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Abstract:  
With the growing impact of deep learning and computer vision, real-time image 

recognition and robotic systems have become increasingly important in fields such as 

autonomous vehicles and smart devices. In this study, a practical teaching module was 

developed by integrating the YOLO (You Only Look Once) algorithm, robotic arm 

control, and local crop recognition. The proposed system enables automated fruit 

detection, classification, and sorting using a six-axis robotic arm. This hands-on approach 

allows students to apply artificial intelligence in real-world agricultural contexts, thereby 

enhancing their understanding of smart farming technologies. The module supports both 

theoretical learning and skill development in automation and intelligent systems, aligning 

with future trends in AI-based agriculture and industrial applications. 

 

1. Introduction 

 
1.1 Research Motivation and Objectives 

 
In recent years, machine vision and robotics technologies 

have experienced significant advancements, particularly 

driven by developments in deep learning and object 

detection algorithms. These technologies have opened 

new avenues for intelligent automation across various 

industries. Robotic arms, as a fundamental component of 

such systems, enable precise manipulation and execution 

of tasks, making them indispensable tools in modern 

automated applications. Consequently, equipping 

students with relevant knowledge and practical skills in 

this field has become increasingly important. 

To address this need, an auxiliary teaching system has 

been developed that integrates image recognition, robotic 

arm control, and local agricultural applications. Central to 

this system is the YOLO (You Only Look Once) 

algorithm, which has gained widespread attention in 

computer vision due to its high-speed processing and 

accurate detection capabilities. YOLO’s end-to-end 

architecture allows for direct mapping of input images to 

prediction outputs, simplifying the training pipeline. 

Moreover, its single-stage regression-based approach, 

combined with multi-scale feature processing, enables 

efficient and robust object detection in real-time 

scenarios. 

Building on these strengths, the proposed system 

combines YOLO with a six-axis robotic arm and local 

fruit datasets to create an automated fruit recognition and 

sorting platform. This setup allows the robotic arm to 

autonomously identify and grasp various types of fruits. 

Through hands-on engagement with this system, students 

are exposed to practical applications of artificial 

intelligence and robotics in agriculture, thereby 

reinforcing their technical understanding. 

Furthermore, this project encourages the development of 

problem-solving abilities, innovative thinking, and 

interdisciplinary collaboration. By integrating theoretical 

knowledge with practical experience, the system provides 

a comprehensive learning environment that enhances 

students' readiness for future careers in automation, smart 

agriculture, and intelligent systems. 

 

1.2 Literature Review and Related Research 

 
The YOLO (You Only Look Once) algorithm, first 

introduced by Joseph Redmon et al. in 2016, 

revolutionized real-time object detection with its single-

stage detection framework. Since the release of YOLOv1, 

subsequent versions—YOLOv2 and YOLOv3—have 

progressively enhanced detection accuracy and speed. 

With continued research contributions, YOLOv4 was 

introduced by Alexey Bochkovskiy and his team in April 

2020, further advancing the network’s capabilities in 

terms of feature representation and generalization. 

http://www.ijcesen.com/
http://dergipark.ulakbim.gov.tr/ijcesen
mailto:jasonccw@yuntech.edu.tw
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In recent years, the YOLO family of algorithms has 

demonstrated performance on par with two-stage 

detectors, offering a desirable balance between accuracy 

and computational efficiency. For instance, in [5], a 

lightweight traffic sign recognition algorithm based on 

YOLOv4-Tiny was proposed. By incorporating an 

improved K-means clustering approach, the model 

achieved a 5.73% increase in mean average precision 

(mAP) and a 7.29% improvement in recall, while 

maintaining a real-time detection speed of approximately 

87 frames per second (FPS). 

Further applications of YOLO include precision forestry, 

as demonstrated in [6], where a pre-trained YOLO model 

was used to identify pine trees affected by disease in 

drone-captured ultra-high-resolution imagery, achieving 

an average precision of 91.82%. In [7], two lightweight 

improvements—YOLOv8PANet and 

YOLOv8CCFPANet—were developed, reducing the 

number of parameters by 21% and 54.5%, respectively, 

while retaining detection accuracies of 84.2% and 83.3% 

on the PASCAL VOC07+12 dataset. Detection speeds 

reached 100 FPS and 108 FPS, respectively, illustrating 

their suitability for real-time applications. 

