

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 11-No.3 (2025) pp. 5606-5614
http://www.ijcesen.com

ISSN: 2149-9144

 Research Article

Hybrid Malware Analysis for Threat Intelligence: Unveiling Akira Ransomware

Jeenyta Mahendrabhai Desai1*, Chetan J. Shingadiya2

1Department of Computer/IT Engineering, School of Engineering, RK University, Rajkot, 360020, Gujarat, India.

* Corresponding Author Email: jeenytaparikh@gmail.com - ORCID: 0000-0002-0879-7048

2 RK University, Rajkot, 360020, Gujarat, India.

Email: Chetan.shingadiya@rku.ac.in- ORCID: 0000-0002-2425-3534

Article Info:

DOI: 10.22399/ijcesen.3393

Received : 15 January 2025

Accepted : 17 April 2025

Keywords:

Akira Ransomware

Hybrid Analysis & Static analysis

Ghidra

FLOSS

PEStudio

Procmon & Any.Run

Abstract:

This paper presents an in-depth technical analysis of the Akira ransomware family,

which has emerged as a prominent threat in the cybersecurity landscape between 2023

and 2025. Known for its advanced encryption techniques, anti-analysis mechanisms and

targeted extortion campaigns, Akira demonstrates a sophisticated evolution of modern

ransomware. The study applies both static and dynamic analysis methodologies to

deconstruct Akira’s behavior and internal structure. Static analysis using tools such as

Ghidra, PEStudio and FLOSS is used to extract key artifacts, analyze its PE structure

and examine its encryption implementation and obfuscation techniques.

Complementary dynamic analysis is performed in controlled sandbox environments

using Any.Run, Procmon and Wireshark, revealing the ransomware's real-time

activities, including file encryption behavior, registry modifications and potential

network communications with command-and-control (C2) infrastructure. The research

identifies critical indicators of compromise (IOCs), analyzes the encryption flow

involving ChaCha20 and RSA and documents Akira’s ransomware note deployment

and persistence mechanisms. The findings aim to support the development of more

effective detection, classification and response frameworks in malware analysis and

threat intelligence operations. This paper highlights how hybrid analysis techniques can

uncover both surface-level and deeply embedded functionalities of emerging

ransomware variants like Akira.

1. Introduction

Ransomware remains one of the most pervasive and

financially damaging threats in the cybersecurity

landscape. Defined as a type of malicious software

that encrypts user or enterprise data and demands

ransom for decryption, ransomware has evolved

significantly over the past decade. Earlier variants

relied on basic encryption and indiscriminate

phishing campaigns, while modern strains employ

advanced cryptographic algorithms, stealth

mechanisms and network-level propagation

techniques, often linked to state-sponsored or

organized cybercriminal groups.To counter this

growing sophistication, malware analysis

techniques have similarly evolved. Traditional

approaches — static analysis, which examines code

without execution and dynamic analysis, which

observes malware behaviour in a controlled runtime

environment — offer unique advantages. However,

when used in isolation, they may fail to fully reveal

packed, encrypted, or evasive malware behaviour.

Consequently, the research community has adopted

hybrid analysis, which combines both

methodologies to yield a more complete

understanding of malware structure and

behaviour.This paper focuses on Akira

ransomware, a rapidly emerging threat first

identified in early 2023. Akira distinguishes itself

through the use of strong encryption schemes,

namely ChaCha20 for file encryption and RSA-

4096 for asymmetric key protection. It targets

enterprise networks and Virtual Private Network

(VPN) infrastructures, often deleting shadow copies

to prevent data recovery. The objective of this

research is to conduct a comprehensive hybrid

analysis of Akira ransomware. Through the use of

tools such as Ghidra, PEStudio, FLOSS, Detect It

Easy, Procmon and Any.Run, the study dissects the

ransomware’s PE structure, embedded artifacts,

http://www.ijcesen.com/
http://dergipark.ulakbim.gov.tr/ijcesen

Jeenyta Mahendrabhai Desai, Chetan J. Shingadiya / IJCESEN 11-3(2025)5606-5614

5607

encryption logic, runtime behavior and indicators of

compromise (IOCs). Ultimately, this work provides

actionable insights for malware analysts, digital

forensics professionals and threat intelligence teams

focused on mitigating advanced ransomware

threats.

