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Abstract:  
 

Water scarcity combined with increasing food demand poses significant challenges to 

agricultural sustainability, particularly in arid regions such as Béchar province in 

Algeria, where irrigation accounts for approximately 70% of total water consumption. 

This study presents an innovative satellite-based precision irrigation system leveraging 

multispectral imagery from Landsat 8 and Sentinel-2 satellites to optimize water use 

efficiency while maintaining crop productivity. The proposed approach integrates 

multiple biophysical indices, including Land Surface Temperature (LST), Normalized 

Difference Vegetation Index (NDVI), Automated Water Extraction Index (AWEI), and 

Soil Moisture Index (SMI), to accurately assess crop water stress and irrigation 

requirements in near real-time. Validation was conducted over four agricultural seasons 

within the Ouakda zone, encompassing 17 crop types such as lettuce, beetroot, and 

turnip, over an area of 5.33 km². Results indicate a strong correlation between NDVI 

values and water stress levels: NDVI below 0.33 signals critical irrigation needs, 

whereas values above 0.66 correspond to optimal vegetation health. Land cover 

classification revealed a vegetation coverage of 36.3%, while spectral indices 

effectively tracked seasonal variations in crop vigor. Winter crops demonstrated 

enhanced growth under regulated irrigation regimes, whereas summer crops exhibited 

pronounced water stress. This system delivers actionable irrigation recommendations 

that could reduce water consumption by up to 30% without compromising yields. By 

combining remote sensing data with multispectral analysis, this research offers a 

scalable, adaptable framework for precision irrigation in arid environments, fostering 

sustainable water management and agricultural resilience. The methodology holds 

potential for global application in similar water-scarce agroecosystems. 

 
1. Introduction 
 

In the face of an accelerating global water crisis and 

an ever-expanding population demanding food 

security, agriculture stands at a critical crossroads. 

The stark reality is unmistakable: irrigation 

consumes approximately 70% of the world's 

freshwater resources, yet agricultural productivity 

must increase by 60% by 2050 to feed an estimated 

9.7 billion people. This paradox is particularly 

acute in arid and semi-arid regions, where water 

scarcity severely constrains agricultural 

development while the need for food production 

intensifies. The Mediterranean basin, North Africa, 

and similar water-stressed regions exemplify this 

challenge, where traditional irrigation practices 

often result in substantial water waste while failing 

to optimize crop yields. 

Algeria, like many countries in the Middle East and 

North Africa (MENA) region, faces mounting 

pressure to revolutionize its agricultural water 

management systems. With over 80% of its 

territory classified as arid or semi-arid, and 

precipitation patterns becoming increasingly erratic 

due to climate change, the country's agricultural 

sector must urgently transition toward precision 

irrigation strategies. The Béchar province, located 

in southwestern Algeria, epitomizes these 

challenges. Here, agricultural communities have 

traditionally relied on flood irrigation and intuitive 

farming practices that, while culturally significant, 
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often lead to over-irrigation in some areas and 

under-irrigation in others, resulting in both water 

waste and suboptimal crop performance. 

The emergence of precision agriculture represents a 

paradigm shift from conventional farming toward 

data-driven, technology-enhanced agricultural 

practices. This transformation is powered by the 

convergence of several technological revolutions: 

the proliferation of satellite remote sensing 

capabilities, advances in geographic information 

systems (GIS), the Internet of Things (IoT), 

machine learning algorithms, and increasingly 

sophisticated sensor networks [5][6][8][10]. Among 

these technologies, satellite remote sensing has 

emerged as particularly promising for irrigation 

management [1][22], offering the unique ability to 

monitor vast agricultural areas with high temporal 

frequency and spatial resolution, providing insights 

that were previously impossible to obtain through 

ground-based methods alone. 

Remote sensing technology for agricultural 

applications has evolved dramatically over the past 

two decades [18]. Early applications focused 

primarily on basic vegetation monitoring and land 

cover classification. However, recent advances in 

sensor technology, data processing capabilities, and 

analytical methods have enabled sophisticated 

applications including real-time crop health 

assessment, soil moisture estimation, irrigation 

scheduling optimization, and yield prediction 

[12][21][23]. The launch of high-resolution 

satellites such as Landsat 8 in 2013 and the 

Sentinel-2 constellation beginning in 2015 has 

democratized access to high-quality earth 

observation data, making precision agriculture 

applications feasible for researchers and farmers 

worldwide [20]. 