Moreover, a general-purpose detection model optimized 

for aerial systems was presented in [8], attaining a 

detection speed of 50 FPS, with a mAP@50 of 99.1% and 

mAP@50–95 of 83.5%. These results confirm YOLO's 

robustness and adaptability across diverse domains. 

Among the existing YOLO variants, YOLOv4 and 

YOLOv7 stand out due to their superior accuracy and 

processing speed. YOLOv4 incorporates improvements in 

feature extraction modules, training strategies, and data 

augmentation, while YOLOv7 leverages multi-level 

feature fusion and compression techniques to optimize 

both accuracy and inference efficiency. 

Considering their demonstrated effectiveness and 

computational advantages, YOLOv4 and YOLOv7 were 

selected as the primary object detection frameworks in the 

present study. 

 

2. Hardware Architecture 

 
2.1. Experimental Environment 
 
The experimental system designed in this study consists 

of a robotic arm, a camera module, a fruit recognition 

zone, and six designated fruit placement areas, as 

illustrated in Fig. 1 and Fig. 2. Initially, a fruit sample is 

positioned within the recognition area, where an image is 

captured by the camera. The captured image is processed 

using the YOLOv4 object detection algorithm to identify 

the fruit type. Upon successful recognition, a command is 

transmitted via serial communication to the robotic arm, 

instructing it to move to the corresponding target location. 

The robotic arm is equipped with an air compressor, 

which provides pneumatic pressure to the gripper 

mechanism, allowing the arm to securely grasp the fruit 

and relocate it to the appropriate placement zone. 

 
 

Figure 1. Schematic diagram of the experimental 

environment 

 

 
 

Figure 1. Actual photo of teaching aids 

The hardware configuration of the system includes an 

NVIDIA Jetson Nano, which serves as the core AI 

processing unit. The Jetson Nano is a compact, low-power 

embedded computing platform developed by NVIDIA, 

offering substantial AI computational power suitable for 

real-time applications in constrained environments. 

An Arduino microcontroller is utilized to manage the 

motion control logic of the robotic arm. It receives serial 

commands from the Jetson Nano and executes 

corresponding movements. The vision system employs a 

1080P, 60 FPS wide-angle camera with a 120-degree field 

of view. The camera is positioned approximately 30 cm 

from the object and 15 cm above ground level, with a 

downward tilt angle of approximately 30 degrees to 

optimize object detection performance. 

 

2.2. Dynamics of the Robotic Arm 

 

2.2.1. D-H method [9] 

 
The D-H method is a mathematical approach used to 

establish the kinematic model of a robotic arm, proposed 

by Jacques Denavit and Richard S. Harten-berg in 1955. 

Initially, the relative position between two joints required 

six parameters for representation, consisting of three 

translational and three rota-tional components. However, 

the D-H method simplifies this by describing the spatial 

relationship between two joints using only four 

parameters. 
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Figure 3. Parameter explanation diagram for the D-H 

method 

 
The four parameters in the D-H method are 𝑎𝑖 , 𝛼𝑖  
𝑑𝑖  and 𝜃𝑖,where i denotes the i-th joint of the robotic arm. 

The definitions of these parameters are as follows, as 

shown in Fig. 3: 

 𝑎𝑖 is the distance between point 𝑂𝑖  𝑎𝑛𝑑 𝑂𝑖−1
′ . 

 𝛼𝑖  is the angle of rotation from 𝑧𝑖−1  to 𝑧𝑖 , with 

counterclockwise rotation around  𝑥𝑖  being positive. 

 𝑑𝑖 is the distance between point 𝑂𝑖−1 and 𝑂𝑖−1
′ '. 

 𝜃𝑖  is the angle of rotation from  𝑥𝑖−1  to 𝑥𝑖  with 

counterclockwise rotation around 𝑧𝑖−1  being 

positive. 

Using the D-H method, the transformation relationship 

from the joint coordinates of the i-th axis to the joint 

coordinates of the (𝑖 + 1)-th axis can be represented by 

𝑇𝑖
𝑖−1. Here, 𝑇𝑖

𝑖−1 denotes the transformation matrix that 

converts the coordinates from the (i-1)-th axis to the i-th 

axis, as shown in equation 1. 