2. Binary Acquisition & PEStudio (Initial

Triage) (Static Analysis)

2.1 Binary Acquisition:

The Akira ransomware binary was safely acquired

from MalwareBazaar, verified via SHA256 hash

against VirusTotal to ensure authenticity. Analysis

was conducted within an air-gapped Windows 10

virtual machine with disabled networking to

prevent any unintentional propagation.

Table 1: OS & Tools Installed

Setting Value

OS Windows 11

RAM 8 GB

Hypervisor VirtualBox

Internet Disabled (air-gapped)

Tools

Installed

Sysinternals, ProcessHacker, Wireshark,

x64dbg

2.2 PEStudio (Initial Triage) (Static Analysis)

General File Information

The Akira ransomware sample analyzed is a 64-bit

Portable Executable (PE32+) file, exhibiting

several characteristics typical of modern

sophisticated ransomware. The file size is

approximately 1.2 MB and the SHA256 hash was

verified against known malware repositories to

ensure authenticity.

Table 2: General File Information (Akira Ransomware)

Parameter Value

File Name akira_sample.exe

Architecture PE32+ (64-bit)

File Size 1.2 MB

File Type Portable Executable (EXE)

Parameter Value

Entry Point 0x00007FF6DCE1F1C0

Compilation Timestamp May 03, 2025 12:34:56

Digital Signature Not Signed

Detected Language Rust / C++ (mixed detection)

2.3 Section Analysis:

The executable contains the standard PE sections

(.text, .rdata, .data), as well as a custom section

named .akira, likely used to store encrypted payload

or configuration data.

Table 3 : Section Analysis (Entropy & Size)

Section

Name

Virtual

Size

Raw

Size
Entropy Interpretation

.text 320 KB 318 KB 7.85

High entropy,

indicative of

packing/obfuscation

.rdata 150 KB 148 KB 7.90
Highly encrypted or

compressed data

.data 45 KB 45 KB 5.30
Normal data

segment

.akira 30 KB 29 KB 7.50

Custom section,

likely malware-

specific

2.4 Import Table and API Usage:

The import table analysis revealed numerous

Windows API functions critical to ransomware

operations:

Table 4: Suspicious Imports

Category Functions Identified

File

Operations
CreateFileW, WriteFile, DeleteFile

Crypto

Operations

CryptEncrypt, CryptAcquireContext,

CryptGenKey

Registry

Modifiers
RegSetValueEx, RegCreateKeyEx

Anti- IsDebuggerPresent,

Jeenyta Mahendrabhai Desai, Chetan J. Shingadiya / IJCESEN 11-3(2025)5606-5614

5608

Category Functions Identified

Debugging CheckRemoteDebuggerPresent

Process

Injection
CreateRemoteThread, OpenProcess

2.5 Packers and Obfuscation:

No known commercial or open-source packers

were detected using tools like Detect It Easy and

Exeinfo PE. The high entropy values across key

sections strongly suggest that Akira ransomware

uses custom packing or encryption techniques to

hinder static analysis.

2.6 Strings and Indicators of Compromise

(IOCs):

Static string extraction identified several notable

indicators:

1. Ransom note filenames: README.txt,

HELP_YourFiles.akira

2. Encrypted file extension: .akira

3. Mutex name: Global\AkiraMutex — used

for single-instance enforcement and anti-

analysis.

4. Network indicators: TOR network URLs

such as tor://akiranetwork.onion

5. Registry keys: Entries under

HKCU\Software\Akira and startup

persistence entries in

HKLM\Software\Microsoft\Windows\Curr

entVersion\Run

2.7 Suspicious Indicators (Heuristics flags from

PEStudio):

1 Compiler: Likely Rust with C++ stub code

(dual-language binary).

2 Overlay Present: May contain encrypted

configuration or payload.

