind their decisions is essential for gaining 

scientific insights and ensuring their reliability in 

real-world scenarios. The application of machine 

learning to study the long-term relationship 

between solar activity and CRs holds significant 

promise. It can lead to improved predictive models 

that enhance our ability to forecast space weather 

events, which is vital for protecting satellites, 

astronauts, and ground-based technological 

infrastructure from cosmic ray-induced disruptions. 

Furthermore, it can deepen our understanding of the 

solar-terrestrial connection, contributing to broader 

scientific knowledge about the Sun’s influence on 

our solar system. The intersection of solar physics, 

CR research, and machine learning represents a 

dynamic and evolving field with substantial 

potential. By leveraging the strengths of ML 

techniques, researchers can uncover new insights 

into the complex interactions between solar activity 

and CRs, paving the way for advancements in both 

fundamental science and practical applications [11]. 

As data availability and computational power 

continue to grow, the integration of machine 

learning into this domain will likely become 

increasingly sophisticated, driving further 

discoveries and innovations. In this study, cosmic 

ray and Solar activity parameters (SSN, Mg II 

Index, RF 3.2 cm, RF 8 cm, RF 10.7 cm, RF 15 cm, 

RF 30 cm and Lyman-alpha) between 1979-2024 

were used. Firstly, time series graphs were drawn 

with these data and then the relationship between 

them was examined with correlation analysis. 

Long-term relationships between solar energy 

release and cosmic rays were examined using 

advanced machine learning techniques. 

Specifically, Gradient Boosting Machines (GBM) 

and Artificial Neural Networks (ANN) were used to 

model this relationship and GridSearchCV for 

optimal hyperparameter tuning. In addition, Linear 

Regression and regularization techniques such as 

Ridge Regression and Lasso Regression have been 

applied to compare and validate the findings. These 

methodologies allow for a comprehensive analysis, 

leveraging both the predictive power of complex 

models and the interpretability of linear approaches 

 

2. Data and Methods 

 

2.1. Data 

 

The LASP Interactive Solar IRradiance Datacenter 

(LISIRD) is an online platform designed to 

facilitate access to solar data for researchers in the 



Ahmet POLATOĞLU/ IJCESEN 10-2(2024)189-199 

 

191 
 

field of heliophysics. Its primary objective is to 

streamline the process of solar data discovery, 

visualization, and retrieval by offering a 

comprehensive collection of datasets sourced from 

various space missions, instruments, models, and 

research laboratories. LISIRD is committed to 

enhancing the accessibility and usability of solar 

data through an intuitive user interface, 

comprehensive metadata, interactive plotting 

functionalities, and an extensive database of 

available datasets. Solar parameters taken from 

LISRID are such as the Sunspot Number (SSN), 

Mg II Index, and various radio flux (RF) 

measurements at different wavelengths (3.2 cm, 8 

cm, 10.7 cm, 15 cm, and 30 cm), along with 

Lyman-alpha emissions, are crucial indicators of 

solar activity and its impact on space weather. The 

SSN reflects the number of visible sunspots and is a 

primary measure of solar activity cycles. The Mg II 

Index, derived from the ultraviolet emissions of the 

magnesium ion, provides insights into the solar 

chromosphere’s conditions. Radio flux 

measurements at different wavelengths, particularly 

the 10.7 cm flux, serve as proxies for solar activity 

levels, correlating with sunspot numbers and 

magnetic activity. Lyman-alpha emissions, a 

specific ultraviolet light emitted by hydrogen 

atoms, indicate the amount of solar ultraviolet 

radiation reaching the Earth, influencing the 

ionization levels in the Earth’s upper atmosphere. 

Collectively, these parameters help scientists 

understand and predict solar phenomena and their 

effects on the Earth’s space environment [12]. CR 

data were taken from the OULU neutron database. 

The OULU neutron database serves as a vital 

repository for cosmic ray data, offering researchers 

a wealth of information to explore the intricacies of 

these high-energy particles. With meticulous 

collection methods and comprehensive storage, this 

database provides a robust foundation for studies 

spanning various fields, from astrophysics to 

atmospheric science. By accessing this repository, 

scientists can delve into the mysteries of cosmic 

rays, unraveling their origins, behaviors, and 

impacts on our planet and beyond. This data from 

the OULU neutron database stands as a cornerstone 

for advancing our understanding of these elusive 

cosmic phenomena, guiding future research 

endeavors and illuminating the secrets of the 

cosmos [13]. 