𝑇𝑖
𝑖−1 = 𝑅𝑜𝑡𝑧𝑖−1,𝜃𝑖

𝑇𝑟𝑎𝑛𝑠𝑧𝑖−1,𝑑𝑖
𝑇𝑟𝑎𝑛𝑠𝑥𝑖,𝑎𝑖

𝑅𝑜𝑡𝑥𝑖,𝑎𝑖  = 

[

𝑐𝑜𝑠𝜃𝑖 −𝑐𝑜𝑠𝛼𝑖𝑠𝑖𝑛𝜃𝑖

𝑠𝑖𝑛𝜃𝑖 𝑐𝑜𝑠𝜃𝑖𝑐𝑜𝑠𝛼𝑖

𝑠𝑖𝑛𝜃𝑖𝑠𝑖𝑛𝛼𝑖 𝛼𝑖𝑐𝑜𝑠𝜃𝑖

−𝑐𝑜𝑠𝜃𝑖𝑠𝑖𝑛𝛼𝑖 𝛼𝑖𝑠𝑖𝑛𝜃𝑖

0           𝑠𝑖𝑛𝛼𝑖

0         0
𝑐𝑜𝑠𝛼𝑖               𝑑𝑖

0               1

]   (1) 

Once the transformation matrices for each axis relative to 

the previous axis have been obtained, these matrices can 

be multiplied together to yield the transformation matrix 

from the base to the end effector. 

 

3. Research Methods 
 
3.1. YOLOv4 

 
As shown in Fig. 4 and Fig. 5, the YOLOv4 framework 

can be broadly divided into the following components: 

•Input: The input image. 

• Backbone: The backbone network is utilized for 

preliminary feature extraction. YOLOv4 employs 

CSPDarknet53. 

•Neck: This component integrates feature maps from 

various layers of the backbone, utilizing Spatial Pyramid 

Pooling (SPP) and Path Aggregation Network (PAN). 

•Head: This part makes predictions based on the image 

features, generating predicted bounding boxes and class 

predictions, using the head architecture from YOLOv3. 

 
 

Figure 4. YOLOv4 development framework 

The YOLOv4 development framework is illustrated in 

Figure 5, providing an overview of the system's overall 

architecture and detailing how each component 

contributes to the object detection process. 

 
 

Figure 5. YOLOv4 architecture 

 
3.2 YOLOv7[10] 

 
YOLOv7, introduced by WongKinYiu et al. in 2022, 

represents a significant advancement in the YOLO family 

of real-time object detection algorithms. It offers an 

improved balance between detection accuracy and 

computational speed, making it particularly suitable for 

real-time applications. Inheriting the fast inference 

capabilities characteristic of previous YOLO versions, 

YOLOv7 integrates several architectural and training 

enhancements that further boost both efficiency and 

accuracy. 

 

Architecturally, YOLOv7 adopts a modular structure 

combined with re-parameterization techniques. This dual-

mode design enables the model to utilize a more complex 

architecture during the training phase enhancing its 

feature extraction and learning capacity while simplifying 

the network during inference to ensure low-latency, high-

speed performance (Fig. 6). This separation between 

training and inference structures optimizes the trade-off 

between learning ability and runtime efficiency. 
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Figure 6. YOLOv7 Architecture 

 

In addition, YOLOv7 introduces innovative training 

strategies such as the coarse-to-fine head design and task 

alignment optimization. These methods improve the 

integration of features across multiple learning objectives, 

including object classification, bounding box regression, 

and object localization, thereby enhancing overall model 

performance in multi-task scenarios. 

Experimental evaluations on benchmark datasets such as 

COCO and PASCAL VOC demonstrate that YOLOv7 

achieves superior results in both speed and accuracy 

compared to previous YOLO versions, including 

YOLOv5 and YOLOv6. In particular, YOLOv7-tiny 

delivers high frame rates (FPS) while maintaining a 

competitive mean Average Precision (mAP), rendering it 

ideal for edge devices and embedded systems requiring 

real-time object detection capabilities. 

In summary, YOLOv7 signifies a mature and efficient 

solution in the domain of real-time object detection. Its 

design innovations and empirical performance make it 

well-suited for diverse applications, including intelligent 

surveillance, autonomous driving, and machine vision 

systems. 