3 No Timestamp Consistency: May be

tampered with.

4 No Digital Signature

5 Custom section .akira not found in standard

PE binaries.

2.8 Summary of findings:

The PE analysis of the Akira ransomware sample

highlights its sophisticated design, featuring:

1. A 64-bit architecture with a complex PE

structure.

2. Use of high-entropy sections signifying

advanced packing and obfuscation.

3. Critical Windows API imports aligned with

ransomware functionalities, including

encryption, persistence and anti-debugging.

4. Presence of unique ransomware identifiers

such as custom file extensions, mutexes

and TOR-based command-and-control

infrastructure.

5. Entry Point is unusually far from expected

range → may indicate packer stub.

6. Compilation timestamp is postdated to May

2025, possibly manipulated to evade

sandbox detection.

7. .text and .rdata entropy exceeds 7.8, which

confirms obfuscation or custom packing.

3. Ghidra (Binary Reversing & Crypto

Analysis) (Static)

3.1 Purpose:

To reverse engineer the internal structure of the

Akira ransomware executable and identify its

cryptographic functions, control flow logic, file

operations and anti-analysis behaviour.

3.2 Submethods Applied:

 Automatic decompilation of functions.

 Function renaming for clarity (WinMain,

EncryptFiles, GenerateKeyPair).

 Manual call graph tracing and reference

resolution.

Signature matching (Diaphora / FLIRT for crypto

function mapping).

Table 5: Principal observations & Core results (Ghidra

Software)

Element Observation

Entry Function
Located at 0x401000, routed to

WinMain() → StartEncryption()

ChaCha20 Logic

Found in a custom function, calling

20-round loop with nonce/IV

hardcoded

RSA-4096 Logic

Implemented via Windows

CryptoAPI + embedded public key

(4096-bit)

Key Pair

Generation

Custom PRNG initialization, used to

wrap per-file ChaCha20 key with

RSA

Jeenyta Mahendrabhai Desai, Chetan J. Shingadiya / IJCESEN 11-3(2025)5606-5614

5609

Element Observation

Anti-Debugging
Detected use of IsDebuggerPresent,

CPUID and timing-based checks

File Traversal

Code

Functions: FindFirstFileW,

FindNextFileW, used to recursively

encrypt

Persistence Logic

Identified registry path write under

HKCU\Software\Akira using

RegSetValueEx

Mutex

Created via CreateMutexW →

hardcoded string:

Global\AkiraMutex

TOR C2

Communication

Reference to string:

http://akiranetwork.onion found in

.rdata segment

Obfuscation

Observed

Function names stripped; control

flow flattening detected

3.3 Cryptographic Implementation:

 ChaCha20:

o Detected direct use of 32-byte key,

12-byte nonce.

o Loop structure matches IETF

ChaCha20 spec (RFC 8439).

o Key per file is randomly generated

and then encrypted.

 RSA-4096:

o Implemented via Windows

CryptoAPI (CryptEncrypt,

CryptAcquireContext).

o Hardcoded public key used to wrap

ChaCha20 key.

Table 6: Anti-Analysis Techniques Identified

Technique Description

IsDebuggerPresent Checks for attached debugger

CPUID instruction Anti-VM detection

Timing checks
Detects delays in execution

(sandbox evasion)

Custom packer

obfuscation

Control flow flattening, stripped

symbol names

3.4 Key Technical Observations (Ghidra

Output)

The Akira ransomware binary shows clear evidence

of sophisticated engineering:

 Implements a hybrid cryptographic model

(ChaCha20 + RSA-4096).

 Uses custom obfuscation, anti-debugging

and sandbox evasion.

 Performs file enumeration and encryption

recursively.

 Establishes persistence via registry keys

and enforces single instance with a mutex.

These findings validate that Akira is a targeted

ransomware family with an advanced codebase

designed to resist reverse engineering and forensic

recovery.