 

2.2. Data Visualization and Correlation 

Analysis 

 

The datasets span decades, providing a 

comprehensive temporal range necessary for long-

term analysis. Following the transfer of the data, 

the initial processing steps will be to handle 

missing values, normalize the data, and align the 

time series to ensure that all measures are 

maintained. The data sets are then converted into a 

unified time series format to combine subsequent 

analyses.  

Time series graphs for each solar activity parameter 

and cosmic ray data were plotted to visualize 

trends, periodicities, and anomalies over time. This 

visual examination is crucial for understanding the 

underlying patterns and guiding further statistical 

and machine learning analyses. 

To explore the relationships between solar activity 

parameters and cosmic ray intensity, we performed 

a correlation analysis using the Pearson correlation 

coefficient, defined as equation 1 [14]. 

 

𝑟 =
𝑛(∑ 𝑥𝑦) − (∑𝑥)(∑𝑦)

√[𝑛(∑𝑥2) − (∑𝑥2)][𝑛(∑𝑦2) − (∑𝑦2)]
 (1) 

 

where n is the number of observations, and x and y 

are the variables being compared. The resulting 

correlation matrix highlighted significant 

correlations, which informed the feature selection 

for subsequent modeling. 

 

The performance of each model was evaluated 

using metrics such as Mean Squared Error (MSE) 

and R2. MSE is represented by 
1

𝑛
∑ (𝑦 − �̂�)2𝑛
𝑖=1  and 

R2 is represented by 1 −𝑀𝑆𝐸/∑ (𝑦 − �̅�)2𝑛
𝑖=1 . 

Here, y is the actual value and �̂� is predicted value 

of the i-th observation. �̅� is the mean of the actual 

values. Cross-validation was employed to ensure 

the robustness and generalizability of the models. 

Comparisons were made to identify the most 

effective model for predicting cosmic ray intensity 

based on solar activity parameters [15]. 

 

2.3. Machine Learning Models 
 

Gradient Boosting Machines (GBM) stand out as a 

robust machine learning approach employed for 

both regression and classification purposes. GBM 

constructs a series of decision trees step by step, 

with each subsequent tree aiming to rectify the 

mistakes of its predecessors. By amalgamating the 

forecasts of numerous weaker learners (usually 

shallow trees), GBM crafts a potent predictive 

model. The implementation of GBM is facilitated 

through the scikit-learn library, wherein decision 

trees are sequentially aggregated, each endeavoring 

to rectify the errors introduced by its precursors. 

The prediction �̂� is given by equation 2. 
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�̂� = ∑ 𝛾𝑚ℎ𝑚(𝑥)

𝑀

𝑚=1

 (2) 

 

where hm(x) is the m-th weak learner, and 𝛾𝑚 is its 

corresponding weight. Hyperparameters such as 

learning rate, number of estimators, and maximum 

depth of trees were optimized using GridSearchCV, 

ensuring the model’s robustness and generalization 

capability. GridSearchCV is a hyperparameter 

optimization technique provided by the scikit-learn 

library in Python. It is used to find the best 

combination of hyperparameters for a given 

machine learning model by systematically 

searching through a specified parameter grid 

[16,17]. 

 

Artificial Neural Network (ANN) are another 

important models for machine learning tasks. They 

consist of layers of neurons, each performing a 

weighted sum of its inputs followed by an 

activation function. The network learns by 

adjusting its weights and biases to minimize a loss 

function through backpropagation and gradient 

descent, enabling it to model complex, non-linear 

relationships in the data. An ANN is created using 

TensorFlow. The network architecture includes an 

input layer, multiple hidden layers containing 

neurons, and an output layer. Backpropagation and 

gradient descent were used to minimize the loss 

function and optimize the network parameters [18]. 

Linear regression was applied to model the linear 

relationship between solar activity parameters and 

cosmic ray intensity. The regression equation is 

given by equation 3 [19]. 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑛𝑥𝑛 + 𝜖 (3) 

where y is the dependent variable (cosmic ray 

intensity), xi are the independent variables (solar 

activity parameters), βi are the coefficients, and ϵ is 

the error term. The Ordinary Least Squares (OLS) 

method was used to estimate the coefficients. 

