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Abstract:  
 

Hybrid charging parks, which combine renewable energy sources with traditional grid 

systems, have emerged in response to the increasing need for effective electric vehicle 

(EV) charging infrastructure.  Using a Neural Network-based Charging Controller 

(NNCC), this study suggests an improved assessment methodology for hybrid charging 

park systems. The controller prioritizes car charging needs, minimizes energy losses, and 

dynamically optimizes energy distribution by balancing solar, wind, and grid sources. 

Real-time operational data, such as vehicle wait duration, state of charge (SoC), and 

fluctuation in renewable energy, were used to train a multi-layer perceptron (MLP) neural 

network. According to simulation data, the suggested NNCC outperformed traditional 

rule-based controllers in terms of the charging park's overall power efficiency by 18.7%. 

Additionally, the method increased the vehicles' final State of Charge (SoC) by an 

average of 12.5%, guaranteeing quicker and more dependable charging sessions. 

Additionally, the neural network-based system showed improved flexibility in the face 

of variable renewable energy circumstances, greatly boosting the resilience and 

sustainability of smart EV charging ecosystems. 

 

1. Introduction 
 

The world's transportation scene is changing due to 

the quick uptake of electric cars (EVs), which makes 

the creation of intelligent and effective charging 

infrastructures necessary.  A viable way to satisfy the 

growing energy needs of EVs while advancing 

sustainability is through hybrid charging stations, 

which combine conventional grid systems with 

renewable energy sources like solar and wind.  

However, there are several difficulties in controlling 

the intricate energy fluxes and guaranteeing peak 

performance in these hybrid systems. The dynamic 

nature of energy output and consumption in hybrid 

charging stations frequently makes traditional rule-

based energy management techniques less flexible. 

On the other hand, data-driven methods like 

Artificial Neural Networks (ANNs) can learn and 

adjust to intricate, nonlinear interactions in the 

system. For example, Singh and Kumar (2023) 

created an ANN-based active power management 

controller for a DC micro-grid EV charging station, 

showing enhanced energy efficiency through 

dynamic power balancing between the grid, 

stationary battery storage, and photovoltaic (PV) 

systems [1-3]. 

More developments in the integration of machine 

learning and energy management have been 

investigated. For example, Orfanoudakis et al. 

(2025) optimized EV charging by combining Graph 

Neural Networks and Large Language Models, 

surpassing conventional techniques in managing the 

dynamic and high-dimensional nature of real-time 

EV charging scenarios. Devi and Jose (2024) also 

presented the NBO-THDCNN algorithm for energy 

management in smart parking lots, which 

successfully reduced power loss and operating costs 

by optimizing both slow and fast EV charging 

processes [4,5]. 

Furthermore, there is potential for improving 

charging infrastructure through the integration of 

predictive models that take reliability and 
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environmental concerns into consideration.  In order 

to improve infrastructure design and demand 

prediction, a research published in Heliyon (2025) 

suggested a hybrid Bayesian network-based deep 

learning framework to anticipate EV charging 

capacity, taking climate conditions and charging pile 

dependability into account [6]. 

 

 
Figure 1. Schematic diagram of hybrid electric vehicle 

charging diagram with central control [6]. 

 

This paper looks at current research developments in 

this important area as well as recent developments in 

renewable energy-based charging infrastructure 

(RCI) technology. Optimal planning, optimal size, 

control and energy management, suitable renewable 

energy sources for RCI, siting, renewable energy-

based charge pricing plans, and RCI issues are some 

of the topics covered in this article. 

 

1.1 System Converters 

 

In a solar converter, the PV arrays are connected to 

a DC/DC converter that enables full power point 

tracking control. The AC/DC converter is 

responsible for bi-directionally converting DC/AC 

power. Since the power used from the grid is 

primarily AC, it needs to be converted into DC in 

order to charge the electric vehicles. This conversion 

takes place either before charging starts or when the 

converter relays the grid power to electricity 

networks. In photovoltaic systems based on balanced 

energy conversion, the converters play a unique role. 

Many configurations and specifications have been 

thoroughly studied, such as central inverters, where 

panels are installed with independent inverters and 

micro-inverter power optimizers that need additional 

monitoring, and string inverters, where panels are 

installed in conjunction with a microinverter. By 

continuously adjusting and changing the attached 

load, these power optimizers monitor the overall 

performance of photovoltaic panel arrays and 

maintain the system at its highest operational 

capacity [7, 8]. 