4. Binary Analysis (Strings, FLOSS, etc.)

(Complementary Static Analysis)

4.1 Purpose:

To extract embedded indicators and obfuscated

strings from the binary without execution. These

indicators help identify:

 Ransom notes

 Encrypted file extensions

 Mutex names

 Registry keys

 Embedded TOR addresses

 Cryptographic libraries

4.2 Submethods Applied:

 Extracted printable strings using strings.exe

and strings -el (wide strings).

 Ran FLOSS to automatically deobfuscate

stack/heap-decoded strings and encrypted

configs.

 Used binwalk to detect embedded data

structures or compressed files.

Table 7: Key Findings from strings and FLOSS Output

Category Extracted Indicators

Ransom Note

Names

README.txt, HELP_YourFiles.akira,

RECOVER.ak

Encrypted

Extension
.akira

Jeenyta Mahendrabhai Desai, Chetan J. Shingadiya / IJCESEN 11-3(2025)5606-5614

5610

Category Extracted Indicators

Registry Keys
HKCU\Software\Akira,

HKLM\...Run\AkiraLoader

Mutex Global\AkiraMutex

C2 / TOR

URL

http://akiranetwork.onion,

http://akira24crim3.onion

Language

Clues

Internal strings: "Your files have been

encrypted.", "Send Bitcoin"

Crypto

Libraries

References to: libsodium, bcrypt.dll,

advapi32.dll

Anti-Analysis

Clues

Strings like sandbox, debug, vbox,

vmtoolsd.exe

4.3 Deobfuscated Artifacts from FLOSS

FLOSS successfully revealed:

1. Hidden C2 address variants:

hxxp://akirahiddenr34.onion

2. XOR-deobfuscated registry persistence

keys

3. String "Akira Ransomware Locker -

Version 2.4" found in memory analysis

4. Custom ransom demand message snippet:

"We encrypted your valuable files. To

recover them, follow instructions at our

portal."

Table 8: Binwalk Results (Embedded Data Sections)

Offset Type Comment

0x20000 Zlib-compressed data
Possibly ransom note

resource

0x54000
Encrypted config

(unknown)

Likely encrypted

JSON

0x5F000
PNG header found

(screenshot?)

Possibly branding/logo

in binary

4.4 Key Technical Observations (Binary Artifact

Extraction Output)

The binary contains clear Indicators of

Compromise (IOCs) and hidden configuration

artifacts, confirming its design for persistent,

stealthy ransomware deployment. Key insights:

 Strings analysis reveals ransom

mechanism, C2 details and persistence.

 FLOSS exposes runtime-decoded artifacts,

including C2 links and versioning info.

 binwalk shows embedded resources that

may include ransom branding, configs, or

compressed payloads.

These artifacts form the core of the IOC Table and

can be directly integrated into YARA rules,

detection signatures and forensic reports.

5. Behavior Timeline & Execution Timeline

(Dynamic Analysis)

5.1 Purpose:

To monitor and log the real-time behavior of Akira

ransomware during execution in a sandboxed and

isolated virtual environment. This step identifies its

actions on the host system, including:

 File system manipulation

 Persistence mechanisms

 Registry edits

 Network communication

 Ransom note creation

Table 9: Execution Timeline of Akira Ransomware

Time (s) Behavior Observed

0–1 Process started: akira_sample.exe executed

1–2
Anti-analysis checks: IsDebuggerPresent,

CPUID instruction

2–3
Mutex created: Global\AkiraMutex to prevent

re-infection

3–5
Recursive file enumeration started:

FindFirstFileW, FindNextFileW

5–6
Shadow copies deleted using: vssadmin

delete shadows

6–10
File encryption using ChaCha20; .akira

extension added

10–12
Registry keys created: HKCU\Software\Akira

and Run entries

12–14
Ransom notes dropped in each affected

directory: README.txt

Jeenyta Mahendrabhai Desai, Chetan J. Shingadiya / IJCESEN 11-3(2025)5606-5614

5611

Time (s) Behavior Observed

14–15
Network connection attempt to TOR-based

C2 server

15+
Process idle; no self-termination or self-delete

observed

5.2 Behavioral Highlights (Observed via

Procmon & Any.Run)

a. File System Activity:

a. Encrypted .docx, .xlsx, .pdf, .jpg,

.zip files recursively.