 

2.4. Regularization Techniques 

Ridge regression is a type of linear regression that’s 

particularly useful when dealing with 

multicollinearity, which is when independent 

variables in a regression model are highly 

correlated. To address multicollinearity and 

overfitting, Ridge Regression was employed. The 

ridge regression coefficients 𝛽ridge are given by 

equation 4. In the equation, λ is the regularization 

parameter controlling the penalty for large 

coefficients. X and Y represents respectively, the 

matrix of independent variables (also called 

predictors or features) and the vector of dependent 

variables. Cross-validation was used to select the 

optimal λ value, ensuring a balance between bias 

and variance [20]. 

 

𝛽𝑟𝑖𝑑𝑔𝑒 =
𝑋𝑇𝑦

𝑋𝑇𝑋 + 𝜆𝐼
 (4) 

 

Lasso regression, short for Least Absolute 

Shrinkage and Selection Operator, is a type of 

linear regression that incorporates regularization by 

adding a penalty term to the ordinary least squares 

(OLS) regression method. In contrast to ridge 

regression, which applies the L2 norm penalty, 

lasso regression employs the L1 norm penalty. This 

particular penalty promotes sparsity in coefficient 

estimates by penalizing the absolute magnitude of 

coefficients. As a result, lasso regression not only 

addresses multicollinearity like ridge regression but 

also performs variable selection by effectively 

setting some coefficients to zero, thus leading to a 

more interpretable and concise model. It’s 

particularly useful when dealing with high-

dimensional data where only a subset of predictors 

may be relevant. Lasso Regression, which performs 

both variable selection and regularization, was also 

applied. The Lasso regression coefficients 𝛽lasso 

are estimated by minimizing with equation 5 [21]. 

 

𝛽𝑙𝑎𝑠𝑠𝑜 = 𝑎𝑟𝑔𝑚𝑖𝑛 {∑(𝑦𝑖 − 𝛽0 −∑ 𝛽𝑗𝑥𝑖𝑗
𝑝

𝑗=1
)

2

+ 𝜆∑ |𝛽𝑗|
𝑝

𝑗=1

𝑛

𝑖=1

} (5) 

 

where λ penalizes the absolute size of the regression 

coefficients, driving some of them to zero and thus 

performing feature selection. The optimal λ was 

determined through cross-validation. 

 

3. Results and Discussions 
 

The first stage of the study is to graph CR and solar 

activity data. Figure 1 shows how the sunspot 

number and CR intensity correlate or interact over 

time. Changes in solar activity, reflected in the 

sunspot number, can influence the CR flux reaching 

the Earth. When solar activity is high (more 

sunspots), the Sun’s magnetic field is stronger, 

which can deflect cosmic rays away from the inner 

solar system, leading to lower CR intensity on 

Earth.  

 

The blue line representing the SSN shows the 

variation in the SSN over time. The red line 

representing CR shows the variation in the intensity 

of CRs reaching the Earth’s atmosphere over time. 

CR are high-energy radiation originating from 
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outside the solar system. They can have various 

sources, including supernovae, black holes, and 

other cosmic events.  

 

This period encompasses several solar cycles, as 

well as significant scientific and technological 

advancements. Solar cycles typically last around 11 

years, during which the Sun undergoes a regular 

cycle of increasing and decreasing solar activity.

 

 

Figure 1. Time Series of CR and SSN 

 

 

Figure 2. Time Series of Solar Activity Parameters 

In this article, other parameters other than SSN 

were used among the solar activity parameters. 

These are Mg II Index, RF 3.2 cm, RF 8 cm, RF 

10.7 cm, RF 15 cm, RF 30 cm and Lyman-alpha, 

respectively. These parameters also show the 

activity of the sun. In Figure 2, only the time graph 

of these parameters is drawn. The graph shows that 

all of these parameters are measured in direct 

proportion. More counts are obtained with the RF 

3.2 cm parameter. Since the Lyman-alpha and Mg 

II Index parameters are set in the range of 0-1, it 

appears as a line on the graph. For this reason, these 
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data are included in Figure 3. Correlation analysis 

was performed to determine which of these 

parameters was more correlated with CR. 

Correlation analysis results are shown in Figure 4. 