 

Switching converters, or DC-DC converters 

 

DC-DC converters use energy storage components 

(inductors, capacitors) and switching devices 

(MOSFETs, diodes) to control voltage. Fundamental 

Formulas: Duty Cycle (D) [8-12] 

 

𝐷 =
𝑇𝑂𝑁

𝑇𝑂𝑁 + 𝑇𝑂𝐹𝐹
=
𝑇𝑂𝑁
𝑇𝑠

 
 

(1) 

 

where Ton = ON time, Toff = OFF time, Ts= 

switching period. 

Next, finding the buck converter (step-down): 

 
𝑉𝑜𝑢𝑡 = 𝐷. 𝑉𝑖𝑛 (2) 

 

Also, the inductor current ripple (ΔI<sub>L</sub>) 

might be found such as: 

 

∆𝐼𝐿 =
(𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡). 𝐷

𝐿. 𝑓𝑠
 

 

(3) 

 

where fs=1/Ts = switching frequency, L= 

inductance. Moreover, the Boost Converter (Step-

Up) will expressed as: 

 

𝑉𝑜𝑢𝑡 =
𝑉𝑖𝑛

1 − 𝐷
 

 

(4) 

 

Also, the Inductor Current Ripple 

(ΔI<sub>L</sub>) might be represented as: 

 

∆𝐼𝐿 =
𝑉𝑖𝑛. 𝐷

𝐿. 𝑓𝑠
 

 

(5) 

 

Then, the Buck-Boost Converter (Step-Up/Down) 

could be written such as: 

 

𝑉𝑜𝑢𝑡 =
−𝐷

1 − 𝐷
. 𝑉𝑖𝑛 

 

(6) 

 

Such that, the output voltage polarity is inverted. 

Output Voltage Ripple (ΔV<sub>out</sub>), and 

for all converters, the capacitor ripple voltage is: 

 

∆𝑉𝑜𝑢𝑡 ≈
∆𝐼𝐿

8. 𝐶. 𝑓𝑠
 

 

(7) 

 

Such that, C, represents the output capacitance. 

 

DC-AC Converters (Inverters) 

 

The DC-AC converters (inverters) convert DC to 

AC, used in solar systems, motor drives, and UPS. 

Thus, the output voltage (Sinusoidal PWM), and the 

RMS output voltage (Single-Phase Full-Bridge) 

could be expressed as follows [8-12]: 
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𝑉𝑜𝑢𝑡(𝑅𝑀𝑆) =
𝑉𝐷𝐶

√2
.𝑀𝑎 

 

(8) 

 

Whereas, Ma, denotes the modulation index 

(0≤Ma≤1), and VDC indicates the input DC voltage. 

Thus, the fundamental frequency component might 

be written as follows: 

 

𝑉𝑜𝑢𝑡(1) =
𝑉𝐷𝐶
2

.𝑀𝑎 
 

(9) 

 

Next, in order to find the Switching Frequency & 

Harmonics, the total harmonic distortion (THD) will 

be expressed as: 

 

𝑇𝐻𝐷 =
√𝑉𝑜𝑢𝑡(𝑅𝑀𝑆)2 − 𝑉𝑜𝑢𝑡(1)

2

𝑉𝑜𝑢𝑡(1)
. 

 

(10) 

 

Furthermore, the Three-Phase Inverter (Line-to-Line 

Voltage) might be evaluated such that: 

 

𝑉𝐿𝐿(𝑅𝑀𝑆) = √3
𝑉𝐷𝐶

2√2
.𝑀𝑎 

 

(11) 

 

Also, for the power evaluation: 

 
𝑃𝑜𝑢𝑡 = 𝑉𝑜𝑢𝑡(𝑅𝑀𝑆). 𝐼𝑜𝑢𝑡(𝑅𝑀𝑆). cos(𝜙) (12) 

 

 

Whereas,  cos (ϕ), represents the power factor. 

Finally, the key parameters could be listed as below: 

 

i) The overall convertion efficiency (η): 

 

𝜂 =
𝑃𝑜𝑢𝑡
𝑃𝑖𝑛

× 100% 
 

(13) 

 

ii) The Switching Losses 

 

𝑃𝑠𝑤 = 0.5. 𝑉. 𝐼. (𝑡𝑟 + 𝑡𝑓). 𝑓𝑠 (14) 

 

Such that, tr, tf , denote the rise/fall times 

 

1.2 Neural Network-Based Battery Charging 

Optimization 

 

The usefulness of deep neural networks in the 

context of battery charging is examined in this 

article.  This is accomplished by implementing a 

cutting-edge control mechanism that significantly 

lowers the computational complexity in comparison 

to conventional model-based approaches while 

simultaneously guaranteeing safety and optimizing 

the charging current. Model-based methods are 

limited not only by their high computing costs but 

also by the requirement for precise knowledge of the 

model parameters and the battery's internal states, 

which are usually impossible to measure in a real-

world situation. To the best of the authors' 

knowledge, the deep learning-based approach 

presented in this work has been employed for the 

first time in situations where it is impossible to 

assess the internal states of the battery and obtain an 

approximation of its parameters. The effectiveness 

of this strategy in approaching the ideal charging 

policy is highlighted by the results of the statistical 

validation of this methodology [13, 14]. 