 

3.3 Dataset [11] 

 
In this study, the PASCAL VOC dataset format was 

adopted to construct the training architecture, as 

illustrated in Fig. 6. The PASCAL VOC dataset is widely 

used in object detection tasks and contains annotations for 

20 object categories, including people, vehicles, and 

animals. Each image is accompanied by an XML 

annotation file that specifies the object class, position, and 

bounding box dimensions. The dataset is typically 

partitioned into training, validation, and testing subsets to 

facilitate model development and performance evaluation. 

 
 

Figure 6. Training architecture based on VOC 

annotation structure used in this study 

 

To align with the objectives of this research—namely, 

intelligent recognition of common fruits for educational 

and agricultural applications a custom dataset was 

constructed focusing on six fruit categories. The 

classification criteria were based on physical 

characteristics, nutritional value, and common processing 

methods. The selected categories are: 

Pear: High in water content and dietary fiber, pears (e.g., 

water pears, duck pears, Fengshui pears) are consumed 

fresh or processed into juice and dried products. 

Lemon: Known for their strong acidity and high vitamin 

C content, lemons are widely used in juice, flavoring, and 

the production of essential oils from the peel. 

Orange: Juicy and moderately sweet, oranges (e.g., navel, 

tangerines, Ponkan) are rich in flavonoids and 

antioxidants. Their peels are commonly used in traditional 

medicine and food seasoning. 

Apple: With varieties such as Fuji and Granny Smith, 

apples are rich in polyphenols and pectin. They can be 

eaten fresh or used in processed products like juice, jam, 

and baked goods. 

Wax Apple: Bell-shaped with high water content, wax 

apples grow in tropical regions and are rich in vitamin C 

and potassium. They are often consumed fresh or used in 

dried and candied forms. 

Mangosteen: Referred to as the “queen of fruits,” 

mangosteen features a thick rind and sweet, antioxidant-

rich pulp. It is typically consumed fresh but may also be 

processed into juices and desserts. 

The dataset developed for this experiment includes a total 

of 198 labeled images. A stratified sampling approach 

was employed, with 70% of the data allocated to both 

training and testing subsets. This dataset not only enables 

robust training of the object detection model but also 

provides students with valuable insights into the 

nutritional and commercial significance of these fruits, 

thereby supporting smart agricultural applications. 

 

Table 1. Distribution and Quantity of Training Samples 

Category Quantity 
Pear 38 

Lemon 30 
Orange 34 
Apple 37 

Wax Apple 34 
Mangosteen 25 

 

3.4 Model training 
 

Prior to initiating the training of a YOLO-based object 

detection model, it is imperative to conduct a 

comprehensive data preparation process to facilitate 

supervised learning. This process involves the annotation 

of sample images using dedicated tools such as LabelImg 

or Roboflow. These tools enable the precise labeling of 

target objects by specifying their class categories, spatial 

locations (bounding boxes), and respective dimensions. 

Each annotated image is associated with a corresponding 

text file in the YOLO format, which includes critical 

information such as the class index, the normalized 

coordinates of the bounding box center, and its width and 

height. These annotations serve as essential input data for 

model training. 

To ensure robust model generalization and mitigate 

overfitting, the annotated dataset is typically partitioned 

into three subsets: the training set, validation set, and test 

set. Conventionally, 70–80% of the dataset is allocated to 
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training, 10–20% to validation for hyperparameter tuning 

and performance monitoring, and the remaining 10% is 

reserved for final testing and accuracy evaluation. This 

strategic division of data supports consistent model 

evaluation across varying environmental conditions and 

object distributions. 

Following the completion of data annotation and 

partitioning, the YOLO training environment must be 

appropriately configured. This step involves modifying 

configuration files such as yolov4-tiny.cfg, which are 

often renamed (e.g., obj.cfg) to reflect specific application 

contexts. Critical parameters within the configuration file 

must be updated accordingly: the classes parameter 

should correspond to the number of object categories in 

the custom dataset (e.g., 6 for six fruit types). Furthermore, 

the filters parameter in the final convolutional layer must 

be adjusted using the formula: filters = 3 × (classes + 5) 

This adjustment ensures that the detection layer generates 

outputs compatible with the updated number of classes, 

thereby aligning the architecture with the customized 

detection task shown in Fig. 7. Proper configuration of 

these parameters is vital to the success of the training 

process and the resulting model accuracy. 