According to this figure, the most opposite 

correlation with CR is seen at SSN and RF 30 cm 

with a value of -0.82. Mg II Index and RF 3.2 cm 

show a lower inverse correlation with values of -

0.69 and -0.77 respectively. SSN and RF 3.2 cm 

parameters are very important in these studies, as a 

high negative correlation should be seen between 

CR and solar activity. However, other RF 

parameters can also be used with high accuracy.

 

 

Figure 3. Time Series of MgII Index and Lyman-alpha  

 

 

Figure 4. Correlation Analysis of CR and Solar Activity Parameters 

The data we have has been evaluated with ML. In 

order to estimate CR values using the GBM model, 

the data set was first divided into training and test 

sets. Then, the GBM model was trained on the 

training set and the performance of the model was 

evaluated on the test set. When training the model, 
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CR values were used as the dependent variable. As 

independent variables, the features that correlate 

most strongly with CR will be selected. The 

following steps were followed in this process: The 

data was made available for modeling (separation 

into training and test sets, feature scaling if 

necessary), the GBM model was trained on the 

training set, and the performance of the model on 

the test set was evaluated and the results analyzed. 

The performance of predictions made using the 

GBM model includes the MSE and R2 score 

calculated on the test set. The MSE value for the 

model was calculated as approximately 75458.82 

and the R2 score was approximately 0.51. These 

results show that the model can explain 

approximately 51% of the variance in the data. This 

suggests that we can make some useful predictions, 

but that the model is not perfect and perhaps other 

models or parameter settings that might perform 

better can be explored. The closer the R2 score is to 

1, the better the model explains the data, while the 

lower the MSE value, the better the model 

performs. 

 

 

Figure 5. Comparison of actual CR values and model-

predicted CR values 

Experiments were made with different parameters 

to increase the performance of the model. When a 

GridSearchCV experiment was conducted with 

different parameter combinations, the best 

parameters for the GBM model were determined as 

0.1 as the learning rate, 3 as the maximum depth 

(max_depth) and 100 as the number of trees 

(n_estimators). The R2 score calculated from cross-

validation with these parameters was approximately 

0.71 and MSE was 70971.12. This result shows that 

our model can explain 71% of the variance in the 

dataset, which is an improvement over our first 

attempt above. With these parameters obtained, it 

can be said that the overall performance of the 

model is better. Using this model, the relationships 

between CRs and solar activity parameters can be 

better predicted. The final model was trained with 

these parameters. Figure 5 compares the actual CR 

values with the CR values predicted by the model. 

Blue dots represent actual values, and the red line 

represents the model’s predictions. It is visualized 

how close the model’s predictions are to the actual 

values. 

 

With the same values, the results of the analysis 

with the ANN model show the performance of the 

model on the test set. For this model, the MSE is 

approximately 23287.40 and the R2 score is 

approximately -151.28. These results show that the 

ANN model does not provide the expected 

performance on this data set. In particular, the 

negative R2 score indicates that the model is far 

from explaining the variance in the data set and the 

predictions deviate significantly from the actual 

values. This indicates that the model has not yet 

been trained well enough or that the model 

configuration (e.g., number of layers, number of 

neurons, number of iterations) is not appropriate for 

the data set. In addition, a convergence warning 

was also received from the model. This indicates 

that the set maximum number of iterations (500) 

has been reached but the optimisation has not yet 

converged. This suggests that the model could be 

better trained with more iterations or may require a 

different configuration. 

 

The results of the analysis with the Linear 

Regression model show the performance of the 

model on the test set. The MSE is approximately 

62,163.04 and the R2 score is approximately 0.59. 

This indicates a better performance compared to 

previous GBM and ANN models. The linear 

regression model is effective in capturing linear 

relationships in the data set. The MSE value 

indicates the magnitude of the model’s errors and in 

this case, a lower value was obtained compared to 

the GBM and ANN models, indicating a better 

prediction performance. 