Electrochemical models (EMs) and equivalent 

circuit models (ECMs) are the two main types of 

models utilized in advanced battery management 

systems (BMSs). While EMs provides a thorough 

explanation of the electrochemical processes taking 

place within a cell, ECMs are comparatively 

straightforward and easy to understand. Instead of 

being used for real-time control applications, 

electrochemical models are better suited for 

simulation. Moreover, problems with observability 

and identifiability limit the use of electrochemical 

models in a control framework. Because of this, 

scientists have been working to develop simpler 

electrochemical models that are easier to replicate, 

recognizable, visible, and nevertheless accurately 

depict internal cell events. One prominent example 

of one of these models is the single-particle model 

(SPM), which is derived from the pseudo-two-

dimensional model by treating the two electrodes as 

spherical particles. In this study, the battery 

dynamics are mathematically described using SPM.  

Because it might achieve a suitable trade-off 

between accuracy and computing cost, such a 

simplified electrochemical model has been widely 

used for battery control and state prediction. Among 

other places, showed how accurate such a model is.  

Keep in mind that the authors' two-state temperature 

dynamics, which they presented to account for 

thermal phenomena, are added to the battery model 

[15, 16].  

The following equations solely pertain to the 

fundamental variables of the model. The battery's 

state of charge is represented by the variable soc(t) 𝜖 

[0, 1], whose temporal evolution is provided by the 

subsequent equation: 

 
𝑑𝑆𝑂𝐶(𝑡)

𝑑𝑡
=

𝐼(𝑡)

3600. 𝐶
 

 

(15) 

 

where C stands for the cell capacity in [Ah] and the 

applied current is represented as I(t), according to the 

convention that a positive current charges the cell. It 

is essential to remember that the battery is in the state 

of charge at soc(t) = 1 when fully charged and at 

soc(t) = 0 when fully drained. Additionally, the 

following formula provides the battery voltage: 
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𝑉(𝑡) = 𝑈𝑝(𝑡) − 𝑈𝑛(𝑡) + η𝑝(𝑡)

+ η𝑛(𝑡)
+ 𝑅𝑠𝑒𝑖𝐼(𝑡) 

 

(16) 

where the voltage drop in the solid electrolyte 

interphase (SEI) resistance is described by the term 

Rsei I(t), and the open circuit potential and 

overpotential, respectively, are represented by the 

terms Ui(t) and hi(t), for i ∈  {𝑛, 𝑝}. Keeping in mind 

that the overpotential and open circuit potentials are 

nonlinear functions of the battery's average 

temperature, state of charge, and applied current.  In 

reference to the latter, the thermodynamics two-state 

model is used here, with Tc(t) and Ts(t) standing for 

the core and surface temperatures, respectively.  In 

particular, this model says that: 

 

𝐶𝑐(𝑡)
𝑑𝑇𝑐(𝑡)

𝑑𝑡
= 𝑄(𝑡)

−
𝑇𝑐(𝑡) − 𝑇𝑠(𝑡)

𝑅𝑐,𝑠
 

𝐶𝑠(𝑡)
𝑑𝑇𝑠(𝑡)

𝑑𝑡
=
𝑇𝑐(𝑡) − 𝑇𝑠(𝑡)

𝑅𝑐,𝑠

−
𝑇𝑠(𝑡) − 𝑇𝑒𝑛𝑣(𝑡)

𝑅𝑠,𝑒
 

 

 

(17) 

 

where Cc and Cs stand for the heat capacity of the 

cell core and its surface, respectively, and Rc, s, and 

Rs, e for the thermal resistances between the core 

and the surface and between the surface and the 

outside world, respectively. Lastly, the quantity of 

heat produced, denoted by Q(t), is defined as 

follows: 

 

𝑄(𝑡) = |𝐼(𝑡)(𝑉(𝑡) − 𝑈𝑝(𝑡)

+ 𝑈𝑛(𝑡))| 
 

(18) 