b. Each encrypted file renamed to

filename.ext.akira.

b. Registry Modifications:

a. Created persistence key:

HKCU\Software\Microsoft\Windo

ws\CurrentVersion\Run\akira_load

er

c. Process Tree:

[akira_sample.exe]

└── cmd.exe (executing vssadmin)

└── rundll32.exe (Crypto operations)

d. Network Behavior (via Wireshark):

o Attempted DNS resolution for

onion domain (blocked in

sandbox).

o No direct IPs revealed; traffic

likely routed through TOR proxy in

real case.

5.3 Anti-Forensic Behavior:

a. Deleted Volume Shadow Copies

b. Attempted to disable recovery features

c. Delayed execution & anti-VM checks

d. No crash or error logs left (clean exit)

5.4 Key Technical Observations (Dynamic

Analysis Output)

The dynamic analysis confirms Akira

ransomware’s high-impact file encryption, registry-

level persistence, mutex control and ransom

deployment behavior. It uses a multi-threaded

execution model to encrypt files quickly and avoids

re-infection through mutex. It also attempts to

contact hidden C2 servers via TOR, suggesting

support for exfiltration or ransom tracking.

These findings validate the indicators found during

static analysis and form the basis for behavior-

based detection rules and incident response

protocols.

6. IOC Table (Extraction of Indicators) –

Extraction

6.1 Purpose:

To extract and document all observable artifacts

(IOCs) left behind by the Akira ransomware during

static and dynamic analysis. These indicators can

be used by:

 Threat hunters

 SOC teams

 Antivirus and EDR tools

YARA rule creation

Table 10: Extracted IOC Table for Akira Ransomware

Category Indicator Example Description

File

Extensio

n

.akira

Appended to

all

encrypted

files

Ransom

Note File

README.txt,

HELP_YourFiles.akira

Dropped in

each

encrypted

folder

Mutex Global\AkiraMutex

Prevents

multiple

infections

Registry

Key

(HKCU)

HKCU\Software\Akira

Stores

ransomware

config or

loader path

Registry

Key

(Run)

HKCU\Software\Microsoft\

Windows\CurrentVersion\R

un\akira_loader

Used for

persistence

C2 URLs

/ TOR

http://akiranetwork.onion,

http://akira24crim3.onion

Command

and Control

server

addresses

Cryptogr

aphic

Artifacts

Hardcoded RSA-4096

public key, ChaCha20

routines

Used in

hybrid

encryption

system

Process

Behavior

vssadmin delete shadows,

cmd.exe, rundll32.exe

Deletes

backups and

launches

sub-

Jeenyta Mahendrabhai Desai, Chetan J. Shingadiya / IJCESEN 11-3(2025)5606-5614

5612

Category Indicator Example Description

processes

Anti-

Debug

Strings

IsDebuggerPresent,

vmtoolsd.exe, sandbox

Detection of

analysis

environment

s

Suspicio

us APIs

CryptEncrypt,

CreateRemoteThread,

RegSetValueEx

Indicates

encryption,

process

injection

and

persistence

Binary

Sections
.akira section in PE header

Custom

section used

to store

payload/con

fig

7. YARA Rule as a Code Block (Signature

Generation)

7.1 Purpose:

To create a detection signature that identifies Akira

ransomware samples based on unique static

indicators including ransom note strings, mutexes,

registry keys, file extensions and embedded C2

domains.