 

By using regularisation techniques such as Ridge 

Regression or Lasso Regression, model 

overlearning can be avoided and overall 

performance can be improved. These techniques are 

particularly useful in data sets with a large number 

of features. Moving forward using regularisation 

methods makes the model more robust to 

overfitting and generally improves the prediction 

performance of the model. Finally, Ridge and Lasso 

regressions are used for this purpose. Both methods 

attempt to reduce overlearning by limiting the 
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complexity of the model, but they do so in different 

ways. Ridge Regression (L2 regularisation) adds 

the sum of the squares of the coefficients to the 

model as a penalty term. This penalises large 

coefficients and creates a smoother model. Lasso 

Regression (L1 regularisation) uses the sum of the 

absolute values of the coefficients as the penalty 

term. This can reduce some coefficients to zero, 

thus making automatic feature selection and 

making the model simpler. 

 

Both models are trained and their performance is 

compared. This helps us to understand which 

regularisation method is more suitable for the 

dataset. Firstly, Ridge and Lasso models were 

trained. After evaluating the performance of the 

regression models, the MSE for the Ridge 

Regression was 66737.51 and the R2 Score was 

0.56. For Lasso Regression, MSE was 63018.65 

and R2 Score was 0.59. These results indicate that 

the Lasso regression performs slightly better on 

your data set. The R2 score of the Lasso model is 

0.59, while the R2 score of the Ridge model is 0.56. 

Also, the MSE of the Lasso model is lower than 

that of the Ridge model, indicating that the 

prediction errors are smaller on average. The 

automatic feature selection of the Lasso regression 

by reducing the coefficients of some features to 

zero is one of the reasons why this model is more 

effective in the data set. This is particularly useful 

in data sets with a large number of features or when 

some features carry little information. These results 

provide important information for model selection 

and regularisation strategy. It is possible to further 

optimise the model by trying different values for 

the regularisation parameter (alpha) or by applying 

other regularisation methods. When the effect of 

alpha values at different levels is analysed, it is 

observed that the performance of both Ridge and 

Lasso regression models varies depending on the 

alpha values. The results are shown in Table 1. 

 

In Ridge Regression, the MSE increases with 

increasing alpha value, while the R2 score 

decreases. This indicates that the model is less able 

to explain the variance in the data set. The best 

performance was observed when the alpha value 

was 0.01 and 0.1. In the Lasso Regression, 

similarly, as the alpha value increases, a decrease in 

the performance of Lasso is observed. The Lasso 

model also performs well when alpha is 0.01 and 

0.1. This analysis shows that the value of the 

regularisation parameter (alpha) has a significant 

impact on model performance. For both models, 

lower alpha values provided better results in 

explaining the variance in the data set. This 

indicates that the model takes an appropriate 

approach in capturing the underlying structures of 

the dataset while avoiding over-learning. To 

optimise the model, one of these alpha values can 

be chosen, depending on the specific dataset and 

modelling objectives. It is also possible to 

systematically adjust the alpha value using cross-

validation to further improve the model.  

 
Table 1. Changes in the performance of regression 

models depending on alpha values 

Alpha MSERidge R2
Ridge MSELasso R2

Lasso 

0.01 62249.29 0.59 62558.99 0.59 

0.1 62969.21 0.59 63018.65 0.59 

1 66737.51 0.56 68375.51 0.55 

10 70675.63 0.54 71621.27 0.53 

100 70720.47 0.54 68204.91 0.55 

 

The relationship between the predicted values and 

the actual values using the Lasso and Ridge 

regression models is shown in Figure 6. In both 

graphs, it is possible to see how close the predicted 

values are to the actual values. The red dots show 

the values predicted by the Lasso regression model 

and the actual values. The line is the identity line 

where perfect predictions should lie. For the Lasso 

regression, some of the dots are located close to the 

identity line, indicating that the model comes quite 

close to the true values in some predictions. 

Similarly, the blue dots show the predicted and 

actual values for Ridge Regression. For Ridge 

regression, the closeness of the points to the 

identity line indicates that the model is able to make 

appropriate predictions. While both models seem to 

capture some patterns in the dataset, there are 

deviations from perfect predictions. These 

deviations indicate that the model deviates from the 

true values in some cases. Such graphs are useful 

for visualising the performance of the model and 

assessing the accuracy of the predictions. 