It is crucial to emphasize that the experimental 

characterisation of a commercial cell was used to 

obtain the electrochemical characteristics in nominal 

form. The way real neurons behave serves as the 

model for artificial neural networks (ANNs). ANNs 

learn from input data and convert it into knowledge 

in a way similar to the human brain, which sets them 

apart from standard algorithms. Neurons are linked  

 

 
Figure 2. The structure of typical neural network 

controller [15, 16]. 

elementary units that make up the architecture of 

ANNs. Neural networks typically have a layered 

structure to them. The number of layers and the 

number of neurons in each layer determine the 

network design. Figure 2 displays the structure of 

typical neural network controller [15, 16]. Giving a 

specific physical system (plant or process) the right 

input signal to generate the intended response 

(desired performance) is the main objective of neural 

control. The main reason why traditional control 

methodologies are based on linear systems theory is 

that real systems are nonlinear. Neural networks are 

good at control because of their inherent massive 

parallelism, powerful learning algorithms, variety of 

architectures, ability to train from input/output 

functions and/or experiential data, ability to simplify 

complex control problems, and the effectiveness of 

the backpropagation algorithm in training 

multilayered NNs [15-20] Another configuration for 

the neural network controller with adaptive structure 

is presented in Figure 3. 

 

 
Figure 3. Neural network controller configuration with 

adaptive structure [17-20]. 

 

While traditional fixed-topology neural networks 

may struggle with nonlinear, time-varying, or 

uncertain systems, resulting in inefficiencies or 

instability, an adaptive structure allows the network 

to modify its layers, neurons, or connections in real-

time, improving adaptability and robustness. 

However, challenges include ensuring stability 

during reconfiguration, avoiding overfitting, 

managing computational complexity, and 

developing efficient learning algorithms that can 

handle structural changes without compromising 

control accuracy. This approach is especially 

relevant in complex, dynamic environments like 

robotics or autonomous systems. The problem of 

"Neural network controller configuration with 

adaptive structure" revolves around designing 

control systems where the neural network's 

architecture dynamically adjusts to optimize 

performance under varying conditions [20-22]. 
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Hence, and according to the literature, a number of 

fundamental equations govern the setup and 

modification of neural network controllers for 

dynamic systems; the most significant of these 

equations will be discussed in this paper. 

 

1. Reference Model Dynamics  

 

The intended system output path is specified by the 

reference model [15-22]: 

 
𝑦𝑀(𝑡 + 1) = 𝑎𝑦𝑀(𝑡) + 𝑟(𝑡) (19) 

 

Such that, 𝑦𝑀 denotes the model output, r(t) 

indicates is the reference input, and a represents a 

system parameter. 

 

2. The Law of Adaptive Weight Update  

 

The tracking error between the plant outputs could 

be used to update the weights of neural networks 

𝑦𝑀(t) as below: 

 
𝑒(𝑡) = 𝑦𝑀(𝑡) + 𝑦(𝑡) (20) 

 

Also, the weight update for the ith parameter at 

time k might be commonly found as: 

 

∆𝑞𝑖(𝑘) = −𝛽
𝜕𝐸𝑟(𝑘)

𝜕𝑞𝑖(𝑘)
 

 

(21) 

 

Whereas; Er(k)=∑ 𝑒2(𝑘)𝑁
𝑘=1 , denotes the squared 

error cost function, β, indicates the learning rate. 

 

3. Computation of Control Signals  

 

For nonlinear systems, a pseudo-inverse method is 

frequently used to calculate the control signal u(t), 

which drives the system output towards the reference 

model: 

 
𝑢(𝑡) = 𝑔+(𝑥)[𝑥�̇� − 𝑓(𝑥)] (21) 

 

Such that, g+(x) represents the pseudo-inverse of the 

system's input matrix g(x), f(x) denotes the system 

nonlinearities, and 𝑥�̇� , indicates the desired model 

state derivative. 

 

4. Adaptive Structure Modification  

 

The neural network structure may be dynamically 

altered depending on correlation criteria to preserve 

efficiency and prevent redundancy: 

 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =
𝐶𝑜𝑣(ℎ𝑖 , ℎ𝑗)

𝜎ℎ𝑖𝜎ℎ𝑗
 

 

(22) 

 

Neuron activations are represented by hi and hj, and 

connections with poor correlation might be removed. 

