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Abstract:  
 
This study investigates the classification of electrical brain activity during intensive-less 

intensive and related-unrelated tasks. EEG signals were collected from 20 physically 

and mentally healthy university students (15 males, 5 females) residing in Adana and 

Hatay, Turkey, through 14 channels. Continuous Wavelet Transform analysis was 

applied for feature extraction. Subsequently, subject-dependent and subject-independent 

classifications were performed using the k-nearest Neighbour algorithm. In subject-

dependent classification, the accuracy range for intensive-less intensive tasks varied 

between 77.6% and 89.8%, while the range for related-unrelated tasks was between 

73.2% and 88%. Subject-independent classification yielded an accuracy of 79.2% for 

intensive-less intensive tasks and 77.5% for related–unrelated tasks. 

 

1. Introduction 

 

The brain, a vital organ, orchestrates its functions 

through the generation of electrical signals during 

various activities. These electroencephalographic 

(EEG) signals, measured by dedicated devices, can 

be captured and stored using specialized software. 

Analysis of EEG data focuses on several key 

parameters: time of occurrence, amplitude, and 

frequency. However, due to their inherent high 

dimensionality and non-stationary nature [1], 

classical signal processing techniques like the 

Fourier Transform, which assumes signal 

stationarity within a window, are insufficient for 

EEG analysis. Consequently, multiresolution 

analysis techniques, such as Wavelet Transform, 

have emerged as powerful tools for EEG signal 

processing [2-4]. A multitude of studies have 

employed Continuous Wavelet Transform (CWT) in 

conjunction with various classification algorithms 

for the analysis of EEG signals [5, 6]. Eraldemir et 

al. [7] investigated the influence of city noise and 

popular music environments on EEG signals during 

problem-solving tasks with varying difficulty levels 

(simple and hard) utilizing the Cognitive Tasks 

Database in Different Environments. CWT was 

employed to extract features from EEG data 

acquired from 17 undergraduate and postgraduate 

students while they engaged in solving both simple 

and hard questions. Subsequently, a Bayesian 

network classifier was implemented to categorize 

the EEG signals recorded under city noise and 

popular music conditions while participants solved 

simple and hard questions. The results revealed 

high classification accuracies, achieving 90.10% 

and 93.92% for simple and hard questions, 

respectively. These findings suggest that EEG data 

collected in diverse environments, including noise 

and preferred music, can be classified with high 

accuracy during problem-solving tasks, with a 

notable increase in successful classification for 

tasks of higher difficulty. Mao et al. [8] proposed a 

novel approach for emotion classification in EEG 

signals. By employing spectral analysis, they 

transformed the discrete EEG signals into a time-

frequency representation. Their approach leveraged 

the wavelet transform to generate scalogram images 

of the EEG signals, which capture the time-

localized energy distribution of the signal. 

Subsequently, convolutional neural networks 

(CNNs) were utilized for feature extraction from 

the scalograms. Two classification models were 

proposed based on the number of target emotions: 

one model distinguishes four basic emotions using 
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predefined threshold values, while the other model 

differentiates eight emotions. Data augmentation 

techniques were employed to effectively expand the 

dataset size to address the challenge of class 

imbalance introduced by the second model. The 

performance of the proposed models was evaluated 

using various metrics and compared against 

existing methods reported in the literature. Shukla 

et al. [9] proposed an automated algorithm for 

seizure detection utilizing a combination of CWT 

and CNNs. This approach classifies seizure and 

non-seizure events within the University of Bonn 

Germany dataset. To enhance the training efficiency 

of the deep learning classifier, data augmentation 

techniques were employed to effectively expand the 

dataset size. Subsequently, the EEG data was 

segmented into windows, and CWT was applied to 

each segment to generate scalogram plots. These 

scalogram image representations were then used to 

train the CNN model for seizure classification. The 

influence of various window sizes (1 second, 2 

seconds, and 3 seconds) on classification accuracy 

was investigated, revealing that 3-second window 

segments yielded the optimal performance on both 

the original and augmented datasets. 

The classification of EEG signals acquired during 

cognitive tasks has emerged as a prominent area of 

research in recent years. Kottaimalai et al. [10] 

pioneered the application of Principal Component 

Analysis (PCA) to EEG data. This technique aimed 

to reduce the dimensionality of feature vectors, 

facilitating subsequent classification using Artificial 

Neural Networks (ANNs). Notably, they reported 

achieving 100% accuracy in their classification 

task. Amin et al. [11] employed the Discrete 

Wavelet Transform (DWT) method to extract 

features from EEG signals acquired from eight 

healthy male volunteers at Petronas Technology 

University. The extracted feature vectors were 

subsequently classified using various machine 

learning algorithms, including Support Vector 

Machines (SVM), Multilayer Perceptron (MLP), k-

nearest Neighbors (k-NN), and Naive Bayes (NB). 