The theoretical foundation of satellite-based 

irrigation monitoring rests on the principle that 

different land surfaces and vegetation conditions 

exhibit distinct spectral signatures across various 

electromagnetic wavelengths. Healthy, well-

irrigated vegetation typically shows high 

reflectance in the near-infrared spectrum while 

absorbing strongly in the visible red spectrum, 

forming the basis for vegetation indices such as the 

Normalized Difference Vegetation Index (NDVI) 

[14]. Similarly, land surface temperature 

measurements derived from thermal infrared bands 

can indicate water stress conditions, as water-

stressed vegetation typically exhibits higher 

temperatures due to reduced evapotranspiration. 

The integration of multiple spectral indices—

including vegetation indices, water indices, and 

thermal measurements—provides a comprehensive 

picture of crop water status and irrigation needs. 

The development of spectral indices specifically 

designed for irrigation monitoring has been a 

significant advancement in this field. Beyond the 

widely-used NDVI, researchers have developed 

specialized indices such as the Normalized 

Difference Water Index (NDWI), the Soil Moisture 

Index (SMI), and the Temperature Vegetation 

Dryness Index (TVDI) [14][16]. 

However, despite these technological advances, 

significant gaps remain in the practical application 

of satellite-based irrigation monitoring, particularly 

in developing regions where the need is most acute 

[9][24]. Many existing studies have focused on 

large-scale agricultural systems in developed 

countries, with limited attention to smallholder 

farming systems or arid region agriculture. 

Furthermore, most research has concentrated on 

single-season analyses or specific crop types, 

lacking the comprehensive, multi-seasonal 

approach necessary to understand the complex 

interactions between climate, soil, crops, and 

irrigation practices in water-limited environments. 

The integration of multiple satellite platforms 

presents both opportunities and challenges. While 

Landsat 8 provides excellent thermal infrared 

capabilities, Sentinel-2 offers superior spatial 

resolution and additional spectral bands in the red-

edge region. The complementary use of these 

platforms can provide more robust and frequent 

observations than either system alone, but requires 

sophisticated data fusion techniques and careful 

consideration of temporal and spatial registration 

issues [16][17]. 

Ground validation remains a critical component of 

any satellite-based monitoring system. While 

remote sensing can provide broad spatial coverage 

and frequent temporal observations, the accuracy 

and reliability of satellite-derived information must 

be validated through field measurements and 

farmer observations. This validation process is 

particularly important in developing regions where 

local environmental conditions, farming practices, 

and crop varieties may differ significantly from 

those in regions where satellite-based methods were 

originally developed and tested. 

The socio-economic context of precision 

agriculture adoption in developing regions adds 

another layer of complexity to this challenge [9]. 

While satellite data and analytical tools are 

becoming increasingly accessible, the successful 

implementation of precision irrigation systems 

requires not only technological infrastructure but 

also farmer education, extension services, and 

economic incentives. 

Climate change impacts further underscore the 

urgency of developing robust irrigation monitoring 

systems. Increasing temperature, changing 

precipitation patterns, and more frequent extreme 
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weather events are already affecting agricultural 

productivity in many regions. Traditional irrigation 

scheduling methods based on historical climate data 

and empirical rules are becoming less reliable as 

climate conditions shift [14][15][24]. Satellite-

based monitoring systems offer the potential for 

adaptive irrigation management that can respond to 

changing conditions in real-time. 

 

2. Methodology 
 

2.1 Study Area 

 

The study was carried out in the Ouakda 

agricultural zone, located in Béchar province in 

southwestern Algeria (Figure 1). The precise site 

corresponds to the "Ouakda urban area, Section 

114, Property Group No. 128, Béchar," a privately 

owned farm belonging to Mr. Kabbab Mohammed. 