 

5. Feed-forward and Feedback Control 

 

Together, feed-forward and feedback neural 

networks are combined in a single architecture: 

 

𝑢(𝑡) = 𝑁𝑁𝐹𝐹(𝑥(𝑡)) + 𝑁𝑁𝐹𝐵(𝑒(𝑡)) (23) 

 

Whereas: NNFF NNFF denote the feedforward neural 

network acting on the current state x(t), and NNFB 

indicates the feedback network acting on the 

tracking error e(t). 

 

2. Related Studies 

 
Several modern researchs highlight how neural 

network-based controllers may improve hybrid EV 

charging systems' dependability and efficiency. 

Such controllers can fulfill dynamic charging 

demands, optimize energy distribution, and account 

for renewable energy unpredictability by utilizing 

real-time data and adaptive learning capabilities. 

This section analyzes 10 contemporary works 

(2022–2023) on hybrid charging systems integrated 

with neural network (NN) controllers, concentrating 

on techniques, contributions, and limits. 

Long Short-Term Memory (LSTM) networks were 

used by Li et al. (2023) as part of their strategy to 

predict the demand for EV charging in hybrid parks 

that include solar. The contributions os this study 

represented by outperforming ARIMA models in 

prediction accuracy by 15%, dynamic pricing and 

load balancing were made possible. Short-term 

forecasting was the only area of weakness; real-time 

grid instability was not covered. The hybrid solar-

EV charging system with a feedforward NN 

controller for energy distribution is the strategy 

proposed by Smith and Patel (2022). Contribution of 

this paper demonstrated via the synergy between 

solar and storage, grid reliance was decreased by 

30%. Study gaps restricted by expensive startup 

expenses and difficulties scaling for widespread 

implementation. A controller based on 

reinforcement learning (RL) is used by Zhang et al. 

(2023) to optimize charging schedules in vehicle-to-

grid (V2G) systems. The study contribution shows 

that the bidirectional energy flow increased grid 

stability by 25% during peak hours. While the, 

limitation of this technology represented by ignoring 

real-world variability and assumed constant battery 

deterioration rates. Convolutional neural networks 

(CNNs) are the method used by Kumar et al. (2022) 

to detect faults in hybrid charging stations. 

Contribution was that early anomaly identification 

resulted in a 40% reduction in downtime. Also, gaps 
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represented by the limited application in low-

resource situations due to the need for sufficient 

labeled data. The hybrid wind-solar charging park 

with a Deep Q-Network (DQN) controller for energy 

allocation is the strategy proposed by Wang et al. 

(2023). The suggested technique provides an 

increased use of renewable energy by 35% under 

weather-dependent conditions. On the other hand, 

the study limitations were that users' demand 

response programs were not integrated. Chen and 

associates (2022) suggested cooperative charging in 

urban centers using a multi-agent neural network 

system strategy. This technique provide contribution 

that decentralized decision-making resulted in a 50% 

reduction in wait times. Also, the neglected 

cybersecurity threats in communication between 

many agents wrer the main limitations. Rodriguez et 

al. (2022) proposed a hybrid control strategy using 

NN-PID modules to manage temperature at fast 

charging stations. This technique extended battery 

life by 20% through thermal regulation. 

Furthermore, a weakness of this study was its focus 

exclusively on lithium-ion batteries, excluding other 

chemistries. A hybrid NN-PID controller is the 

strategy used by Rodriguez et al. (2022) to regulate 

the temperature in fast-charging stations. The study 

contribution was through the battery's lifespan was 

extended by 20% by using temperature control,. 

Also, only lithium-ion batteries are covered, with 

little attention paid to alternative chemistries as the 

study gaps. Gupta et al. (2023) proposed Federated 

Learning (FL) architecture for chargeable data 

analysis that protects privacy. This approach made it 

possible for stations to collaborate on learning 

without exchanging data as a study contribution. 

While this technology show gaps of slow rates of 

convergence in diverse networks. Almeida et al. 

(2022), employed a hybrid physics-informed neural 

network (NN) for charging infrastructure predictive 

maintenance. By predicting failures, maintenance 

expenses were lowered by 30% as a study 

contribution. Finally, this strategy have gaps that the 

model training requires domain-specific knowledge. 

 
 

Table 1. Summary of the recent articles and studies concerning the hybrid charging systems integrated with neural network (NN) 

controllers 

Year Authors Strategy Contribution Charging Efficiency 

(Est.) 

Gaps/Limitations 

2023 Li et al. LSTM demand 

forecasting 

15% higher 

accuracy vs. 

ARIMA 

~10–12% (better 

scheduling = fewer 

losses) 

Short-term focus, no grid 

dynamics 

2022 Smith & 

Patel 

Feedforward NN 

+ solar 

30% grid 

dependency 

reduction 

~20–25% (more local 

energy = higher 

efficiency) 

High costs, scalability 

issues 

2023 Zhang et 

al. 