Feature extraction relied on the calculation of total 

and relative sub-band energies from the A4 

approximation coefficient and D1-D4 detail 

coefficients. The results revealed that the extracted 

features achieved classification accuracies 

exceeding 98% using both SVM and MLP 

classifiers. Notably, SVM and MLP achieved 

classification accuracies exceeding 98% when 

utilizing features extracted from the A4 and D4 

sub-bands. Erhan et al. [12] investigated the 

differentiation in mental arithmetic activity 

performance using electroencephalogram (EEG) 

and electrocardiogram (ECG) signals. Participants 

(n = 36) engaged in arithmetic tasks, and their EEG 

and ECG recordings were classified as "good" or 

"bad" performance based on the number of 

procedures completed within a set time frame. The 

EEG signals, acquired from 19 channels, were 

segmented into 10-second epochs. Subsequently, 

wavelet transform was applied to both the 

segmented EEG and ECG recordings to extract sub-

components. Feature extraction for EEG involved 

calculating the energy of the wavelet components. 

The resulting feature set was then classified using 

logistic regression, SVM, linear discriminant 

analysis (LDA), and k-NN. This feature extraction 

process was repeated for the ECG signals, leading 

to an expanded feature set. The classification 

process in this expanded feature space was 

performed again using the same aforementioned 

classifiers. Analysis revealed that wavelet-based 

features effectively discriminated between good 

and bad mental arithmetic performance. High 

classification accuracy was achieved, with k-NN 

and SVM yielding the best results (97.22% and 

above). Notably, combining features from both 

EEG and ECG signals increased classification 

accuracy compared to using EEG alone (k-NN 

reaching 99% accuracy). 

 

In this study, EEG signals gathered during a 

slideshow consisting of related-unrelated tasks and 

intensive-less intensive tasks, were classified using 

the k-NN algorithm. Features for classification are 

extracted using the CWT methodology. Both 

subject-dependent and subject-independent 

classification performances are presented. The 

remainder of the paper is structured as follows: 

Section 2 provides a brief overview of the EEG 

data collection, feature extraction, and classification 

algorithm. Section 3 presents the classification 

results achieved with k-NN, and the conclusion is 

provided in Section 4. 

 

2. Materials and methods 

 

The primary steps utilized in the study are outlined 

in Fig. 1. 

 

Figure 1. The fundamental steps of the 

experimental study 

Collection of 
EEG data

Pre-Processing

Feature 
Extraction

Classification



Mustafa Turan ARSLAN , Esen YILDIRIM / IJCESEN 10-2(2024)221-227 

 

223 

 

2.1 Database Collection 

In this study, the original database with a focus on 

maximum attention was constructed to examine 

attention-oriented tasks. The research was 

conducted in strict adherence to ethical principles 

and received approval from the Hatay Mustafa 

Kemal University Hospital Research Ethics 

Committee (Number and No: 25.03.2021/03-

2021/24). All participants provided written 

informed consent, following the ethical guidelines 

of the Declaration of Helsinki. The task involved 

counting the number of target objects among 

various objects arranged side by side in a 10 by 10 

matrix. The number of target objects and their 

relation to non-target objects varied, creating four 

distinct tasks: related-intensive, related-less 

intensive, unrelated-intensive, and unrelated-less 

intensive. "Intensive/less intensive" refers to the 

density of target images, while "related/unrelated" 

indicates the relationship between target and non-

target images. For example, a related-intensive task 

would have at least one-third of the images as target 

images, with non-target images being related to the 

target (e.g., if the target is an apple, non-target 

images could be an orange, a pear, or a banana). 

Conversely, an unrelated-less intensive task would 

also have at least one-third of the images as target 

images, but the non-target images would be 

unrelated to the target (e.g., if the target is a rabbit, 

non-target images could be an orange, a red apple, 

or a green apple). EEG recordings were conducted 

in three sessions, each comprising 12 tasks, 

resulting in a total of 36 tasks per participant. Each 

session took approximately 45 minutes to complete, 

and EEG data was collected on different days for 

each participant.  