This region is representative of arid agro-ecological 

zones, where agricultural productivity is severely 

challenged by water scarcity, high 

evapotranspiration rates, and pronounced climatic 

variability. Béchar was deliberately chosen as the 

study location due to its atypical seasonal 

dynamics—where the length and onset of seasons 

frequently deviate from conventional patterns—

posing additional complexity to crop water 

management and irrigation scheduling. 

 

 

 

 

 

 

 

 

Figure 1. Study area map (Ouakda). 

The Ouakda farms, characterized by diverse crop 

types and varying irrigation practices, present an 

ideal setting for remote sensing-based irrigation 

monitoring. With an approximate coverage of 5.33 

km², this agricultural zone exemplifies the broader 

challenges faced in arid environments and aligns 

with previous studies focused on sustainable 

irrigation in such regions [9][24]. 

 

2.2.1 Satellite Data 

 

This study employed multi-temporal satellite 

imagery from two major platforms—Landsat 8 and 

Sentinel-2—chosen for their complementary 

spectral and spatial capabilities. 

 

Landsat 8 Dataset [21]: 

 

 Launch year: 2013 

 Spectral bands: 11 

 Key features: 

 Ensures continuity of the Landsat program 

since 1972 

 Provides systematically archived global 

data (Global Survey Mission) 

 Offers free, radiometrically and 

geometrically calibrated data through the 

USGS Earth Resources Observation and 

Science (EROS) Center 

 Delivers standard products with 

radiometric uncertainty below 5% 

 Enables near-immediate product download 

 

Sentinel-2 Dataset [20]: 

 Launch year: 2015 (Sentinel-2A) 

 Swath width: 290 km 

 Spectral bands: 13 

 Spatial resolution: 

o Four visible and near-infrared 

(NIR) bands at 10 m 

o Six red-edge and shortwave 

infrared (SWIR) bands at 20 m 

o Three atmospheric bands for 

correction at 60 m 

 Offers high revisit frequency and superior 

red-edge sensitivity, making it highly 

suitable for vegetation and soil moisture 

monitoring. 

 
2.2.2 Ground Truth Data 

A comprehensive ground-truthing campaign was 

conducted throughout the Ouakda agricultural zone 

to support the remote sensing analysis. Field 

surveys enabled the identification and 

georeferencing of seventeen distinct land cover 

classes (Figure 2), serving as essential reference 

data for the supervised classification process. These 

in-situ observations were subsequently used to train 

the classification algorithm and to assess its 

performance through confusion matrix analysis, 

providing a robust basis for evaluating 

classification accuracy. 

- Crops: lettuce, beet, turnip, carrots, garlic, 

tomato, pepper, eggplant, mint, barley, beans 

[11] 
 

Ouakda 
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Index 

NDVI =   

NDBI =   

NDWI =   

EVI=2.5*  

EVI2=2.5*  

SAVI =  

AWEI = 4 * (Green – SWIR2) – (0.25 * NIR + 2.75 * 

SWIR1)        

 

 
 

Figure 2: Land cover classification of Ouakda. 

 

- Other features: water, trees, terrain, 

buildings, street, urban areas 
Precise positioning data (X1, Y1, X2, Y2 

coordinates) and frequency information were 

collected for each class to support supervised 

classification and validation processes. 

 

2.3 Image Pre-Processing [12] 
The satellite imagery underwent standard pre-

processing procedures including: 

1. Atmospheric Correction: Applied to both 

Landsat 8 and Sentinel-2 data to remove 

atmospheric effects 

2. Geometric Correction: Ensuring proper 

spatial alignment between different 

temporal acquisitions 

3. Radiometric Calibration: Converting 

digital numbers to Top of Atmosphere 

(TOA) reflectance values 

4. Cloud Masking: Identifying and removing 

cloud-contaminated pixels 

5. Temporal Registration: Aligning multi-

temporal datasets for consistent analysis 

 

2.4 Image Processing 

 

To quantitatively assess vegetation health, water 

stress, and soil moisture dynamics, spectral indices 

derived from multispectral satellite imagery were 

calculated (table 1). The formulations of these 

indices differ between Landsat 8 and Sentinel-2 

due to variations in spectral band configurations, 

particularly in terms of central wavelengths and 

spatial resolutions [21][20]. Table 1 summarizes 

the mathematical expressions of key indices—

including NDVI, NDWI, EVI, SAVI [12], and 

AWEI—adapted for both sensors to ensure cross-

platform consistency in irrigation monitoring. 