7.2 Generated YARA Rule:

rule Akira_Ransomware_Detector

{

 meta:

 author = "Jeenyta Desai"

 description = "Detects Akira ransomware

using static indicators"

 date = "2025-06-19"

 version = "1.0"

 malware_family = "Akira"

 strings:

 // File extensions and ransom notes

 $ext = ".akira"

 $note1 = "README.txt"

 $note2 = "HELP_YourFiles.akira"

 // Registry keys and mutex

 $reg1 = "HKCU\\Software\\Akira"

 $reg2 = "CurrentVersion\\Run\\akira_loader"

 $mutex = "Global\\AkiraMutex"

 // Anti-analysis & crypto APIs

 $anti_debug1 = "IsDebuggerPresent"

 $anti_debug2 = "vmtoolsd.exe"

 $api1 = "CryptEncrypt"

 $api2 = "CryptAcquireContext"

 $api3 = "CreateRemoteThread"

 // TOR addresses and identifiers

 $tor1 = "akiranetwork.onion"

 $tor2 = "akira24crim3.onion"

 condition:

 uint16(0) == 0x5A4D and

 6 of ($ext, $note1, $note2, $reg1, $mutex,

$tor1, $tor2, $api1, $api2, $api3, $anti_debug1,

$anti_debug2)

}

Table 11: Rule Components

Component Purpose

meta

section
Documents author, version, description

strings
Includes unique strings: ransom note

names, mutexes, C2 URLs

condition
Ensures the binary is a PE file (MZ header)

and matches at least 6 indicators.

7.3 YARA Rule Use Cases:

 Deploy on SIEM or EDR systems for real-

time detection.

 Use in VirusTotal Intelligence to

retroactively scan repositories.

 Integrate with sandbox analysis platforms

(like Cuckoo, CAPEv2).

8. Conclusions

1. Advanced Hybrid Cryptographic Design

 Akira employs a dual encryption model:

o ChaCha20: used per file with a

randomly generated key.

o RSA-4096: used to encrypt

ChaCha20 keys via a hardcoded

public key.

 The implementation closely follows IETF

specifications (RFC 8439), making the

encryption cryptographically strong and

challenging to reverse without the private

key.

2. Custom Obfuscation and Packing

Jeenyta Mahendrabhai Desai, Chetan J. Shingadiya / IJCESEN 11-3(2025)5606-5614

5613

 The .text and. rdata sections showed

entropy >7.8, indicating custom packing

and obfuscation.

 The use of a custom section .akira not seen

in standard PE files suggests a deliberate

attempt to hide configuration data or

payloads.

3. Strong Anti-Analysis Mechanisms

 Static and dynamic analyses revealed:

o Anti-debugging APIs like

IsDebuggerPresent and CPUID.

o Timing checks for sandbox

detection.

o Virtual environment detection

(e.g., string references to vbox,

vmtoolsd.exe).

 These features aim to resist forensic tools

and automated sandboxes.

4. Robust Persistence and Deployment Logic

 Akira establishes registry-level persistence

at:

o HKCU\Software\Akira

o HKCU\Software\Microsoft\Windo

ws\CurrentVersion\Run\akira_load

er

 It enforces single-instance execution using

a named mutex: Global\AkiraMutex.

5. Real-Time Behavior Confirms Stealth and

Impact

 Dynamic analysis in a sandboxed

environment showed:

o Immediate encryption of common

file types, renaming with .akira

extension.

o Deletion of shadow copies via

vssadmin.

o Attempted TOR network access to

C2 URLs (e.g.,

akiranetwork.onion).

6. IOC & YARA-Based Detection Support

 Extraction of high-confidence Indicators of

Compromise (IOCs) enables:

o Integration with SOC alerting

systems.

o Development of YARA rules

targeting static strings like mutex

names, ransom note files, TOR

addresses, and API patterns.

7. Hybrid Analysis Outperforms Isolated

Techniques

 Static tools like Ghidra, PEStudio, FLOSS

revealed structure and encrypted configs.

 Dynamic tools like Any.Run, Procmon,

Wireshark confirmed behavior in

execution.

 The hybrid model provided a 360-degree

view of Akira's design, aiding threat

intelligence and incident response.

Author Statements:

 Ethical approval: The conducted research is

not related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial

interests or personal relationships that could

have appeared to influence the work reported in

this paper

 Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are available

on request from the corresponding author. The

data are not publicly available due to privacy or

ethical restrictions.

References:

[1] Vinod, P., Laxmi, V., Gaur, M. S., & Conti,

M. (2014). Survey on ransomware: Evolution,

taxonomy, and defense solutions. Computers &

Security, 74, 302–322.