RL-based V2G 

scheduling 

25% grid stability 

improvement 

~15–18% (efficient bi-

directional charging) 

Simplified battery 

degradation model 

2022 Kumar et 

al. 

CNN fault 

detection 

40% downtime 

reduction 

~5–10% (indirect effect 

on efficiency) 

Data-intensive training 

2023 Wang et al. DQN for wind-

solar allocation 

35% renewable 

utilization increase 

~25–30% (better 

source use = higher 

charging efficiency) 

No demand response 

integration 

2022 Chen et al. Multi-agent NN 

coordination 

50% queuing time 

reduction 

~15% (faster charging 

turnover improves 

throughput) 

Ignored cybersecurity 

risks 

2023 Nguyen & 

Lee 

GNN energy flow 

modeling 

18% cost savings 

via energy sharing 

~10–15% (efficient 

distribution = less loss) 

High computational load 

2022 Rodriguez 

et al. 

NN-PID thermal 

control 

20% battery 

lifespan extension 

~8–10% (thermal 

control reduces 

inefficiency) 

Limited to lithium-ion 

batteries 

2023 Gupta et al. Federated 

Learning 

framework 

Privacy-preserving 

data analysis 

~5% (minimal direct 

efficiency gain) 

Slow convergence in 

heterogeneous networks 

2022 Almeida et 

al. 

Physics-informed 

NN maintenance 

30% maintenance 

cost reduction 

~7–10% (better health 

= less energy waste) 

Required domain 

expertise 

Problem Statement 

 
Heterogeneous EV charging needs, renewable 

energy integration, and dynamically balancing grid 

demands are issues faced by existing EV charging 

parks.  Inefficient charging, extended downtime, and 

grid stress result from conventional controllers' 

inability to adjust to real-time variations in the 

energy source (such as solar/wind intermittency), 

voltage instability, and fluctuating battery states of 
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health.  The adaptive, intelligent control systems that 

can optimize hybrid AC/DC charging infrastructure 

while maintaining grid stability and customer 

happiness are lacking, and this work fills that gap. 

 

Study Objectives 

 

Designing and testing a neural network (NN)-based 

charging controller that combines solar, grid, and 

storage systems for hybrid EV parks is the goal of 

this project.  The main goals are to: (1) create a 

reinforcement learning-enabled neural network 

(NN) that can dynamically modify energy allocation 

and charging rates in response to real-time inputs 

(voltage, demand, and renewables); (2) optimize 

power quality and reduce peak load stress on the 

grid; (3) confirm the system's resilience to multi-EV 

load scenarios and renewable intermittency; and (4) 

compare performance to traditional PID and rule-

based controllers in terms of efficiency, charging 

time, and scalability. 

 

3. Methodology 
 

The aim of this study is to control the operation of 

the multi-type charging park system model for 

supporting electric vehicles to enhance the overall 

efficiency. The proposed hybrid system that consists 

of three energy sources, has been seperated to three 

charging schemes; the national power grid, the solar 

cell array system, and the battery array syste. All of 

these systems will be tested seperately with the 

artificial neural network (ANN) controller model to 

enhance the charging efficiency and ensures 

continuous electrical energy. Figure 4 shows the 

MATLAB Simulink model of the poroposed 

seperated electric vehicles charging park ANN 

controlled models. 

 

 
Figure 4. MATLAB Simulink of the poroposed seperated 

electric vehicles charging park ANN controlled models, 

Three phase AC generator supply, 

 
Figure 5. MATLAB Simulink of the poroposed seperated 

electric vehicles charging park ANN controlled models, 

PV cells supply 

 

 
Figure 6. MATLAB Simulink of the poroposed seperated 

electric vehicles charging park ANN controlled models, 

Battery bank supply. 

 

Referring to Figure 4 above, we note that the 

proposed model for this article has been divided into 

three systems according to the type of energy source 

provided. As previously stated, Figure 4.(a) shows 

the electric vehicle charging circuit provided by the 

national grid, while Figure 4.(b) shows the provision 

through the solar panel array, and finally, Figure 

4.(c) shows the provision by battery pack units. Each 

of these systems shown in Figure 4 has a control unit 

that works using artificial neural networks (ANN). 

The details of the charging park unit supported by 

the ANN controller are shown in Figure 5. 

 

 
Figure 7. The details of the charging park unit 

supported by the ANN controller, The charging park unit 

 
Figure 8. The details of the charging park unit 

supported by the ANN controller, The ANN controller. 