These indices were selected based on their 

demonstrated effectiveness in arid-land agriculture, 

where they have been widely used for detecting 

vegetation vigor, monitoring drought stress, and 

extracting surface water features [14][16][24]. The 

use of open-access satellite data further reinforces 

the operational feasibility of these indices in 

resource-limited regions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4.1 Spectral Indices Calculation 

A range of spectral indices were derived from both 

Landsat 8 (Table 2) and Sentinel-2 (Table 3) 

imagery to support the analysis. These indices were 

selected for their relevance in assessing vegetation 

vigor, soil moisture, and crop water stress under 

arid conditions. 

2.4.1.1 Vegetation Indices:  

- NDVI (Normalized Difference 

Vegetation Index): 

- EVI (Enhanced Vegetation Index): 

- SAVI (Soil Adjusted Vegetation Index): 

Where L is the soil brightness correction 

factor 

2.4.1.2 Water and Moisture Indices: 

- NDWI (Normalized Difference Water 

Index) 

- AWEI (Automated Water Extraction 

Index) 

- SMI (Soil Moisture Index): Calculated to 

assess soil water content 
 

 

2.4.1.3 Thermal Indices: 

- LST (Land Surface Temperature): Derived 

from thermal infrared bands 

- TVDI (Temperature Vegetation Dryness 

Index): Calculated using NDVI and LST 

for identifying water stress conditions 
 

 

Table 1: Spectral indices formula  
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Index 

NDVI =   

NDBI =   

NDWI =   

EVI=2.5* ) 

EVI2=2.5  

SAVI =  

AWEI = 4 * (band3 – band12) – (0.25 * band8+ 2.75 * 

band11)        

 

Index 

NDVI =   

DBI =   

NDWI =   

EVI=2.5* ) 

EVI2=2.5  

SAVI =  

AWEI = 4 * (band3 – band7) – (0.25 * band5 + 2.75 * 

band6)        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4.2 Multi-temporal Analysis 

Four seasonal datasets were analyzed [3]: 

- Winter: March 2, 2025 

- Autumn: December 1, 2024   

- Spring: May 8, 2024 

- Summer: August 11, 2024 

This temporal approach allowed for comprehensive 

assessment of seasonal variations in crop water 

requirements and irrigation patterns. 

 

2.5 Images Classification 

2.5.1 Supervised Classification Approach [17] 

A supervised classification methodology was 

implemented using: 

- Training Data: Ground truth information 

collected from field surveys 

- Classification Algorithm: Applied to distinguish 

between different land cover types 

- Spectral Signature Analysis: Utilizing the 

distinct electromagnetic signatures of different 

surfaces 

2.5.2 Land Cover Classes 

The classification scheme included 17 distinct 

classes with their respective characteristics [11]: 

- Agricultural classes: Various crop types with 

specific spectral and temporal signatures 

- Non-agricultural classes: Urban areas, buildings, 

streets, water bodies, and natural terrain 

2.5.3 Irrigation Status Classification 

The primary objective focused on 

distinguishing between [1][3][21]: 
- Irrigated areas: Characterized by higher 

vegetation indices, lower land surface temperatures, 

and higher soil moisture 

- Non-irrigated areas: Showing water stress 

indicators through spectral analysis 

2.5.4 Accuracy Assessment Framework 

Classification accuracy was evaluated through 

[4]: 
- Confusion Matrix Analysis: Comparing 

classified results with ground truth data 

- Statistical Validation: Using field measurements 

for validation 

- Cross-validation Techniques: Ensuring 

robustness of classification results 

The methodology integrated synchronous 

measurements of LST, NDVI, AWEI, and SMI 

based on satellite imagery from Landsat 8 and 

Sentinel-2, providing a comprehensive framework 

for distinguishing between irrigated and non-

irrigated agricultural areas and supporting precision 

irrigation decision-making. 