[2] Alam, M., et al. (2020). A Survey on Static and

Dynamic Malware Analysis Techniques:

Benefits, Limitations and Future Research. In

Proceedings of the 2020 IEEE Conference on

Computer and Applications (ICCCA).

[3] Kolodenker, E., Koch, W., Stringhini, G., &

Egele, M. (2017). PayBreak: Defense against

cryptographic ransomware. In ACM Asia

Conference on Computer and Communications

Security (pp. 599–611).

Jeenyta Mahendrabhai Desai, Chetan J. Shingadiya / IJCESEN 11-3(2025)5606-5614

5614

[4] Anderson, B., & McGrew, D. (2017). Machine

Learning for Encrypted Malware Traffic

Classification: Accounting for Noisy Labels

and Non-Stationarity. ACM CCS.

[5] Vinayakumar, R., Soman, K. P., &

Poornachandran, P. (2019). Deep learning

approach for intelligent intrusion detection

system. IEEE Access, 7, 41525–41550.

[6] Liao, Q., Zhao, Q., & Doupe, A. (2016).

Behind the scene: Automated analysis of

ransomware attack behavior. Proceedings of

the Symposium on Electronic Crime Research.

[7] Idika, N., & Mathur, A. P. (2007). A Survey of

Malware Detection Techniques. Purdue

University Technical Report.

[8] https://research.checkpoint.com/2024/inside-

akira-ransomwares-rust-experiment/

[9] https://www.reddit.com/r/sysadmin/comments/

1crmt10/we_are_the_team_behind_the_decryp

tion_of_the/

[10] U.S. Department of Health and Human

Services, Health Sector Cybersecurity

Coordination Center (HC3), Akira

Ransomware Analyst Note, Analyst Note

ID#202402071200, Feb. 2024. [Online].

Available: https://www.hhs.gov/HC3

[11] E. L. Lang, "Seven (Science-Based)

Commandments for Understanding and

Countering Insider Threats," Counter-Insider

Threat Research and Practice, vol. 1, no. 1,

2022. [Online]. Available:

https://citrap.scholasticahq.com

[12] Trend Micro Research, "Ransomware Recap

2023," Trend Micro, 2023. [Online].

Available:

https://e.cyberint.com/hubfs/Ransomware%20

Recap%202023.pdf

[13] Arctic Wolf Networks, "Conti and Akira:

Chained Together? Analyzing Overlapping

Financial Infrastructure," Arctic Wolf Blog,

2023. [Online]. Available:

https://arcticwolf.com/resources/blog/conti-

and-akira-chained-together/

[14] CISA, "Stop Ransomware," Cybersecurity &

Infrastructure Security Agency, [Online].

Available:

https://www.cisa.gov/stopransomware

[15] S. Jaros, B. Heuer, and C. Gregory, "Resource

Exfiltration by Federal Employees," Defense

Personnel and Security Research Center

(PERSEREC), DoD, 2019.

[16] MalwareBazaar. (n.d.). MalwareBazaar

database of malicious software.

[17] VirusTotal. (n.d.). VirusTotal — analyze

suspicious files and URLs.

[18] NSA. (2018). ChaCha20 and Poly1305 for

IETF protocols (RFC 8439). Internet

Engineering Task Force.

https://datatracker.ietf.org/doc/html/rfc8439

[19] PEStudio. (n.d.). PEStudio – Malware

Analysis Tool.

[20] National Institute of Standards and

Technology (NIST). (2015). Guide to Malware

Incident Prevention and Handling for

Desktops and Laptops (NIST SP 800-83

Rev.1).

[21] Any.Run. (n.d.). Interactive Malware Analysis

Sandbox.

[22] FLOSS – FireEye Labs Obfuscated String

Solver. (n.d.).

[23] Ghidra Software Reverse Engineering

Framework. (n.d.). National Security Agency.

[24] YARA. (n.d.). YARA – The pattern matching

swiss knife for malware researchers.

[25] MITRE ATT&CK. (n.d.). Tactics, Techniques

and Procedures Matrix.