 

 
 

Figure 7. Parameter Modification for Training 

 

The training phase requires careful tuning of multiple 

hyperparameters to ensure optimal model performance. In 

the present study, the batch size was configured to 32, and 

the learning rate was set at 0.001. These values were 

selected to promote stable convergence during 

backpropagation. Additionally, momentum and weight 

decay were employed to enhance the effectiveness of 

gradient descent optimization. Momentum assists in 

accelerating convergence by dampening oscillations, 

while weight decay acts as a regularization mechanism to 

prevent overfitting, thereby improving the generalization 

ability of the model. 

To further expedite the training process and enhance 

model accuracy, transfer learning was applied through the 

use of pre-trained weights. These weights, typically 

derived from training on large-scale datasets such as 

ImageNet, provide the model with a strong initialization 

point. By leveraging pre-learned feature representations, 

the training process becomes significantly faster and more 

effective. The pre-trained weights for the YOLOv4-tiny 

model were obtained from the official YOLO repository, 

as illustrated in Fig. 8. 

 

 
 

Figure 8. Pre-trained Model of YOLOv4 

 

3.4 Training Results 
 

To evaluate model performance, a comparative 

experiment was conducted using both YOLOv4 and 

YOLOv7 frameworks on the fruit recognition dataset. The 

training outcomes are visualized in Fig. 9 and 10, 

respectively. 

 

 
 

Figure 9. Training Results of YOLOv4 

 

 
 

Figure 10. Training Results of YOLOv7 

 

An analysis of the Precision–Confidence (P–C) curves 

reveals that the YOLOv7 model demonstrates superior 

classification performance. As shown in Figure 10, 

YOLOv7 maintains a high precision level even at a near-

maximum confidence threshold of 0.996. The curve 

exhibits smoothness and stability, indicating that the 

model consistently produces reliable predictions at higher 

confidence levels. This observation confirms the model’s 

robustness and high accuracy in real-world detection tasks. 

In contrast, although YOLOv4 (Figure 9) achieves a 

precision score of 1.00, its optimal performance is 

concentrated at a significantly lower confidence threshold 

of 0.101. This implies that the model tends to generate 

detections even when confidence levels are low, 

potentially increasing recall at the cost of a higher false-

positive rate. The comparative results underscore 

YOLOv7’s advantage in maintaining a stronger alignment 

between prediction confidence and precision, making it a 
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more appropriate choice for deployment in the proposed 

fruit classification system. 

 

3.5 Coordinate Transformation 
 

 After completing the object detection process, the YOLO 

model outputs a series of bounding box coordinates and 

associated information relative to the image size. These 

include the relative position of the bounding box center, 

its width and height, and a confidence score. Since these 

coordinates are expressed as normalized ratios, they must 

be converted into pixel coordinates. By multi-plying the 

relative coordinates by the image width and height, the 

actual pixel values for the bounding box center, width, and 

height can be obtained. These pixel coordinates form the 

basis for subsequent spatial coordinate calculations. 

  Next, using the camera intrinsic matrix K and the depth 

value Z, the pixel coordinates are transformed into three-

dimensional coordinates in the camera coordinate system. 

The intrinsic matrix K defines the optical characteristics 

of the camera, including focal lengths and the principal 

point. This transformation is achieved using Equation 2: 

 

[

𝑋𝑐𝑎𝑚𝑒𝑟𝑎

𝑌𝑐𝑎𝑚𝑒𝑟𝑎

𝑍𝑐𝑎𝑚𝑒𝑟𝑎

] = 𝑍 ∙ 𝐾−1 ∙ [

𝑥𝑝

𝑦𝑝

1
]           (2) 

The structure of the camera intrinsic matrix K is shown in 

Equation 3 : 

𝐾 = [
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

]           (3) 

Through this transformation, the center of each bounding 

box can be mapped to 3D coordinates in the camera 

coordinate system. The accuracy of this step heavily relies 

on the precision of the depth value Z, as it directly affects 

the spatial localization accuracy of the target. 