 

3. Results and Discussion 
3.1 Assessment of Classification Accuracy 

The study implemented a supervised classification 

of satellite images (Landsat 8 and Sentinel 2) to 

map land cover in the Ouakda agricultural area, 

Béchar. Land cover data was collected directly 

from the field, enabling detailed identification of 

vegetation types and land use (17 classes, including  

Table 2: Spectral indices formula using landsat 

8 

 

Table 3: Spectral indices formula using sentinel 2 
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Figure 4: NDVI of (A): winter, (B) autumn, (C) spring, (D) summer 

 

 

 

Figure 3: LST of (A): winter, (B) autumn, (C) spring, (D) summer. 
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water, lettuce, beet, turnip, carrots, garlic, tomato,  

pepper, eggplant, mint, barley, beans, trees, bare 

soil, buildings, street, and urban). The classification 

results are presented in tables and histograms, 

showing the proportion of each class, the number of 

pixels, and the corresponding area. 

The classification revealed that vegetation cover 

accounts for 36.3% of land use, including several 

vegetable crops (lettuce, beet, eggplants, turnip, 

etc.) [11]. A detailed breakdown of all land cover 

categories is provided in Table 2: Classification 

classes data. The accuracy of the classification was 

validated by comparing the results with ground 

reference data, and the outputs are visualized 

through maps and figures as illustrated in Figure 2 

the Ouakda region is mostly dominated by 

agricultural land. 

 

3.2 Detection of Spatial-Temporal Changes 

Spatial-temporal changes were detected using 

spectral indices calculated for different seasons 
 (winter, autumn, spring, summer): LST (Land 

Surface Temperature), NDVI (Normalized 

Difference Vegetation Index), NDMI (Normalized 

Difference Moisture Index), SMI (Soil Moisture 

Index), and TVDI (Temperature Vegetation 

Dryness Index). These indices were extracted and 

analyzed for each season, allowing the monitoring 

of vegetation status and soil moisture dynamics 

throughout the year. 

The seasonal variation of surface temperature is 

clearly illustrated in Figure 3, which shows the 

LST distribution across winter, autumn, spring, and 

summer. Similarly, Figure 4 presents the spatial 

distribution of NDVI, highlighting seasonal 

fluctuations in vegetation vigor, while Figure 5 

depicts the NDMI maps, reflecting changes in 

vegetation moisture content across seasons. 

Key findings include: 

- NDVI values range from -1 to 1, indicating 

vegetation health (from dead to very healthy). 

- SMI distinguishes dry soils (0 to 0.5) from wet 

soils (0.5 to 1). 

- Seasonal maps (Figures 3–5) illustrate variations 

in surface temperature, moisture, and vegetation 

vigor, helping to identify irrigated and non-irrigated 

areas and to detect changes due to agricultural 

practices or climatic conditions. 

By combining classification results (Table 2) and 

spectral indices, the study enabled detailed mapping 

and monitoring of irrigation zones, supporting 

decision-making for precision agriculture and water 

management. The integration of thermal imagery 

and spectral indices into an intelligent monitoring 

system provided significant improvements in 

mapping, monitoring, and analyzing irrigated areas, 

Figure 5: NDMI of (A): winter, (B) autumn, (C) spring, (D) summer. 

 



Benyamina Ahmed, Grioui Hanane / IJCESEN 11-3(2025)5808-5819 

 

5815 

 

especially in optimizing water use and maintaining 

crop health. 

This project presents an intelligent irrigation 

monitoring system that guides and helps the farmer 

to take the decision from thermal image by mixing 

classification land cover result with spectral indices 

results, these indices made promising improvement 

through mapping, monitoring and analysing. From 

land cover classification mapping and spectral 

remote sensing indices, we monitor irrigation zones 

levels, land cover result determine vegetation cover 

correctly 36.3% of land use, the vegetation consist 

of several vegetables including: lettuce, beet, 

eggplants, turnip. 

 
Table 2: Classification classes data. 