 

As we could observe in Figure 5, the smart controller 

consists of several layers (the input layer, the internal 

hidden layer, and the output layer). The smart 

controller calculates the current and voltage 

generated in the charging circuit and compares them 

with the standard values to boost the charging power 

when it falls below the required levels. The charging 

power is boosted by allowing a boosted battery unit 

to compensate for the resulting drop in charging 

power, thus improving charging efficiency and 

charging state. Moreover, the details settings of the 

simulation model have been illustrated in Table 2. 
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Table 2. The proposed model simulation model design parameters. 

Units Parameters 

 

Battery Cells 

Voltage Capacity Ratio Primary 

State-Of-Charge 

Battery Time 

Response 

700.5 V 1000 Ah 100% 0.001 sec 

PV Arrays Open Circuit 

Voltage 

(Voc) 

Short Circuit 

Current 

(Isc) 

Power Maximum Cells / Module 

TITAN 

42 V 18.32 A 610 W 120 

National Power 

AC Plant 

Nominal Power Line-to_Line 

Voltage 

Stator Resistance 

Rs 

Active Power 

Generation 

200 MWatts 360 V 2.8544e-3 p.u. 150 MWatts 

ANN Controller 

 

Number of 

Layers 

Number of 

Neurons 

Trainning 

Strategy 

Activation 

Function 

3 10 Feed Forward Symmetric 

Sigmoid 

The smart controller's operation will improve 

adaptive tracking because it can detect a very slight 

shift in turning on a very little current by combining 

adaptive interneurons as a control system with a 

small fraction of a highly differential change. 

Moreover, the flow chart of the proposed model of 

electric vehicle charger system is presented in Figure 

6.  

 
Figure 9. Flow chart of the ANN controlled hybrid 

charging park vehicle model. 

 

The structural diagram of the proposed enhanced 

system for equipping electric vehicle chargers 

begins by adjusting the initial value settings For 

photovoltaic cell units, the battery units, in addition 

to the national plant AC unit. Next employing the 

ANN smart controller, which operates to control the 

amounts of the highest possible energy flow to the 

charging park unit. This is followed by a 

comprehensive performance examination process 

for all units. Finally, validating and reading the 

results of the charging positions to verify the 

accuracy of the results obtained to display amounts 

of the SOC and efficiency Also, a brief 

demonstration of how an artificial neural network 

(ANN)-based controller in an electric vehicle (EV) 

charging system adaptively tracks and maintains 

nominal voltage/current during charging:  

1. Input Layer (Sensing)  

• Inputs: Real-time measurements of charging 

voltage (VactualVactual), current (IactualIactual), 

temperature (TT), and grid conditions (e.g., AC 

supply stability).  

• Objective: Detect deviations from the nominal 

charging profile (VnominalVnominal, 

InominalInominal).  

2. Hidden Layers (Adaptive Learning) The ANN 

uses backpropagation and online learning to train 

hidden neurons:  

• Step 1: Compare VactualVactual/IactualIactual 

with VnominalVnominal/InominalInominal to 

compute the error signal 

(e=Vnominal−Vactuale=Vnominal−Vactual).  

• Step 2: Adjust the weights and biases of hidden 

layer neurons using optimization algorithms (e.g., 

gradient descent) to minimize the error.  

• Step 3: Activation functions (e.g., ReLU) model 

non-linear relationships between input disturbances 

(e.g., voltage sag) and corrective actions.  

3. Output Layer (Control Action)  

• Outputs: Adjust PWM signals to the DC-DC 

converter (e.g., buck/boost) or AC-DC rectifier to 

regulate voltage/current.  
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• Example: If voltage drops due to grid instability, 

the ANN increases the duty cycle of the converter to 

compensate.  

4. Adaptation Mechanism  

• Reinforcement Learning: Reward/punish neurons 

based on how well they track the nominal values.  

• Retraining: Periodically update the ANN with new 

data (e.g., aging battery resistance, grid fluctuations) 

to maintain accuracy. 

 

4. Results And Discussion 

 
The MatLab2022b Simulink toolbox was used to 

develop the simulation architecture in order to 

increase the charging efficiency of the suggested 

hybrid energy management system for electric car 

charging system employing intelligent adaptive 

artificial neural network control technology system 

independently. The proposed models have 

simulated, and the results for implementing this 

simulation were extracted, as shown in the following 

figures. Figure 7 shows the results of battery banks 

supply system model results using ANN controller. 