 Finally, in order to allow the robotic arm to perform 

precise positioning, the 3D coordinates in the camera 

coordinate system must be transformed into the world 

coordinate system. This is done using a rotation matrix R 

and a translation vector T, as expressed in Equation 4: 

𝑃𝑤𝑜𝑟𝑙𝑑 = 𝑅 ∙ 𝑃𝑐𝑎𝑚𝑒𝑟𝑎 + 𝑇         (4) 

where: 

𝑃𝑐𝑎𝑚𝑒𝑟𝑎 = [

Xcamera

Ycamera

Zcamera

]         (5) 

Here, P_world  represents the 3D coordinates of the object 

in the world coordinate system. The rotation matrix R 

describes the orientation of the camera relative to the 

world frame, while the translation vector T defines the 

camera’s position within the world coordinate system. 

  After completing these transformations, the precise 

position of the object in the world coordinate system is 

obtained and can be passed to the robotic arm for defect 

repair or other operational tasks. This process ensures an 

accurate and efficient pipeline from detection to 

localization, meeting the requirements of practical 

applications. 

 

4. Experiment Research and Results 
 

4.1 Experiment Process 

 

Fig. 11 illustrates the operational workflow of the 

experiment. As shown in Fig. 11(a), the robotic arm 

begins in its initial standby position. Next, a fruit is placed 

within the recognition area, as depicted in Fig. 11(b). 

After the YOLO model identifies the target, the robotic 

arm proceeds to grasp the object, as shown in Fig. 11(c). 

Finally, the fruit is relocated and placed back in its 

original position, completing a full operation cycle, as 

illustrated in Fig. 11(d). 

 

  
(a) (b) 

  
(c) (d) 

 

Figure 11. Experimental steps (Using pear as an 

example) 

In this experiment, each type of fruit was placed in six 

different orientations, as shown in Fig. 12. The robotic 

arm was then tasked with returning each fruit to its 

original position after detection. This process was 

repeated for every type of fruit, and the confidence scores 

corresponding to each orientation were recorded. 

Additionally, the success rate was calculated based on 50 

trials per fruit type and orientation, evaluating how 

effectively the robotic arm could reposition the fruit 

accurately in each scenario. 

 

 
 

Figure 12. Six-angle fruit placement example (pear) 

 

4.2 Experiment Results 
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Table 2. Success Rate of Fruit Placement (YOLOv7) 
Fruit 
Type 

Pear Lemo
n  

Orang
e  

Appl
e 

Wax 
Appl

e 

Mangoste
en 

Successf

ul Cases 

50 48 49 47 48 43 

Success 
Rate (%) 

100 
% 

96 % 98 % 94 % 86 % 86 % 

 

Table 3. Success Rate of Fruit Placement (YOLOv4) 
Fruit Type Pear Lemon  Orange  Apple Wax 

Apple 

Mangosteen 

Successful 

Cases 

44 46 48 45 44 39 

Success 

Rate (%) 

88 % 92 % 96 % 90 % 88 % 78 % 

 

In the conducted experiment, the YOLOv7 model 

demonstrated near-perfect recognition and placement 

performance for certain fruits, particularly pears and 

lemons. Even in more challenging cases such as 

mangosteen, YOLOv7 surpassed the performance of 

YOLOv4 by approximately 8%, highlighting its enhanced 

robustness and stability under varied environmental and 

object conditions. 

A comprehensive performance analysis confirms that 

YOLOv7 possesses superior feature extraction and spatial 

localization capabilities. These characteristics 

significantly improve the reliability of fruit recognition 

and increase the success rate of automated placement 

tasks. As a result, YOLOv7 is deemed a more suitable 

candidate for deployment in real-world intelligent fruit 

sorting systems and automated agricultural applications. 

Despite these improvements, it was observed that both 

YOLOv4 and YOLOv7 exhibited relatively lower 

recognition accuracy for mangosteen. Several 

contributing factors were identified. First, the rear view of 

mangosteen lacks distinctive visual features such as 

prominent texture or high-contrast coloration, which 

limits the model’s ability to distinguish the fruit from the 

background. Second, the training dataset included 

insufficient samples of mangosteen from non-frontal 

perspectives, thus impeding the model’ s capacity to 

generalize across different orientations. Additionally, 

external variables such as inconsistent lighting, shadow 

presence, and oblique camera angles may have adversely 

affected the recognition outcomes. 