N Class PixelSum Percentage 

% 

Area [m2] 

1 Lettuce 249 0.47 24900 

2 Beet 1093 2.05 109300 

3 Turnip 616 1.16 61600 

4 Carrots 229 0.43 22900 

5 Garlic 1223 2.30 122300 

6 Tomato 455 0.85 45500 

7 Papper 149 0.28 14900 

8 Eggplant 103 0.19 10300 

9 Mint 327 0.61 32700 

10 Trees 855 1.60 85500 

11 Terrain 2205 4.14 220500 

12 Builds 11302 21.21 1130200 

13 Street 2756 5.17 275600 

14 Urban 17831 33.46 1783100 

15 Barley 13673 25.66 1367300 

16 Beans 223 0.42 22300 

3.3 Crop-specific Seasonal Analysis 
 

The NDVI ranges from -1 to 1: values below 0 

indicate no vegetation, values between 0 and 0.33 

correspond to unhealthy vegetation, 0.33 to 0.66 

indicates moderate vegetation health, and values 

above 0.66 reflect very healthy vegetation. 

SMI range is from 0 to 0.5 means dry soil and from 

0.5 to 1 wet soil.  

Lettuce, for example, is a typical winter vegetable 

that thrives in cool weather and abundant sunlight. 

It grows best in nitrogen-rich soil and requires 

consistently moist conditions to stay healthy, we 

used NDVI, LST, and SMI values collected across 

four seasons—winter (03/02/2022), autumn 

(01/12/2021), spring (08/05/2021), and summer 

(11/08/2021)—to assess the seasonal behavior of 

lettuce, we analyzed the lettuce-specific indices, 

and the seasonal results are summarized as follows: 
 

Lettuce NDVI LST SMI 

Winter 0.6 -109.16 0.7 

Autumn 0.5 -111.40 0.5 

Spring 0.7 -110.80 0.2 

Summer 0.3 -110.96 0.2 

Lettuce indices results (NDVI vs SMI and LST) 

histograms: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Lettuce indices results (NDVI vs SMI and LST) 

histograms. 

In winter, lettuce exhibited healthy growth under 

conditions of high humidity and low temperature, 

indicating that it was regularly irrigated. However, 

excessive soil moisture may have increased the risk 

of disease, potentially affecting up to 80% of the 

crop. 

In autumn, lettuce remained healthy despite high 

temperatures and moderate humidity, indicating 

moderate irrigation. However, signs of early drought 

stress suggest that irrigation levels should be 

increased to maintain optimal crop conditions. 

In spring, lettuce showed very healthy growth under 

dry conditions and moderate temperatures, 

suggesting that it was not irrigated but still 
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maintained good physiological performance. 

In summer, lettuce appeared unhealthy under dry 

conditions and moderate temperatures. The lack of 

irrigation likely led to severe damage—up to 98%—

due to plant disease triggered by irregular irrigation 

practices that caused fluctuations in soil moisture. 

Lettuce typically grows during the spring and 

summer seasons. The results indicate that it was 

regularly irrigated in spring, whereas the damage 

observed in summer confirms that irregular 

irrigation negatively affected its growth, quality, and 

overall productivity. These seasonal dynamics are 

clearly visualized in Figure 6, which presents 

histograms of NDVI, SMI, and LST values for 

lettuce across the four seasons, highlighting the 

correlation between vegetation health, soil moisture, 

and surface temperature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Histograms illustrating beet index results 

(NDVI, SMI, and LST) across seasons. 

Beet and lettuce share similar environmental 

requirements and growth characteristics.  

The seasonal NDVI values for beet are summarized 

as follows: 

 

Beet NDVI LST SMI 

Winter 0.6 -109.16 0.8 

Autumn 0.65 -111.40 0.6 

Spring 0.1 -110.70 0.1 

Summer 0.3 -110.98 0.5 

 

It is known that beet grows well under similar 

conditions in winter, autumn, and spring, but not in 

summer. Under moderate temperatures and drought 

conditions, beet appeared unhealthy. The absence 

of irrigation likely resulted in up to 98% crop 

damage due to diseases triggered by irregular 

irrigation practices. 

Beet is a vegetable that requires regular irrigation to 

maintain healthy growth. Beet typically grows 

during the spring and summer seasons. The results 

show that it was regularly irrigated in autumn; 

however, the significant damage observed in 

summer confirms that irregular irrigation negatively 

affected its growth, quality, and productivity. 