 

 
Figure 2. The different task samples 

Examples of the four different tasks are shown in 

Fig. 2. The EEG data used in this study was 

collected from a volunteer pool of twenty healthy 

university students (15 male, 5 female) aged 

between 25 and 42 years (33 ± 5.41 years) residing 

in Turkey. All participants reported normal physical 

and mental health with no history of psychiatric or 

neurological disorders. They were native Turkish 

speakers with unimpaired cognition, attention, and 

sensory function. Table 1 presents the participants' 

consumption habits of tea, coffee, cigarettes, and 

alcohol. 

Table 1. Participants’ Habits 

aP bTC cCC dS eAC 

1 
Rarely 

Frequently 
Yes 

No 

2 Rarely Frequently No No 

3 Rarely Rarely No No 

4 Rarely Rarely No No 

5 Rarely No Yes No 

6 Frequently Frequently No Rarely 

7 Frequently Frequently Yes No 

8 Frequently Frequently No No 

9 Frequently Frequently No No 

10 Frequently Frequently No No 

11 Frequently Frequently No No 

12 Frequently Rarely No No 

13 Frequently Frequently Yes No 

14 No Rarely No Rarely 

15 Rarely Frequently No No 

16 Frequently Frequently No Rarely 

17 Frequently Rarely Yes No 

18 Rarely Rarely No No 

19 Frequently Rarely No No 

20 Frequently Frequently No No 
aParticipant: P; bTea Consumption: TC; cCoffee Consumption: 

CC; dSmoking: S; eAlcohol Consumption: AC 

 

Participation was voluntary and uncompensated. 

After providing written informed consent, 

participants were briefed on the experimental 

procedures. They were instructed to focus solely on 

counting target objects presented on each visual 

stimulus and verbally report the count afterwards. 

EEG signals were recorded using a wireless and 

portable Emotiv EPOC+ device. This device 

comprises 14 electrodes positioned according to the 

international 10-20 system, capturing activity from 

14 scalp locations (AF3, F7, F3, FC5, T7, P7, O1, 

O2, P8, T8, FC6, F4, F8, AF4) simultaneously at a 

sampling rate of 128 Hz. Additionally, the Emotiv 

EPOC+ includes two reference electrodes (P3 and 

P4) designated as CMS/DRL.  

To minimize artifacts in the EEG signals, 

participants were instructed to refrain from 

excessive muscle movements, blinking, and 

swallowing before the recording sessions. EEG 
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recordings were conducted in a controlled 

environment designed to minimize attention lapses 

during the experiment. This environment ensured 

serenity, comfort, adequate lighting, and minimal 

noise. Fig. 3 presents a sample image from the EEG 

recording session. 

 

 
Figure 3. The position of the EEG device on the 

scalp and test environment 

The EEG recording was synchronized with the 

presentation of the slides on the computer screen. 

Additionally, participants’ responses were time-

stamped using the same interface. Each session 

included a baseline correction and a demonstration 

of the target, each lasting 5 seconds. The duration 

of each task slide was set to 35 seconds. After each 

response, participants had a 10-second rest period 

during which they indicated the number of targets 

they counted. The experimental protocol for each 

session is illustrated in Fig. 4. 

 
Figure 4. Experimental protocol 

2.2 Pre-Processing 

Initially, a Butterworth band-pass filter was applied 

to the EEG data, with a focus on frequencies 

between 1 Hz and 45 Hz. The EEG data, gathered 

from each participant across multiple sessions, was 

then segmented into 12 tasks, each lasting 35 

seconds. This process resulted in a total of 720 

tasks. Subsequently, we employed Independent 

Component Analysis (ICA) on the raw signals to 

eliminate non-brain activity signals, such as eye 

blinks, lateral eye movements, and heartbeat-related 

artifacts. 

 

2.3 Feature Extraction 

In this study, the filtered EEG signals were divided 

into 2-second segments with 50% overlap and 

windowed using a rectangular window. The spectral 

power of each windowed segment was then 

computed using CWT across four frequency bands: 

theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), 

and gamma (30 Hz-45 Hz). 

The selection of particular wavelet function is 

indeed contingent upon the desired features to be 

extracted from the signal and the inherent 

characteristics of the signal itself [13]. The 

literature offers a vast array of mother wavelet 

functions, including Daubechies, Coiflet, Morlet, 

Gaussian, Symlet, Mexican Hat, Haar, and 

Biorthogonal wavelets. However, employing 

Morlet wavelets for the detection of rhythmic 

activity within EEG signals is a well-established 

and prevalent technique in both signal processing 

and neuroscience domains [14-18]. Consequently, 

56 features encompassing theta, alpha, beta, and 

gamma energy bands were extracted from 14 EEG 

channels using a Morlet wavelet in this study. 