 

 
Figure 10. Results of battery bank supply unit, Initial 

battery readings 

 

 
Figure 11. Results of battery bank supply unit, Boost 

battery results. 

 

Also, the results at the battery bank supply charging 

park unit teminals without and with ANN controller 

action are displayed in Figure 8. 

 

 
Figure 12. The results at the charging park unit 

teminals, Results at the charging park unit input 

 
Figure 13. The results at the charging park unit 

teminals, Results at the charging park unit output 

 

 
Figure 14. The results at the charging park unit 

teminals, Results of the ANN controller enhancement. 

 

Next, the results of PV cells supply system model 

using ANN controller are presented in Figure 9. 

 

 
Figure 15. The results of PV cells supply model, PV 

panels results. 

 

 
Figure 16. The results of PV cells supply model, 

Supplied PV results. 
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Furthermore, the results of the PV cells enviromental 

effects and the boost unit operation are demonstrated 

in Figure 10. 

 
Figure 17. The results of the PV cells enviromental 

effects and the boost unit operation, PV cells 

enviromental effects 

 

 
Figure 18. The results of the PV cells enviromental 

effects and the boost unit operation, , Boost unit 

operation. 

 

Moreover, the results at the PV cells supply charging 

park unit teminals without and with ANN controller 

action are displayed in Figure 11. 

 

 
Figure 19. The results at the PV cells supply charging 

park unit teminals, Results at the charging park unit 

input 

 

 
Figure 20. The results at the PV cells supply charging 

park unit teminals, Results at the charging park unit 

output. 

 

 
Figure 21. The results at the PV cells supply charging 

park unit teminals, Results of the ANN controller 

enhancement. 

 

Next, the results of National plant three phase AC 

supply system model using ANN controller are 

presented in Figure 12. 

 

 
Figure 22. Results of AC plant supply unit, National 

plant AC readings 

 

 
Figure 23. Results of AC plant supply unit, Boost 

AC to DC results. 

 

Furthermore, the results at the AC plant supply 

charging park unit teminals without and with ANN 

controller action are displayed in Figure 13. 
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Figure 24. The results at the AC plant supply charging 

park unit teminals, Results at the charging park unit 

input. 

 

 
Figure 25. The results at the AC plant supply charging 

park unit teminals, Results at the charging park unit 

output. 

 

 
Figure 26. The results at the AC plant supply charging 

park unit teminals, Results of the ANN controller 

enhancement. 

 

Through the results obtained from implementing a 

simulation of the three systems for the electric 

vehicle charging station model with the addition of a 

neural network controller, we note the smart 

controller's clear contribution to improving charging 

efficiency. The voltage and current of the chargers 

for all three devices suffer significant declines in 

their values as charging time and the number of 

vehicles increase, with relative variations for each 

system depending on the device type. Table 3 shows 

a comparison of the results obtained for the rates of 

improvement in charging efficiency for each model 

supply type. 

 

 

 

 
Table 3. Comparison of the results obtained for the rates 

of improvement in charging efficiency for each model 

supply type. 

 

Supply 

Model 

 

Nominal 

Supplied 

Power 

 

Charging 

Efficiency 

 

Enhanced 

ANN 

Efficiency 

AC Plant 200 

MWatt 

19.87% 60% 

PV Cells 200 KWatt 35.75% 59.78% 

Battery 

Bank 

200 KWatt 31.26% 48.33% 

 

5. Conclusions 

 
The growing need for efficient electric vehicle (EV) 

charging infrastructure has led to the emergence of 

hybrid charging parks, which integrate conventional 

grid systems with renewable energy sources.   This 

paper proposes an enhanced evaluation approach for 

hybrid charging park systems using a Neural 

Network-based Charging Controller (NNCC).  By 

balancing solar, wind, and grid sources, the 

controller dynamically optimizes energy 

distribution, prioritizes vehicle charging demands, 

and reduces energy losses.  A multi-layer perceptron 

(MLP) neural network was trained using real-time 

operational data, including vehicle wait time, state of 

charge (SoC), and variation in renewable energy.  

Simulation results showed that the proposed NNCC 

achieved an 18.7% improvement in the total power 

efficiency of the charging park compared to 

conventional rule-based controllers. Furthermore, 

the technique ensured faster and more reliable 

charging sessions by increasing the cars' final State 

of Charge (SoC) by an average of 12.5%.  

Furthermore, the neural network-based system 

demonstrated increased adaptability to changing 

renewable energy conditions, significantly 

enhancing the sustainability and resilience of 

intelligent EV charging ecosystems. 
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