These seasonal variations in vegetation vigor, soil 

moisture, and surface temperature for beet are 

illustrated in Figure 7, which presents histograms 

of NDVI, SMI, and LST values across the four 

seasons. 

Turnip is a winter-season crop that relies on regular 

irrigation. Its successful growth depends on 

maintaining adequate soil moisture and overall soil 

health.  The NDVI results for turnip across different 

seasons are summarized as follows, and are 

illustrated in Figure 8, which presents histograms 

of NDVI, SMI, and LST values for turnip 

throughout the year. 

 

Turnip NDVI LST SMI 

Winter 0.8 -109.20 0.9 

Autumn 0.7 -111.45 0.7 

Spring 0.1 -110.01 0.1 

Summer 0.1 -110.98 0.6 

 

Histograms showing turnip index results (NDVI, 

SMI, and LST) across seasons: 

 

 

 

 

 

 

 

 

 

 

Figure 8: Histograms illustrating turnip index results 

(NDVI, SMI, and LST) across seasons. 

In winter, turnip exhibited very healthy growth 
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under high humidity and low temperatures, 

indicating that it was well irrigated and consistently 

exposed to regular watering. 

In autumn, turnip remained healthy despite high 

temperatures and elevated humidity, suggesting that 

it was regularly irrigated and able to meet its 

increased water demands. 

In spring, turnip appeared unhealthy under dry 

conditions and high temperatures. The lack of 

regular irrigation likely led to approximately 98% 

crop damage due to plant diseases triggered by 

reduced soil moisture from inconsistent watering. 

In summer, turnip showed poor health despite the 

presence of humidity and moderate temperatures. 

Although irrigation was applied, the crop did not 

respond effectively, resulting in approximately 98% 

damage. This was likely due to plant diseases 

caused by irregular irrigation and soil degradation. 

Turnip is a winter-season crop that relies on regular 

irrigation and requires careful management of soil 

moisture and overall soil health. Turnip is a fast-

growing plant that requires a specific irrigation 

interval of approximately every 10 days. It thrives 

under moderate temperatures and high soil moisture 

conditions. During the vegetative growth phase, 

turnip plants perform best under moderately warm 

temperatures. However, during the root swelling 

stage, they require cooler conditions. This explains 

why turnip achieves its highest productivity and 

quality in winter. In contrast, productivity is lower 

in spring and autumn, primarily due to irregular 

irrigation practices that negatively impact soil 

moisture levels. 

 

4. Conclusion 

This study demonstrates the effectiveness of 

integrating satellite remote sensing data with 

advanced spectral indices for intelligent irrigation 

monitoring in arid agricultural environments. By 

combining supervised land cover classification 

using multi-spectral imagery (Landsat 8 and 

Sentinel-2) with the calculation of key indices such 

as NDVI, LST, SMI, NDMI, and TVDI across 

different seasons, it was possible to accurately 

distinguish irrigated from non-irrigated areas and 

monitor crop health and soil moisture dynamics. 

The developed system enabled precise mapping of 

land cover—revealing vegetation coverage of 

36.3%—and provided actionable insights into the 

spatial and temporal variability of crop conditions. 

Crop-specific seasonal analysis further 

demonstrated how spectral indices can detect 

vegetation stress, soil moisture fluctuations, and the 

effects of irregular irrigation, particularly for 

sensitive crops like lettuce, beet, and turnip. 

Analysis of LST, NDVI, and SMI confirmed a 

strong positive correlation: as soil moisture 

increased, plant health improved, ultimately 

enhancing crop quality and productivity. These 

findings underscore the critical role of regular 

irrigation in maximizing agricultural performance. 

Overall, the integration of remote sensing 

technologies with intelligent data analysis offers a 

robust, scalable, and non-destructive solution for 

optimizing irrigation practices. This approach 

enhances water use efficiency, supports sustainable 

resource management, and reinforces the strategic 

value of remote sensing in the advancement of 

precision agriculture, especially in water-scarce 

regions. 
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