 

2.4 Classification 

Cognitive tasks were utilized to collect EEG 

signals, which were then classified using the k-NN 

algorithm. k-NN is an influential supervised 

machine learning technique utilized for classifying 

and enhancing existing data through mathematical 

and statistical methodologies. Additionally, k 

nearest neighbor stands out as one of the most 

extensively applied theoretical and straightforward 

classification methods due to its straightforward 

implementation and the effectiveness of its learning 

process [19]. 

 

3. Results and Discussion 

This study investigated the influence of the CWT 

and k-NN method on classification performance, 

motivated by the hypothesis that CWT-derived 

features yield superior classification accuracy. 

Features were first extracted from the signals using 

the CWT and then categorized as corresponding to 

either intensive-less intensive or related-unrelated 

tasks. k-NN algorithm was employed to achieve 

binary classification of the EEG signals. The 10-

fold cross-validation method was employed to 

assess the performance of the k-NN algorithm. 
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Classification performance was evaluated using 

both subject-dependent and subject-independent 

approaches. The results for subject-dependent 

analyses are presented in Table 2 and Table 3, for 

intensive-less intensive and related-unrelated binary 

task classifications, respectively. The average 

results of the subject-dependent experiment are 

given in Table 4. 

 

Table 2. The results of subject-dependent for 

intensive-less intensive binary task classification 

aP bA cPr dR eF fROC 

1 0.795 0.795 0.795 0.795 0.788 

2 0.898 0.899 0.898 0.898 0.900 

3 0.863 0.863 0.863 0.863 0.873 

4 0.783 0.783 0.783 0.783 0.783 

5 0.776 0.776 0.776 0.776 0.771 

6 0.802 0.802 0.802 0.802 0.81 

7 0.849 0.849 0.849 0.849 0.852 

8 0.787 0.788 0.787 0.787 0.777 

 9 0.786 0.786 0.786 0.786 0.785 

 10 0.872 0.872 0.872 0.872 0.862 

11 0.804 0.805 0.804 0.804 0.804 

12 0.863 0.863 0.863 0.863 0.876 

13 0.876 0.876 0.876 0.876 0.88 

14 0.863 0.863 0.863 0.863 0.863 

15 0.844 0.844 0.844 0.844 0.841 

16 0.872 0.872 0.872 0.872 0.879 

17 0.851 0.851 0.851 0.851 0.844 

18 0.831 0.831 0.831 0.831 0.844 

 19 0.82 0.82 0.82 0.82 0.816 

20 0.807 0.807 0.807 0.807 0.811 
aParticipant: P; bAccuracy: A; cPrecision: Pr; dRecall: R;              
eF-Measure: F; fROC Area: ROC 

 

Table 2 presents the intensive- less intensive binary 

classification results obtained for the 14-channel 

EEG. An examination of Table 2 reveals that we 

achieved an accuracy of 80% or higher for 15 

participants. The lowest accuracy observed was 

77.6% for Participant 5, while Participant 2 attained 

the highest accuracy of 89.8%. The average 

accuracy across 20 participants was 83.2%. 

 

Table 3 illustrates related-unrelated binary 

classification results. As evident in Table 3, 11 

participants achieved classification accuracies of 

80% or higher. The lowest classification accuracy 

observed was 73.2%, while the highest was 88.0%. 

The average classification accuracy across 20 

participants was 80.8%. This study additionally 

investigated the subject-independent classification 

of EEG signals using the k-NN algorithm. In 

subject-independent studies, training and testing 

procedures are conducted on EEG data collected 

from all participants. 

 

Table 3. The results of subject-dependent for 

related-unrelated binary task classification 

aP bA cPr dR eF fROC 

1 0.761 0.761 0.761 0.761 0.756 

2 0.88 0.88 0.88 0.88 0.882 

3 0.83 0.83 0.83 0.83 0.821 

4 0.778 0.778 0.778 0.778 0.777 

5 0.758 0.758 0.758 0.758 0.761 

6 0.808 0.808 0.808 0.808 0.815 

7 0.862 0.862 0.862 0.862 0.876 

8 0.793 0.793 0.793 0.793 0.799 

 9 0.768 0.768 0.768 0.768 0.769 

 10 0.861 0.861 0.861 0.861 0.867 

11 0.789 0.789 0.789 0.789 0.786 

12 0.833 0.834 0.833 0.833 0.834 

13 0.867 0.867 0.867 0.867 0.865 

14 0.732 0.732 0.732 0.732 0.739 

15 0.853 0.853 0.853 0.853 0.863 

16 0.84 0.84 0.84 0.84 0.839 

17 0.818 0.818 0.818 0.818 0.81 

18 0.741 0.741 0.741 0.741 0.746 

 19 0.784 0.784 0.784 0.784 0.795 

20 0.804 0.804 0.804 0.804 0.81 
aParticipant: P; bAccuracy: A; cPrecision: Pr; dRecall: R;              
eF-Measure: F; fROC Area: ROC 