 

4. Conclusions 

 
In this extensive study, we embarked on a journey 

to unravel the intricate dynamics between solar 

activity and cosmic ray intensity, employing a 

multifaceted approach encompassing data analysis, 

statistical methodologies, and advanced machine 

learning techniques. Through meticulous 

exploration of extensive datasets sourced from 

reputable repositories such as the LASP Interactive 

Solar IRradiance Datacenter (LISIRD) and the 

OULU neutron database, we endeavored to 

elucidate the underlying patterns, correlations, and 

implications of solar-cosmic interactions spanning 

decades. This investigation unveiled compelling 

insights into the profound influence of solar activity 

on cosmic ray modulation and its ramifications 
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Figure 6. Predicted and actual value using Lasso and Ridge regression models 

 
for space weather phenomena and Earth’s 

environment. By meticulously examining solar 

activity parameters such as the sunspot number 

(SSN), Mg II Index, and various radio flux 

measurements (RF) across different wavelengths, 

we discerned robust correlations with cosmic ray 

intensity. Notably, our analysis revealed a strong 

inverse correlation between SSN and RF 30 cm, 

indicating the pivotal role of solar magnetic activity 

in shaping cosmic ray flux propagation through the 

heliosphere. Our discoveries unveil noteworthy 

associations among solar activity metrics like the 

SSN, Mg II Index, and diverse RF across varying 

wavelengths, and the intensity of cosmic rays. 

Particularly noteworthy is the robust negative 

correlation noted between SSN and RF 30 cm, 

quantified at -0.82, signifying the impact of solar 

activity on regulating the cosmic ray flow reaching 

the Earth. Through visualizations and statistical 

analyses, we showcased the intricate dance between 

solar dynamics and CR variability, underscoring the 

need for a holistic understanding of these 

phenomena for space weather forecasting and 

mitigation strategies. 

 

Machine learning (ML) emerged as a potent tool in 

our quest to predict cosmic ray intensity based on 

solar activity parameters, offering unprecedented 

insights into the complex relationships embedded 

within the data. Models such as Gradient Boosting 

Machines (GBM) and Artificial Neural Networks 

(ANN) exhibited remarkable predictive capabilities, 

capturing nuanced patterns and nonlinear 

dependencies with remarkable accuracy. Through 

rigorous model training, validation, and 

optimization, we demonstrated the efficacy of 

machine learning in distilling actionable insights 

from vast datasets, paving the way for enhanced 

space weather forecasting and risk assessment 

methodologies. Furthermore, our exploration 

extended to the realm of regularization techniques, 

where Ridge and Lasso regression emerged as 

formidable allies in mitigating overfitting and 

enhancing prediction performance. By 

incorporating regularization strategies into our 

modeling framework, we attained greater resilience 

to data noise and improved generalization 

capabilities, thereby bolstering the robustness and 

reliability of our predictive models. 

 

Quantitative analysis of our models revealed 

promising results, with GBM achieving a MSE of 

approximately 75458.82 and an R2 score of 

approximately 0.51. Through parameter 

optimization using GridSearchCV, the performance 

of our models improved significantly, with an R2 

score of approximately 0.71 and an MSE of 

70971.12. However, our experimentation with 

Artificial Neural Networks yielded less favorable 

results, with an MSE of approximately 23287.40 

and a negative R2 score, indicating suboptimal 

performance on the dataset. Incorporating Ridge 

and Lasso regression techniques further enhanced 

our models’ performance, with Lasso regression 

exhibiting superior performance with an MSE of 

63018.65 and an R2 score of 0.59 compared to 

Ridge regression’s MSE of 66737.51 and an R2 

score of 0.56. The analysis of regularization 

parameters demonstrated the significant impact of 

alpha values on model performance, underscoring 

the importance of parameter tuning in achieving 

optimal results. 

 

The implications of our findings reverberate across 

diverse scientific domains, from astrophysics to 

atmospheric science, and hold profound 

implications for space exploration, satellite 

operations, and technological infrastructure. By 

elucidating the intricate interplay between solar 

activity and cosmic rays, our study lays the 
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groundwork for informed decision-making and 

proactive measures to mitigate the potential impacts 

of space weather events on society and technology. 

Looking ahead, continued research endeavors are 

imperative to further refine predictive models, 

explore novel analytical methodologies, and deepen 

our understanding of the solar-terrestrial 

relationship. By fostering interdisciplinary 

collaboration and leveraging cutting-edge 

technologies, we can unlock new frontiers in space 

weather forecasting, enhance our resilience to solar 

perturbations, and pave the way for a more secure 

and sustainable future in space exploration and 

technological advancement 
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