To address these limitations, the following enhancement 

strategies are proposed: 

Dataset Expansion: Increase the volume and diversity of 

mangosteen images, particularly from rear-facing angles 

and under various environmental conditions, to improve 

model generalization. 

 

Data Augmentation: Apply techniques such as rotation, 

horizontal/vertical flipping, and brightness/contrast 

modulation to artificially enrich the training dataset and 

allow the model to learn invariant features. 

Training Optimization: Modify the loss function 

weights to emphasize difficult-to-classify or low-

confidence samples. Additionally, implement multi-view 

fusion techniques, where multiple frames from different 

angles are analyzed to yield more consistent recognition 

results. 

Hardware Adjustments: Alter the camera installation 

angle to capture a more comprehensive view of the fruit, 

reducing the likelihood of occlusion or blind spots. 

Enhancing the illumination in the recognition area may 

also reduce shadow interference and improve the 

visibility of key fruit features. 

By integrating these strategies, the recognition 

performance for complex scenarios—particularly 

involving irregular fruit orientations—can be 

significantly improved. This will contribute to the 

development of a more adaptive, robust, and accurate 

vision-based system, laying a stronger technological 

foundation for future applications in smart agriculture, 

automated harvesting, and intelligent robotic 

manipulation. 

 

5. Conclusion and Future Prospects 
 

Based on the experimental results, the proposed system 

demonstrated high accuracy in recognizing and 

classifying a variety of fruit types under most test 

conditions. However, a notable performance issue was 

observed when the backside of the mangosteen was 

oriented toward the robotic arm. In such cases, the 

confidence scores of the predicted bounding boxes 

dropped significantly, leading to unsuccessful grasping 

and placement operations. This result indicates that the 

system’s recognition accuracy can degrade when 

confronted with challenging visual angles or indistinct 

object features, thereby revealing certain limitations in the 

integration of computer vision algorithms with robotic 

manipulation mechanisms in real-world applications. 

This phenomenon underscores the need for a deeper 

exploration into the underlying factors affecting detection 

performance. Specifically, the influences of illumination 

variability, camera viewpoints, and the surface geometry 

or texture characteristics of the fruit merit further 

investigation. Addressing these limitations is essential to 

improving the robustness and reliability of vision-guided 

robotic systems. 

Future work will focus on a multifaceted approach to 

mitigate these challenges. Several strategies are proposed: 

Dataset Enhancement: Increase the diversity of the 

training dataset by incorporating fruit images captured 

from multiple orientations, under various lighting 

conditions, and including non-frontal views of fruits like 

mangosteen. This would improve the model’s 

generalization ability and detection consistency. 

Algorithm Optimization Fine-tune the YOLO model by 

adjusting hyperparameters or experimenting with 

advanced network architectures (e.g., transformer-based 

detectors or attention mechanisms) to enhance feature 

extraction from visually ambiguous regions. 

Systematic Analysis: Conduct controlled experiments to 

quantitatively assess the impact of angle, lighting, and 

fruit surface variation on prediction accuracy. 

Robotic Arm Improvements: Refine the control strategy 

of the robotic manipulator to enable better adaptability 

when interacting with fruits of varied shapes, softness, or 

irregular structures. Incorporating sensor fusion or 

feedback mechanisms may also contribute to enhanced 

grasping success rates. 
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In addition to addressing the current limitations, future 

research will expand the application scope of the system 

to accommodate a wider range of fruit types beyond 

commonly encountered varieties. The recognition of 

fruits with irregular shapes, soft textures, or non-uniform 

surfaces will be explored to evaluate how these features 

affect detection and manipulation performance. 

Furthermore, improving the overall automation capability 

and flexibility of the system is crucial. By integrating the 

aforementioned enhancements, the system is expected to 

demonstrate improved performance in dynamic 

environments, thereby supporting broader applications in 

smart agriculture, intelligent harvesting, and automated 

sorting systems. These advancements not only contribute 

to a more comprehensive understanding of practical deep 

learning deployments but also offer robust technical 

support for the development of next-generation intelligent 

systems in industry and agriculture. 
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