 

 

Table 4. The average results of the subject-

dependent analysis for intensive-less intensive and 

related-unrelated classification task 

 bA cPr dR eF fROC 

Intensive-less 

intensive 

0.832 0.832 0.832 0.832 0.833 

Related-

unrelated 

0.808 0.809 0.808 0.808 0.810 

bAccuracy: A; cPrecision: Pr; dRecall: R; eF-Measure: F; fROC 

Area: ROC 

Conversely, subject-dependent studies perform 

these procedures on recordings obtained from a 

single participant. Conversely, subject-dependent 

studies perform these procedures on recordings 

obtained from a single participant. 

Table 4 demonstrates the average classification 

performance of the k-NN algorithm on this dataset. 

In the intensive-less intensive classification task, 

the algorithm achieved average accuracy, precision, 

and ROC area of 83.2%, 83.2%, and 83.3%, 

respectively.  

 

Table 5. The results of the subject-independent 

analysis for intensive-less intensive and related-

unrelated classification task 
 bA cPr dR eF fROC 

Intensive-less 

intensive 

0.792 0.792 0.792 0.792 0.792 

Related-unrelated 0.775 0.776 0.775 0.775 0.775 
bAccuracy: A; cPrecision: Pr; dRecall: R; eF-Measure: F; fROC 

Area: ROC 

For the related-unrelated classification task, the 

average accuracy, precision, and ROC area were 

80.8%, 80.9%, and 81%, respectively. Table 5 
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presents the subject-independent classification 

results for intensive-less intensive and related-

unrelated tasks. In the subject-independent study, 

the average accuracy, precision, F-measure, and 

ROC area for intensive-less intensive tasks were 

79.2%, while those for related-unrelated tasks were 

77.5%, 77.6%, 77.5%, and 77.5%, respectively. As 

evident in Table 5, the performance on intensive-

less intensive tasks outperformed that on related-

unrelated tasks. This suggests that participants were 

able to differentiate between intensive-less 

intensive tasks more effectively using EEG signals 

compared to related-unrelated tasks. 

The findings of the present study are further 

supported by the work of Arslan et al. [20]. In their 

investigation, they employed both subject-

dependent and subject-independent approaches to 

classify mental mathematical tasks and silent text 

reading tasks using EEG data. Their results 

demonstrated a clear advantage of subject-

dependent classification, with accuracy rates 

ranging from 95.8% to 99%, compared to 92.2% to 

97% for subject-independent classification. This 

alignment of findings across studies further 

validates the superiority of subject-dependent EEG-

based cognitive task classification. 

Consistent with expectations, subject-dependent 

analyses yielded better accuracy, as each 

participant's data was used for both training and 

testing. Nonetheless, the subject-independent 

classification results remain noteworthy. 

 

4. Conclusions 

 

This paper proposes an approach to classifying 

cognitive tasks based on the analysis of EEG 

signals. The study investigates the application of 

the CWT in conjunction with machine learning 

algorithms for the classification of spontaneous 

EEG data recorded during cognitive tasks. 

For classification purposes, k-NN algorithm was 

employed, and its performance in discriminating 

between cognitive tasks was evaluated. The 

classification results achieved by k-NN utilizing 

features extracted via the CWT method surpassed 

79% accuracy and 77% accuracy for intensive-less 

intensive and related-unrelated binary task 

classifications in subject-independent experiment, 

respectively. Furthermore, the average classification 

results exceeded 80% for both intensive-less 

intensive and related-unrelated tasks, reaching 

83.2% and 80.8 in the subject-dependent 

experiment, respectively.  CWT emerges as a 

powerful and valuable tool for classifying EEG 

signals associated with complex cognitive tasks. 

This has promising implications for its application 

in EEG-based clinical diagnoses, such as epilepsy, 

depression, and stress. Moreover, the findings 

demonstrate that the k-NN algorithm can achieve 

high classification accuracy on diverse datasets. 

Refined methods and research on larger and more 

diverse datasets will contribute to the enhanced 

utility of the k-NN algorithm in real-world 

applications. However, this study is not without 

limitations. For instance, the study was conducted 

on a relatively small dataset. Future research will 

investigate the generalizability of the findings by 

conducting tests on larger and more diverse 

datasets. 
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